Members Can Post Anonymously On This Site
Sols 4355-4356: Weekend Success Brings Monday Best
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
Sols 4368-4369: The Colors of Fall – and Mars
This image shows all the textures — no color in ChemCam remote-imager images, though — that the Martian terrain has to offer. This image was taken by Chemistry & Camera (ChemCam) aboard NASA’s Mars rover Curiosity on Nov. 18, 2024 — sol 4367, or Martian day 4,367 of the Mars Science Laboratory mission — at 02:55:09 UTC. NASA/JPL-Caltech/LANL Earth planning date: Monday, Nov. 18, 2024
I am in the U.K., where we are approaching the time when trees are just branches and twigs. One tree that still has its full foliage is my little quince tree in my front garden. Its leaves have turned reddish-brown with a hint of orange, fairly dark by now, and when I passed it this afternoon on my way to my Mars operations shift, I thought that these leaves have exactly the colors of Mars! And sure enough, today’s workspace is full of bedrock blocks in the beautiful reddish-brown that we love from Mars. But like that tree, it’s not just one color, but many different versions and patterns, all of many reddish-brown and yellowish-brown colors.
The tree theme continues into the naming of our targets today, with ChemCam observing the target “Big Oak Flat,” which is a flat piece of bedrock with a slightly more gray hue to it. “Calaveras,” in contrast, looks a lot more like my little tree, as it is more reddish and less gray. It’s also a bedrock target, and APXS and MAHLI are observing this target, too. APXS has another bedrock target, called “Murphys” on one of the many bedrock pieces around. MAHLI is of course documenting Murphys, too. Let’s just hope that this target name doesn’t get any additions to it but instead returns perfect data from Mars!
ChemCam is taking several long-distance remote micro-imager images — one on the Gediz Vallis Ridge, and one on target “Mono Lake,” which is also looking at the many, many different textures and stones in our surroundings. The more rocks, the more excited a team of geologists gets! So, we are surely using every opportunity to take images here!
Talking about images… Mastcam is taking documentation images on the Big Oak Flat and Calaveras targets, and a target simply called “trough.” In addition, there are mosaics on “Basket Dome” and “Chilkoot,” amounting to quite a few images of this diverse and interesting terrain! More images will be taken by the navigation cameras for the next drive — and also our Hazcam. We rarely talk about the Hazcams, but they are vital to our mission! They look out from just under the rover belly, forward and backward, and have the important task to keep our rover safe. The forward-looking one is also great for planning purposes, to know where the arm can reach with APXS, MAHLI, and the drill. To me, it’s also one of the most striking perspectives, and shows the grandeur of the landscape so well. If you want to see what I am talking about, have a look at “A Day on Mars” from January of this year.
Of course, we have atmospheric measurements in the plan, too. The REMS sensor is measuring temperature and wind throughout the plan, and Curiosity will be taking observations to search for dust devils, and look at the opacity of the atmosphere. Add DAN to the plan, and it is once again a busy day for Curiosity on the beautifully red and brown Mars. And — hot off the press — all about another color on Mars: yellowish-white!
Written by Susanne Schwenzer, Planetary Geologist at The Open University
Share
Details
Last Updated Nov 20, 2024 Related Terms
Blogs Explore More
3 min read Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)
Article
2 days ago
2 min read Sols 4362-4363: Plates and Polygons
Article
1 week ago
3 min read Peculiar Pale Pebbles
During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers 14 Min Read NASA’s Brad Doorn Brings Farm Belt Wisdom to Space-Age Agriculture
This image shows corn cultivation patterns across the U.S. Midwest in 2020, with lands planted in corn marked in yellow. Credits:
NASA Earth Observatory/ Lauren Dauphin Bradley Doorn grew up in his family’s trucking business, which hauled milk and animal feed across the sprawling plains of South Dakota. Home was Mitchell, a small town famous for its Corn Palace, where murals crafted from corn kernels and husks have adorned its facade since 1892—a tribute to the abundance of the surrounding farmland.
Trucking was often grueling work for the family, the day breaking early and ending in headlights. Like farming, driving a truck wasn’t just a job; it was the engine of daily life, thrumming through nearly every conversation and decision.
Brad loved the outdoors, and by the time he started college in the early 1980s, studying geological engineering felt like a natural fit. “I wanted to be out in the field somewhere, working under the big skies of the West,” Brad recalled. But in his sophomore year at the South Dakota School of Mines and Technology, the tuition money dried up.
Dean Doorn, Brad Doorn’s father, stands beside a milk truck used in the family’s business of hauling milk across South Dakota in the 1960s and ’70s. Credit: B. Doorn Doorn found himself at a crossroads familiar to many in rural America: return to the certainty of a family trade or chart a new route. “That’s when the Army stepped in,” he said. The ROTC program offered a way to continue with school and a path into the world of remote sensing—a field that would come to define his career.
Brad’s choice to join the Army would eventually place him at the forefront of a mapping revolution, equipping him to see and analyze Earth in ways never possible before the advent of satellites. But more than the technical skills, the military showed him the allure of a life anchored to mission and team.
Even as his career took him far from Mitchell, Doorn would remain connected to his rural America roots. Today, he leads NASA’s agriculture programs within the agency’s Earth Science Division. “My family wasn’t made up of farmers, but farming was a part of everything growing up,” said Brad. “Even now, working with NASA, that connection to the land—the sense of how weather, crops, and people are tied together—it’s still in everything I do.”
Amid the dazzle of NASA’s feats exploring the solar system and universe, it’s easy to miss the agency’s quiet work in fields of soy and wheat. But for more than 60 years, the agency has harnessed the power of its satellites to deliver crucial data on temperature, precipitation, crop yields, and more to farmers, policymakers, and food security experts worldwide.
The Landsat 9 satellite captured this false-color image of Louisiana rice fields in February 2023. Dark blue shows flooded areas, while green indicates vegetation. Grid-like levees separate fields pre-planting. Louisiana is the third largest producer of rice in the U.S. Credit: NASA Earth Observatory/ Lauren Dauphin From orbit, satellites beam down streams of data—numbers and pixels that, when paired with farmers’ knowledge of the land, can guide growers as they adjust irrigation levels or plan for the next planting. But the satellites don’t just yield data; they tell stories that call for action, enabling nations to brace for droughts, floods, and the prospect of empty grain silos.
“Under Brad’s guidance, NASA’s agriculture program has become a global leader for satellite-driven solutions, tackling food security and sustainability head-on,” said Lawrence Friedl, the senior engagement officer for NASA Earth Science. Reflecting on years of collaboration, he added: “I am so impressed and grateful for what he and his teams have accomplished.”
Boots Meet Satellites in the First Gulf War
Long before Brad began guiding NASA’s agricultural initiatives, he was already navigating tricky terrain, both literal and figurative, with satellite imagery. His career in remote sensing didn’t start with crops, but with the deserts of Iraq and Kuwait.
As part of the Army’s 18th Airborne Corps, Brad led a company at Fort Bragg (now Fort Liberty) in North Carolina that had just returned from operations in the First Gulf War, in the early 1990s. “I loved being part of a unit, part of something bigger than just me,” Brad recalled. “It felt good to have that purpose and mission.”
Far from the combat zone, Doorn’s company became cartographers of the invisible. Their task: merge data from the Landsat satellite with the gritty reality of desert warfare depicted on military maps.
Brad Doorn, then a U.S. Army officer, sits at his desk during his early career in remote sensing. His military experience would later shape his work at NASA, applying satellite technology to real-world challenges. Credit: B. Doorn Landsat, a civilian satellite built by NASA and operated by the U.S. Geological Survey, could see what the soldiers on the ground could not. Its thermal infrared sensor—a camera with a penchant for temperature and moisture—read the desert floor like an ancient script, picking out the cold, soggy signature of mud lurking beneath the desert’s deceptive crust. Each pixel of satellite data became a brushstroke in a new kind of map, keeping tanks out of the mire and the missions on track.
“It was so neat to see the remote sensing techniques I’d learned about in school actually making a difference,” Doorn said.
With this knowledge, he helped guide his unit’s shift from analog maps—paper grids and grease pencils—to the emerging world of digital mapping, a leap that sharpened the military’s ability to read the landscape and steer clear of trouble.
From Desert Muck to Farm Fields
Brad’s military experience gave him an early look at how satellite data could address tangible, on-the-ground challenges. In the Army, he saw how integrating satellite data into military maps could offer soldiers critical information. That experience set the foundation for his later work at NASA, where he would help develop technology with lasting, practical impacts.
Consider OpenET, a NASA-funded initiative that uses Landsat data to give farmers insights into water use and irrigation needs at field scale. The ET in OpenET stands not for the little alien who phoned home, but for evapotranspiration. It’s a combination of water evaporating from the ground and water released by plants into the air.
The program relies on the same thermal technology Doorn used during the Gulf War. Just as cooler, wetter areas in the desert hint at muddy spots, cooler patches in farm fields show where there’s more moisture or plants are releasing more water. These data are key to managing water resources wisely and keeping crops healthy.
“OpenET has transformed our understanding of water demand,” explained Doorn.
To better manage water, state officials and farmers in California are using satellite data through OpenET to track evapotranspiration. Here, the colors represent total evapotranspiration for 2023 as the equivalent depth of water in millimeters. Dark blue regions have higher evapotranspiration rates, such as in the Central Valley. Credit: NASA Earth Observatory using openetdata.org In the late 2000s, when a new generation of Landsat satellites was being planned, the thermal infrared imagers were initially left off the drawing board. “Landsat 8’s design caused a lot of consternation in some Western states that were beginning to use the instrument for measuring and monitoring water use,” said Tony Willardson, the executive director of the Western States Water Council, a government entity that advises western governors on water policy.
Brad played a key role in conveying to NASA the critical need for this technology, both for agriculture and water management, Willardson said. The thermal imager was eventually reinstated and has since “helped to close a gap in western water management.”
“A lot of the technologies that we are using more and more were developed by NASA,” said Willardson. “We need NASA to be doing even more in Earth science.”
Sowing Global Food Stability from Space
Brad ended up serving in the Army for nearly a decade. “You hit that 10-year mark in the military, and you sort of have to decide if you’re staying in for 20 or if you’re getting out,” said Brad. “My wife, Kristen, was able to manage her career as a registered dietician through the first four moves in six years, but eventually it was too much. So, I told her: ‘Your choice. You decide where we go next.’”
She chose southern Pennsylvania to be closer to her family. Brad was 32 years old, and the couple had two small children at the time—one of whom had had open-heart surgery at 6 weeks old to fix a heart defect. They would go on to have another child.
In the late 1990s, within a few years of leaving the military, Doorn found himself someplace he had never imagined: sitting behind a desk at the U.S. Department of Agriculture. For a boy who had grown up driving trucks across the plains of South Dakota—who had vowed never to work in an office, much less live east of the Mississippi—this was an unexpected detour. But he had long since learned that the best paths are often the ones you don’t see coming.
At USDA, he moved forward not with a grand plan, but with an instinctive trust in where curiosity and challenge might lead. He rose through the ranks, from a programmer to directing the agency’s international food production analysis program. He was increasingly driven by a conviction that satellite data, if used the right way, could transform how we see the land and the way we feed the world.
While at USDA, and later at NASA, which he joined in 2009, Brad was instrumental in developing and overseeing the Global Agricultural Monitoring (GLAM) system. This real-time interactive satellite platform delivers massive amounts of ready-to-use satellite data directly to USDA crop analysts, eliminating the burden of data processing and enabling them to focus on rapid crop analysis across the globe. It was a pioneering tool, said Inbal Becker-Reshef, a research professor at University of Maryland’s Department of Geographical Sciences, who played a central role in developing the GLAM system.
At a 2022 Kansas gathering, Brad Doorn presents to farmers about NASA’s Earth Science Division and its activities supporting agriculture. Credit: A. Whitcraft GLAM set the stage for GEOGLAM, a separate, international initiative launched in 2011 by agriculture ministers from the G20—a group of the world’s major economies—partly as a response to global food price volatility. GEOGLAM, which stands for Group on Earth Observations Global Agricultural Monitoring, uses satellite data to monitor global crop conditions, from drought stress to excessive rain, around the world.
Joseph Glauber, a former USDA chief economist, noted that there was initial uncertainty within USDA about the initiative’s longevity, but he credited Brad’s background with rallying support. Today, GEOGLAM’s monthly crop assessments, produced by over 40 organizations including USDA and NASA, serve as a global consensus on crop conditions, helping governments and humanitarian organizations anticipate food shortages.
“Even today, the G20 points to GEOGLAM and its sister initiative, the Agricultural Market Information System—which tracks how crop conditions affect markets—as major successes,” Glauber said.
Harvesting Data Amid Conflict
Doorn’s work crosses continents. When war broke out between Russia and Ukraine in 2022, it rattled global food markets. The Ukrainian government turned to NASA Harvest—a global food security and agriculture consortium led by the University of Maryland and funded by NASA—for help. As manager of NASA’s agriculture program, Brad was a driving force behind the launch of NASA Harvest in 2017, envisioning it as a program that would harness satellite data to provide timely, actionable insights for global agriculture.
From orbit, satellites could observe the sown and the harvested wheat, sunflowers, and barley, offering some of the only reliable estimates for fields in the war zone. Satellite imagery revealed that, despite the conflict, more cropland had been planted and harvested in Ukraine than anyone had expected, a finding that helped stabilize volatile global food prices.
“Brad and the team recognized that providing that type of rapid agricultural assessment for policy support is what NASA Harvest exists for,” said Becker-Reshef, who is the director of the consortium.
NASA Harvest’s reach stretches well beyond Europe. In sub-Saharan Africa, the consortium collaborates with local and international partners, tracking the health of crops and the creeping spread of drought. This information helps equip governments, aid organizations, and farmers to act before disaster strikes, making each data point a crucial defense against hunger.
NASA Harvest has since been joined by NASA Acres, founded in 2023 to provide satellite data and tools that help farmers make well-informed decisions for healthier crops and soil in the United States. One project, for example, involves working with farmers in Illinois to manage nitrogen use more effectively, leveraging satellite data to enhance crop yields while reducing environmental impact.
This image shows corn cultivation patterns across the U.S. Midwest in 2020, with lands planted in corn marked in yellow. The map was built from the Cropland Data Layer product provided by the National Agricultural Statistics Service, which includes data from the USGS National Land Cover Database and from satellites such as Landsat 8. Credit: NASA Earth Observatory/ Lauren Dauphin Friedl noted that Doorn understands the missions of both NASA and the USDA, and with his agricultural roots, he knows the needs of farmers and agricultural businesses firsthand. “Often in meetings, Brad would remind us that the margins for a farmer are in the pennies,” Friedl said. “They wouldn’t be able to afford remote sensing,” so making sure NASA’s satellite information was free and accessible was that much more important.
“It’s hard to imagine that NASA would have the agriculture program it does without somebody like Brad continuing to advocate and push for this to exist,” said Alyssa Whitcraft, the director of NASA Acres. “He knows how critical it is for satellite data to be accessible and useful to those on the ground. He makes sure we never lose sight of that.”
An Emissary Between Worlds
Colleagues say Doorn’s strength lies in his ability to bridge worlds, whether it’s making connections between agencies like NASA and USDA, or connecting such agencies to state water councils or farming communities. His fluency in translating complex science into simple terms makes him equally at ease in whichever world he finds himself.
“There’s NASA language and there’s farm language,” says Lance Lillibridge, who farms about 1,400 acres of corn and soybeans in Benton County, Iowa, and has helped lead the Iowa Corn Growers Association. “Sometimes you need an interpreter, and Brad’s that guy.” He recalled a meeting where some farmers were skeptical, wary of NASA’s “big brother” eyes in the sky, “but Brad had a way of putting people at ease, keeping everyone focused on the shared goal of better data for better decisions.”
Brad Doorn speaks during NASA’s “Space for Ag” roadshow in Iowa, July 2023, highlighting NASA’s role in supporting sustainable farming practices. Credit: N. Pepper “One of my favorite memories of Brad,” said Forrest Melton, the OpenET project scientist at NASA’s Ames Research Center, “is an afternoon spent visiting with farmers in western Nebraska, drinking iced tea and talking with them about the challenges facing their family farm.”
Colleagues describe Brad as a nearly unflappable guide, one who knows the agricultural landscape so well that he makes the impossible seem manageable. They say his calm, approachable style, paired with a ready smile, puts people at ease whether in Washington conference rooms or Midwestern barns. And he listens closely to understand where there may be opportunities to help.
“Few people in the water and agriculture communities, from the small-scale farmer to the federal government appointee, aren’t familiar with some aspect of the work Brad has enabled over the decades,” said Sarah Brennan, a former deputy program manager for NASA’s water resources programs. “He has supported the development of some of the greatest advancements in using remote sensing in these communities.”
It’s About the People and the Team
Doorn’s leadership is less about issuing directives, colleagues say, and more about cultivating growth—in crops, in data systems, and in people. Like a farmer tending to his fields, he nurtures the potential in every project and person he encounters. “Almost everyone who has worked for Brad can point back to the opportunities he provided them that launched their successful careers,” said Brennan.
Over the years, he’s added layers to this work of creating paths for others to succeed: as president of the American Society of Photogrammetry and Remote Sensing, as an adjunct professor at Penn State, and as a youth basketball league director.
“What I’ve learned, probably in the military and I’ve carried it forward, is that it’s the people that matter,” Brad said. “I had great mentors who believed it’s just as important to help others grow as it is to meet the day’s demands. Those roles shift your focus toward the people around you, and often, the more you give of your time, the more you end up getting back.”
Young Brad Doorn (front center) stands with his siblings, capturing a family moment in 1960s South Dakota. His youngest brother isn’t pictured. Credit: B. Doorn It has been a long journey from hauling milk and animal feed across the South Dakota plains to surveying them now as a scientist. The tools of his career have changed—from truck routes to satellite orbits, from paper maps to digital data—but his mission remains the same: helping farmers feed the world.
“Growing up in South Dakota, I saw firsthand the challenges farmers face. Today, I’m proud to help provide the tools and data that can make a real difference in their lives,” Doorn added. “Whether it’s a farmer, an economist, or a military analyst, if you give them the right tools, they’ll take them to places you never even thought about. That’s what excites me—seeing where they go.”
By Emily DeMarco
NASA’s Earth Science Division, Headquarters
Share
Details
Last Updated Nov 20, 2024 Related Terms
Earth People of NASA Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Explore Earth Science
Earth Science in Action
NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)
NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on Nov. 14, 2024 — sol 4363, or Martian day 4,363 of the Mars Science Laboratory mission – at 02:55:34 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 15, 2024
The Monday plan and drive had executed successfully, so the team had high hopes for APXS and MAHLI data on several enticing targets in the rover’s workspace. Alas, it was not to be: The challenging terrain had resulted in an awkwardly perched wheel at the end of the drive, so we couldn’t risk deploying the arm from this position. Maybe next drive!
We did plan a busy weekend of non-arm science activities regardless. Due to a “soliday” the weekend has two sols instead of three, but we had enough power available to fit in more than three hours of observations. The two LIBS observations in the plan will measure the composition of the flat, reddish material in the workspace that is fractured in a polygonal pattern (“Bloody Canyon”) and a nearby rock coating in which the composition is suspected to change with depth (“Burnt Camp Creek”). One idea is that the reddish material could be the early stage version of the thicker dark coatings we’ve been seeing.
A large Mastcam mosaic (“Yosemite”) was planned to capture the very interesting view to the rover’s north. Nearby and below the rover is the layer of rocks in which the “Mineral King” site was drilled on the opposite side of the channel back in March. This is a stratum of sulfate-bearing rock that appears dark-toned from orbit and we’re interested to know how consistent its features are from one side of the channel to the other. Higher up, the Yosemite mosaic also captures some deformation features that may reveal past water activity, and some terrain associated with the Gediz Vallis ridge. So there’s a lot of science packed into one mosaic!
Two long-distance RMI mosaics were planned; one is to image back into the channel, where there may be evidence of a late-stage debris flow at the base of the ridge. The second looks “forward” from the rover’s perspective instead, into the wind-shaped yardang unit above us that will hopefully be explored close-up in the rover’s future. This yardang mosaic is intended to form one part of a stereo observation.
The modern environment on Mars will also be observed with dust devil surveys on both sols, line-of-sight and tau observations to measure atmospheric opacity (often increased by dust in the atmosphere), and zenith and suprahorizon movies with Navcam to look for clouds. There will also be standard passive observations of the rover’s environment by REMS and DAN.
We’ll continue driving westward and upward, rounding the Texoli butte to keep climbing through the sulfate-bearing unit. It’s not always easy driving but there’s a lot more science to do!
Written by Lucy Lim, Participating Scientist at NASA’s Goddard Space Flight Center
Share
Details
Last Updated Nov 18, 2024 Related Terms
Blogs Explore More
2 min read Sols 4362-4363: Plates and Polygons
Article
6 days ago
3 min read Peculiar Pale Pebbles
During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…
Article
6 days ago
2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Sols 4362-4363: Plates and Polygons
NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI) on Nov. 11, 2024 – sol 4360, or Martian day 4,360 of the Mars Science Laboratory Mission – at 00:06:13 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Nov. 11, 2024
After a successful 23-meter (about 75 feet) drive today in pre-planning we found ourselves in front of some rocks with a curious dark, platy topping. This is similar to material we have seen previously including over the weekend where MAHLI imaged “Buttress Tree.” This beautiful hand-lens image is shown above, where you can see this more resistant platy texture at the top of the layered rock. Unfortunately it was deemed too unsafe to move the arm today, so no contact science observations were made on this dark material, but a plethora of remote science made up for it!
A curious curved fracture along a rock in the workspace became the target of our ChemCam LIBS laser shots called “Pioneer Basin.” ChemCam will then take a long-distance RMI looking back at Gediz Vallis channel, which we have been driving away from. Mastcam is focusing on taking two mosaics of areas of rocks that exhibit light- and dark-toned bands from orbit. We previously drove across these bands in January before we crossed the Gediz Vallis channel. Now that we are over the channel, we are about to drive on the dark, banded material once again. Mastcam is also imaging some interesting polygonal textures we see in a few rocks around the rover. To keep it simple, the science team named all four targets of polygonal rocks “Acrodectes Peak.”
As Curiosity drives further away from the Gediz Vallis channel, the exploration of the sulfate unit continues. Although the driving is tough at times, the beautiful discoveries and amazing geology make the tough times worth it. Let’s hope we can get some contact science activities safe and sound in the next plan.
Written by Emma Harris, Graduate Student at Natural History Museum, London
Share
Details
Last Updated Nov 13, 2024 Related Terms
Blogs Explore More
3 min read Peculiar Pale Pebbles
During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…
Article
14 hours ago
2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!
Article
1 day ago
4 min read Sols 4357–4358: Turning West
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!
NASA’s Mars rover Curiosity acquired this image of its workspace, which includes several targets for investigation — “Buttress Tree,” “Forester Pass,” “Crater Mountain,” “Mahogany Creek,” and “Filly Lake.” Curiosity used its Left Navigation Camera on Nov. 8, 2024 — sol 4357, or Martian day 4.357, of the Mars Science Laboratory mission — at 00:06:17 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 8, 2024
After the excitement of Wednesday’s plan, it was a relief to come in today to hear that the drive toward our exit from Gediz Vallis completed successfully and that we weren’t perched on any rocks or in any other precarious position. This made for a very smooth planning morning, which is always nice on a Friday after a long week.
But that isn’t to say that Curiosity will be taking it easy for the weekend. Smooth planning means we have lots of time to pack in as much science as we can fit. Today, this meant that the geology group (GEO) got to name eight new targets, and the environmental group (ENV) got to spend some extra time contemplating the atmosphere. Reading through the list of target names from GEO felt a bit like reading a travel guide — top rocks to visit when you’re exiting Gediz Vallis!
If you look to the front of your rover, what we refer to as the “workspace” (and which you can see part of in the image above), you’ll see an array of rocks. Take in the polygonal fractures of “Colosseum Mountain” and be amazed by the structures of “Tyndall Creek” and “Cascade Valley.” Get up close and personal with our contact science targets, “Mahogany Creek,” “Forester Pass,” and “Buttress Tree.” Our workspace has something for everyone, including the laser spectrometers in the family, who will find plenty to explore with “Filly Lake” and “Crater Mountain.” We have old favorites too, like the upper Gediz Vallis Ridge and the Texoli outcrop.
After a busy day sightseeing, why not kick back with ENV and take a deep breath? APXS and ChemCam have you covered, watching the changing atmospheric composition. Look up with Navcam and you may see clouds drifting by, or spend some time looking for dust devils in the distance. Want to check the weather before planning your road trip? Our weather station REMS works around the clock, and Mastcam and Navcam are both keeping an eye on how dusty the crater is.
All good vacations must come to an end, but know that when it’s time to drive away there will be many more thrilling sights to come!
Written by Alex Innanen, Atmospheric Scientist at York University
Share
Details
Last Updated Nov 11, 2024 Related Terms
Blogs Explore More
4 min read Sols 4357–4358: Turning West
Article
3 days ago
2 min read Mars 2020 Perseverance Joins NASA’s Here to Observe Program
The Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program,…
Article
5 days ago
3 min read Sols 4355-4356: Weekend Success Brings Monday Best
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.