Members Can Post Anonymously On This Site
Devastating floods in Spain witnessed by satellites
-
Similar Topics
-
By NASA
For astronauts aboard the International Space Station, staying connected to loved ones and maintaining a sense of normalcy is critical. That is where Tandra Gill Spain, a computer resources senior project manager in NASA’s Avionics and Software Office, comes in. Spain leads the integration of applications on Apple devices and the hardware integration on the Joint Station Local Area Network, which connects the systems from various space agencies on the International Space Station. She also provides technical lead support to the Systems Engineering and Space Operations Computing teams and certifies hardware for use on the orbiting laboratory.
Spain shares about her career with NASA and more. Read on to learn about her story, her favorite project, and the advice she has for the next generation of explorers.
Tandra Spain’s official NASA portrait. NASA Where are you from?
I am from Milwaukee, Wisconsin.
Tell us about your role at NASA.
I am the Apple subsystem manager where I lead the integration of applications on Apple devices as well as the hardware integration on the Joint Station Local Area Network. We use a variety of different software but I work specifically with our Apple products. I also provide technical lead support to the Systems Engineering and Space Operations Computing teams. In addition, I select and oversee the certification of hardware for use on the International Space Station, and I research commonly used technology and assess applicability to space operations.
How would you describe your job to family or friends who may not be familiar with NASA?
I normalize living and working in space by providing the comforts and conveniences of living on Earth.
Tandra spain
Computer Resources Senior Project Manager
I get the opportunity to provide the iPads and associated applications that give astronauts the resources to access the internet. Having access to the internet affords them the opportunity to stay as connected as they desire with what is going on back home on Earth (e.g., stream media content, stay in touch with family and friends, and even pay bills). I also provide hardware such as Bluetooth speakers, AirPods, video projectors, and screens.
How long have you been working for NASA?
I have been with the agency for 30 years, including 22 years as a contractor.
What advice would you give to young individuals aspiring to work in the space industry or at NASA?
I have found that there is a place for just about everyone at NASA, therefore, follow your passion. Although many of us are, you don’t have to be a scientist or engineer to work at NASA. Yearn to learn. Pause and listen to those around you. You don’t know what you don’t know, and you will be amazed what gems you’ll learn in the most unexpected situations.
Additionally, be flexible and find gratitude in every experience. Many of the roles that I’ve had over the years didn’t come from a well-crafted, laid-out plan that I executed, but came from taking advantage of the opportunities that presented themselves and doing them to the best of my ability.
Tandra Spain and her husband, Ivan, with NASA astronaut and Flight Director TJ Creamer when she was awarded the Silver Snoopy Award. What was your path to NASA?
I moved to Houston to work at NASA’s Johnson Space Center immediately upon graduating from college.
Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?
I spent over half of my career in the Astronaut Office, and I’ve been influenced in different ways by different people, so it wouldn’t be fair to pick just one!
What is your favorite NASA memory?
I’ve worked on so many meaningful projects, but there are two recent projects that stand out.
Humans were not created to be alone, and connection is extremely important. I was able to provide a telehealth platform for astronauts to autonomously video conference with friends and family whenever an internet connection is available. Prior to having this capability, crew were limited to one scheduled video conference a week. It makes me emotional to think that we have moms and dads orbiting the Earth on the space station and they can see their babies before they go to bed, when they wake up in the morning, or even in the middle of the night if needed.
In addition, since iPads are used for work as well as personal activities on station, it is important for my team to be able to efficiently keep the applications and security patches up to date. We completed the software integration and are in the process of wrapping up the certification of the Mac Mini to provide this capability. This will allow us to keep up with all software updates that Apple releases on a regular basis and minimize the amount of crew and flight controller team time associated with the task by approximately 85%.
Tandra Spain, her mother, Marva Herndon, and her daughter, Sasha, at her daughter’s high school graduation in 2024. What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth?
When I speak to the public about the space station, I like to compare our everyday lives on Earth to life on the station and highlight the use of technology to maintain the connection to those on Earth. For example, most people have a phone. Besides making a phone call, what do you use your phone for? It is amazing to know that the same capabilities exist on station, such as using apps, participating in parent teacher conferences, and more.
If you could have dinner with any astronaut, past or present, who would it be?
I would have dinner with NASA astronaut Ron McNair. He graduated from the same university as I did, and I’ve heard great stories about him.
Do you have a favorite space-related memory or moment that stands out to you?
As I mentioned previously, human connection is extremely important. As an engineer in the Astronaut Office, I worked on a project that provided more frequent email updates when Ku-Band communication was available. Previously, email was synced two to three times a day, and less on the weekend. When the capability went active, I sent the first email exchange.
What are some of the key projects you’ve worked on during your time at NASA? What have been your favorite?
There have been so many projects over the past 30 years that I don’t think I could select just one. There is something however, that I’ve done on many occasions that has brought me pure joy, which is attending outreach events as Johnson’s “Cosmo” mascot, especially Houston Astros games.
Tandra Spain representing NASA as “Cosmo” the astronaut mascot at a Houston Astros baseball game. What are your hobbies/things you enjoy outside of work?
I enjoy crafting, traveling, mentoring students in Pearland Independent School District, spending time with family, and my Rooted Together community.
Day launch or night launch?
Night launch!
Favorite space movie?
Star Wars (the original version)
NASA “worm” or “meatball” logo?
Meatball
Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.
Sign up for our weekly email newsletter to get the updates delivered directly to you.
Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.
View the full article
-
By European Space Agency
Last night a crucial step in the European Space Agency’s eclipse-making Proba-3 mission was completed: the two spacecraft, flying jointly since launch, have successfully separated. This leaves them ready to begin their cosmic dance in the world’s first-ever precision formation-flying mission.
View the full article
-
By European Space Agency
A multi-orbit constellation of about 300 satellites that will deliver resilient, secure and fast communications for EU governments, European companies and citizens will be put in orbit after two contracts were confirmed today in Brussels.
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This animation shows data taken by NASA’s PACE and the international SWOT satellites over a region of the North Atlantic Ocean. PACE captured phytoplankton data on Aug. 8, 2024; layered on top is SWOT sea level data taken on Aug. 7 and 8, 2024. NASA’s Scientific Visualization Studio One Earth satellite can see plankton that photosynthesize. The other measures water surface height. Together, their data reveals how sea life and the ocean are intertwined.
The ocean is an engine that drives Earth’s weather patterns and climate and sustains a substantial portion of life on the planet. A new animation based on data from two recently launched missions — NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the international Surface Water and Ocean Topography (SWOT) satellites — gives a peek into the heart of that engine.
Physical processes, including localized swirling water masses called eddies and the vertical movement of water, can drive nutrient availability in the ocean. In turn, those nutrients determine the location and concentration of tiny floating organisms known as phytoplankton that photosynthesize, converting sunlight into food. These organisms have not only contributed roughly half of Earth’s oxygen since the planet formed, but also support economically important fisheries and help draw carbon out of the atmosphere, locking it away in the deep sea.
“We see great opportunity to dramatically accelerate our scientific understanding of our oceans and the significant role they play in our Earth system,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “This visualization illustrates the potential we have when we begin to integrate measurements from our separate SWOT and PACE ocean missions. Each of those missions is significant on its own. But bringing their data together — the physics from SWOT and the biology from PACE — gives us an even better view of what’s happening in our oceans, how they are changing, and why.”
A collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), the SWOT’ satellite launched in December 2022 to measure the height of nearly all water on Earth’s surface. It is providing one of the most detailed, comprehensive views yet of the planet’s ocean and its freshwater lakes, reservoirs, and rivers.
Launched in February 2024, NASA’s PACE satellite detects and measures the distribution of phytoplankton communities in the ocean. It also provides data on the size, amount, and type of tiny particles called aerosols in Earth’s atmosphere, as well as the height, thickness, and opacity of clouds.
“Integrating information across NASA’s Earth System Observatory and its pathfinder missions SWOT and PACE is an exciting new frontier in Earth science,” said Nadya Vinogradova Shiffer, program scientist for SWOT and the Integrated Earth System Observatory at NASA Headquarters.
Where Physics and Biology Meet
The animation above starts by depicting the orbits of SWOT (orange) and PACE (light blue), then zooms into the North Atlantic Ocean. The first data to appear was acquired by PACE on Aug. 8. It reveals concentrations of chlorophyll-a, a vital pigment for photosynthesis in plants and phytoplankton. Light green and yellow indicate higher concentrations of chlorophyll-a, while blue signals lower concentrations.
Next is sea surface height data from SWOT, taken during several passes over the same region between Aug. 7 and 8. Dark blue represents heights that are lower than the mean sea surface height, while dark orange and red represent heights higher than the mean. The contour lines that remain once the color fades from the SWOT data indicate areas of the ocean with the same height, much like the lines on a topographic map indicate areas with the same elevation.
The underlying PACE data then cycles through several groups of phytoplankton, starting with picoeukaryotes. Lighter green indicates greater concentrations of this group. The final two groups are cyanobacteria — some of the smallest and most abundant phytoplankton in the ocean — called Prochlorococcus and Synechococcus. For Prochlorococcus, lighter raspberry colors represent higher concentrations. Lighter teal colors for Synechococcus signal greater amounts of the cyanobacteria.
The animation shows that higher phytoplankton concentrations on Aug. 8 tended to coincide with areas of lower water height. Eddies that spin counterclockwise in the Northern Hemisphere tend to draw water away from their center. This results in relatively lower sea surface heights in the center that draw up cooler, nutrient-rich water from the deep ocean. These nutrients act like fertilizer, which can boost phytoplankton growth in sunlit waters at the surface.
Overlapping SWOT and PACE data enables a better understanding of the connections between ocean dynamics and aquatic ecosystems, which can help improve the management of resources such as fisheries, since phytoplankton form the base of most food chains in the sea. Integrating these kinds of datasets also helps to improve calculations of how much carbon is exchanged between the atmosphere and the ocean. This, in turn, can indicate whether regions of the ocean that absorb excess atmospheric carbon are changing.
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
More About PACE
The PACE mission is managed by NASA Goddard Space Flight Center, which also built and tested the spacecraft and the Ocean Color Instrument, which collected the data shown in the visualization. The satellite’s Hyper-Angular Rainbow Polarimeter #2 was designed and built by the University of Maryland, Baltimore County, and the Spectro-polarimeter for Planetary Exploration was developed and built by a Dutch consortium led by Netherlands Institute for Space Research, Airbus Defence, and Space Netherlands.
To learn more about PACE, visit:
https://pace.gsfc.nasa.gov
News Media Contacts
Jacob Richmond (for PACE)
NASA’s Goddard Space Flight Center, Greenbelt, Md.
jacob.a.richmond@nasa.gov
Jane J. Lee / Andrew Wang (for SWOT)
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-169
Share
Details
Last Updated Dec 09, 2024 Related Terms
PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Climate Science Oceans SWOT (Surface Water and Ocean Topography) Explore More
7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
Article 3 weeks ago 4 min read NASA Data Helps International Community Prepare for Sea Level Rise
Article 4 weeks ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
Article 4 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Researchers from the University of Leeds have detected methane leaking from a faulty pipe in Cheltenham, Gloucestershire, UK, using GHGSat satellite data – part of ESA’s Third Party Mission Programme. This marks the first time a UK methane emission has been identified from space and successfully mitigated.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.