Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Hera asteroid mission in your house View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The six SCALPSS cameras mounted around the base of Blue Ghost will collect imagery during and after descent and touchdown. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images to produce a 3D view of the surface. Image courtesy of Firefly. Say cheese again, Moon. We’re coming in for another close-up.
      For the second time in less than a year, a NASA technology designed to collect data on the interaction between a Moon lander’s rocket plume and the lunar surface is set to make the long journey to Earth’s nearest celestial neighbor for the benefit of humanity.
      Developed at NASA’s Langley Research Center in Hampton, Virginia, Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS) is an array of cameras placed around the base of a lunar lander to collect imagery during and after descent and touchdown. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images from the version of SCALPSS on Firefly’s Blue Ghost — SCALPSS 1.1 — to produce a 3D view of the surface. An earlier version, SCALPSS 1.0, was on Intuitive Machines’ Odysseus spacecraft that landed on the Moon last February. Due to mission contingencies that arose during the landing, SCALPSS 1.0 was unable to collect imagery of the plume-surface interaction. The team was, however, able to operate the payload in transit and on the lunar surface following landing, which gives them confidence in the hardware for 1.1.
      The SCALPSS 1.1 payload has two additional cameras — six total, compared to the four on SCALPSS 1.0 — and will begin taking images at a higher altitude, prior to the expected onset of plume-surface interaction, to provide a more accurate before-and-after comparison.
      These images of the Moon’s surface won’t just be a technological novelty. As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to be able to accurately predict the effects of landings.
      How much will the surface change? As a lander comes down, what happens to the lunar soil, or regolith, it ejects? With limited data collected during descent and landing to date, SCALPSS will be the first dedicated instrument to measure the effects of plume-surface interaction on the Moon in real time and help to answer these questions.
      “If we’re placing things – landers, habitats, etc. – near each other, we could be sand blasting what’s next to us, so that’s going to drive requirements on protecting those other assets on the surface, which could add mass, and that mass ripples through the architecture,” said Michelle Munk, principal investigator for SCALPSS and acting chief architect for NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “It’s all part of an integrated engineering problem.”
      Under the Artemis campaign, the agency’s current lunar exploration approach, NASA is collaborating with commercial and international partners to establish the first long-term presence on the Moon. On this CLPS (Commercial Lunar Payload Services) initiative delivery carrying over 200 pounds of NASA science experiments and technology demonstrations, SCALPSS 1.1 will begin capturing imagery from before the time the lander’s plume begins interacting with the surface until after the landing is complete.
      The final images will be gathered on a small onboard data storage unit before being sent to the lander for downlink back to Earth. The team will likely need at least a couple of months to
      process the images, verify the data, and generate the 3D digital elevation maps of the surface. The expected lander-induced erosion they reveal probably won’t be very deep — not this time, anyway.
      One of the SCALPSS cameras is visible here mounted to the Blue Ghost lander.Image courtesy of Firefly. “Even if you look at the old Apollo images — and the Apollo crewed landers were larger than these new robotic landers — you have to look really closely to see where the erosion took place,” said Rob Maddock, SCALPSS project manager at Langley. “We’re anticipating something on the order of centimeters deep — maybe an inch. It really depends on the landing site and how deep the regolith is and where the bedrock is.”
      But this is a chance for researchers to see how well SCALPSS will work as the U.S. advances human landing systems as part of NASA’s plans to explore more of the lunar surface.
      “Those are going to be much larger than even Apollo. Those are large engines, and they could conceivably dig some good-sized holes,” said Maddock. “So that’s what we’re doing. We’re collecting data we can use to validate the models that are predicting what will happen.”
      The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development Program.
      NASA is working with several American companies to deliver science and technology to the lunar surface under the CLPS initiative. Through this opportunity, various companies from a select group of vendors bid on delivering payloads for NASA including everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.

      Share
      Details
      Last Updated Dec 19, 2024 EditorAngelique HerringLocationNASA Langley Research Center Related Terms
      General Explore More
      4 min read Statistical Analysis Using Random Forest Algorithm Provides Key Insights into Parachute Energy Modulator System
      Article 6 hours ago 1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award 
      Article 8 hours ago 2 min read An Evening With the Stars: 10 Years and Counting 
      Article 8 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      As 1969, an historic year that saw not just one but two successful human lunar landings, drew to a close, NASA continued preparations for its planned third Moon landing mission, Apollo 13, then scheduled for launch on March 12, 1970. The Apollo 13 prime crew of Commander James A. Lovell, Command Module Pilot (CMP) Thomas K. “Ken” Mattingly, and Lunar Module Pilot (LMP) Fred W. Haise, and their backups John W. Young, John L. “Jack” Swigert, and Charles M. Duke, continued intensive training for the mission. NASA announced the selection of the Fra Mauro region of the Moon as the prime landing site for Apollo 13, favored by geologists because it forms an extensive geologic unit around Mare Imbrium, the largest lava plain on the Moon. The Apollo 13 Saturn V rolled out to its launch pad.

      Apollo 11
      The Apollo 11 astronauts meet Canadian Prime Minister Pierre Trudeau, left, on Parliament Hill in Ottawa. Image courtesy of The Canadian Press. The Apollo 11 astronauts meet with Québec premier ministre Jean Lesage in Montréal. Image courtesy of Archives de la Ville de Montreal. Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrinhad returned from their Giantstep Presidential goodwill tour on Nov. 5, 1969. Due to scheduling conflicts, a visit to Canada could not be included in the same time frame as the rest of the tour, so the astronauts made a special trip to Ottawa and Montreal on Dec. 2 and 3, meeting with local officials.
      Apollo 11 astronaut Neil A. Armstrong, left, and comedian Bob Hope perform for the troops in Korat, Thailand. Armstrong, in blue flight suit, shakes hands with servicemen in Long Binh, South Vietnam. Armstrong, left, and Hope entertain the crowd in Cu Chi, South Vietnam. Armstrong joined famed comedian Bob Hope’s USO Christmas tour in December 1969. He participated in several shows at venues in South Vietnam, Thailand, and Guam, kidding around with Hope and answering questions from the assembled service members. He received standing ovations and spent much time shaking hands with the troops. The USO troupe also visited the hospital ship U.S.S. Sanctuary (AH-17) stationed in the South China Sea.

      Apollo 12
      For the first time in nearly four weeks, on Dec. 10, Apollo 12 astronauts Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean stepped out into sunshine and breathed unfiltered air. Since their launch on Nov. 14, 1969, the trio had traveled inside their spacecraft for 10 days on their mission to the Moon and back, wore respirators during their recovery in the Pacific Ocean, stayed in the Mobile Quarantine Facility during the trip from the prime recovery ship U.S.S. Hornet back to Houston, and lived in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Like the Apollo 11 crew before them, Conrad, Gordon, and Bean exhibited no symptoms of any infections with lunar microorganisms and managers declared them fit to be released from quarantine. MSC Director Robert L. Gilruth, other managers, and a crowd of well-wishers greeted Conrad, Gordon, and Bean.
      Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Charles “Pete” Conrad as he emerges from his postflight quarantine. Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Richard F. Gordon as he emerges from his postflight quarantine. Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Alan L. Bean as he emerges from his postflight quarantine. Addressing the crowd gathered outside the LRL, Conrad commented that “the LRL was really quite pleasant,” but all three were glad to be breathing non man-made air! While the men went home to their families for a short rest, work inside the LRL continued. Scientists began examining the first of the 75 pounds of rocks returned by the astronauts as well as the camera and other hardware they removed from Surveyor 3 for effects of 31 months exposed to the harsh lunar environment. Preliminary analysis of the TV camera that failed early during their first spacewalk on the lunar surface indicated that the failure was due to partial burnout of the Videocon tube, likely caused by the crew accidentally pointing the camera toward the Sun. Other scientists busied themselves with analyzing the data returning from the Apollo Lunar Surface Experiment Package (ALSEP) instruments Conrad and Bean deployed on the lunar surface. Mission planners examining the photographs taken from lunar orbit of the Fra Mauro area were confident that the next mission, Apollo 13, would be able to make a safe landing in that geologically interesting site, the first attempt to land in the lunar highlands.
      After taking their first steps in the sunshine, Apollo 12 astronauts Charles “Pete” Conrad, left, Alan L. Bean, and Richard F. Gordon address a large group of well-wishers outside the Lunar Receiving Laboratory. Bean, left, Gordon, and Conrad during their postflight press conference. Two days after leaving the LRL, Conrad, Gordon, and Bean held their postflight press conference in the MSC auditorium. Addressing the assembled reporters, the astronauts first introduced their wives as their “number one support team,” then provided a film and photo summary of their mission, and answered numerous questions. Among other things, the astronauts praised the spacesuits they wore during the Moon walks, indicating they worked very well and, looking ahead, saw no impediments to longer excursions on future missions. Their only concern centered around the ever-present lunar dust that clung to their suits, raising that as a potential issue for future lunar explorers.
      Director of NASA’s Kennedy Space Center in Florida Kurt H. Debus, right, presents Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean with photos of their launch. White House of the Apollo 12 astronauts and their wives with President Richard M. Nixon, First Lady Pat Nixon, and their daughter Tricia Nixon. Conrad, Gordon, and Bean returned to NASA’s Kennedy Space Center (KSC) in Florida on Dec. 17, where their mission began more than a month earlier and nearly ended prematurely when lightning twice struck their Saturn V rocket. KSC Director Kurt H. Debus presented each astronaut with a framed photograph of their launch in front of 8,000 workers assembled in the Vehicle Assembly Building (VAB). Of their nearly ill-fated liftoff Conrad expressed his signature confidence, “Had we to do it again, I would launch exactly under the same conditions.” Guenter Wendt and his pad closeout team had collected a piece of grounding rod from the umbilical tower, cut it into three short pieces, mounted them with the inscription “In fond memory of the electrifying launch of Apollo 12,” and presented them to the astronauts. Three days later, President Richard M. Nixon and First Lady Pat Nixon welcomed Conrad, Gordon, and Bean and their wives Jane, Barbara, and Sue, respectively, to a dinner at the White House. After dinner, they watched a film about the Apollo 12 mission as well as the recently released motion picture Marooned about three astronauts stranded in space. President Nixon requested that the astronauts pay a visit to former President Lyndon B. Johnson, who for many years championed America’s space program, and brief him on their mission, which they did in January 1970.
      The Alan Bean Day parade in Fort Worth. Apollo 12 astronaut Bean and his family deluged by shredded office paper during the parade in his honor in Fort Worth. Image credits: courtesy Fort Worth Star Telegram. On Dec. 22, the city of Fort Worth, Texas, honored native son Bean, with Conrad, Gordon, and their families joining him for the Alan Bean Day festivities. An estimated 150,000 people lined the streets of the city to welcome Bean and his crewmates, dumping a blizzard of ticker tape and shredded office paper on the astronauts and their families during the parade. City workers cleared an estimated 60 tons of paper from the streets after the event. 

      Apollo 13
      The planned Apollo 13 landing site in the Fra Mauro region, in relation to the Apollo 11 and 12 landing sites. Workers place the Spacecraft Lunar Module Adapter over the Apollo 13 Lunar Module. On Dec. 10, 1969, NASA announced the selection of the Fra Mauro region of the Moon as the prime landing site for Apollo 13, located about 110 miles east of the Apollo 12 touchdown point. Geologists favored the Fra Mauro area for exploration because it forms an extensive geologic unit around Mare Imbrium, the largest lava plain on the Moon. Unlike the Apollo 11 and 12 sites located in the flat lunar maria, Fra Mauro rests in the relatively more rugged lunar highlands. The precision landing by the Apollo 12 crew and their extensive orbital photography of the Fra Mauro region gave NASA confidence to attempt a landing at Fra Mauro. Workers in KSC’s VAB had stacked the three stages of Apollo 13’s Saturn V in June and July 1969. On Dec. 10, they topped the rocket with the Apollo 13 spacecraft, comprising the Command and Service Modules (CSM) and the Lunar Module (LM) inside the Spacecraft LM Adapter. Five days later, the Saturn V exited the VAB and made the 3.5-mile journey out to Launch Pad 39A to begin a series of tests to prepare it for the launch of the planned 10-day lunar mission. During their 33.5 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the ALSEP, a suite of five investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. Mattingly planned to remain in the CSM, conducting geologic observations from lunar orbit including photographing potential future landing sites.
      Apollo 13 astronaut James A. Lovell trains on the deployment of the S-band antenna. Apollo 13 astronaut Fred W. Haise examines one of the lunar surface instruments. During the first of the two spacewalks, Apollo 13 Moon walkers Lovell and Haise planned to deploy the five ALSEP experiments, comprising:
      Charged Particle Lunar Environment Experiment (CPLEE) – flying for the first time, this experiment sought to measure the particle energies of protons and electrons reaching the lunar surface from the Sun. Lunar Atmosphere Detector (LAD) – this experiment used a Cold Cathode Ion Gauge (CCIG) to measure the pressure of the tenuous lunar atmosphere. Lunar Heat Flow Experiment (LHE) – designed to measure the steady-state heat flow from the Moon’s interior. Passive Seismic Experiment (PSE) – similar to the device left on the Moon during Apollo 12, consisted of a sensitive seismometer to record Moon quakes and other seismic activity. Lunar Dust Detector (LDD) – measured the amount of dust deposited on the lunar surface. A Central Station provided command and communications to the ALSEP experiments, while a Radioisotope Thermoelectric Generator using heat from the radioactive decay of a Plutonium-238 sample provided uninterrupted power. Additionally, the astronauts planned to deploy and retrieve the Solar Wind Collector experiment to collect particles of the solar wind, as did the Apollo 11 and 12 crews before them. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts Lovell, Haise, Young, and Duke participated in a geology training field trip between Dec. 17 and 20 on the Big Island of Hawaii. Geologist Patrick D. Crosland of the National Park Service in Hawaii provided the astronauts with a tour of recent volcanic eruption sites in the Kilauea area, with the thought that the Fra Mauro formation might be of volcanic origin. During several traverses in the Kilauea Volcano area, NASA geologists John W. Dietrich, Uel S. Clanton, and Gary E. Lofgren and US Geological Survey geologists Gordon A. “Gordie” Swann, M.H. “Tim” Hait, and Leon T. “Lee” Silver accompanied the astronauts. The training sessions honed the astronauts’ geology skills and refined procedures for collecting rock samples and for documentary photography.

      Apollo 14
      The Apollo 14 Command and Service Modules shortly after arriving in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida. The Apollo 14 Lunar Module ascent stage shortly after arriving in the MSOB. S69-62154 001 Preparations for the fourth Moon landing mission, Apollo 14, continued as well. At the time tentatively planned for launch in July 1970, mission planners considered the Littrow area on the eastern edge of the Mare Serenitatis, characterized by dark material possibly of volcanic origin, as a potential landing site. Apollo 14 astronauts Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had already begun training for their mission. At KSC’s Manned Spacecraft Operations Building (MSOB), the Apollo 14 CSM arrived from its manufacturer North American Rockwell in Downey, California, as did the two stages of the LM from the Grumman Aerospace and Engineering Company in Bethpage, New York, in November 1969. Engineers began tests of the spacecraft shortly after their arrival. The three stages of the Apollo 14 Saturn V were scheduled to arrive at KSC in January 1970.

      To be continued …

      News from around the world in December 1969:
      December 2 – Boeing’s new 747 Jumbo Jet makes its first passenger flight, from Seattle to New York.
      December 3 – George M. Low sworn in as NASA deputy administrator.
      December 4 – A Boy Named Charlie Brown, the first feature film based on the Peanuts comic strip, is released to theaters for the first time.
      December 7 – The animated Christmas special Frosty the Snowman, makes its television debut.
      December 14 – The Jackson 5 make their first appearance on The Ed Sullivan Show.
      December 18 – The sixth James Bond film, On Her Majesty’s Secret Service, held its world premiere in London, with George Lazenby as Agent 007.
      View the full article
    • By NASA
      A rendering of Firefly’s Blue Ghost lunar lander and a rover developed for the company’s third mission to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA continues to advance its campaign to explore more of the Moon than ever before, awarding Firefly Aerospace $179 million to deliver six experiments to the lunar surface. This fourth task order for Firefly will target landing in the Gruithuisen Domes on the near side of the Moon in 2028.
      As part of the agency’s broader Artemis campaign, Firefly will deliver a group of science experiments and technology demonstrations under NASA’s CLPS initiative, or Commercial Lunar Payload Services, to these lunar domes, an area of ancient lava flows, to better understand planetary processes and evolution. Through CLPS, NASA is furthering our understanding of the Moon’s environment and helping prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 
      “The CLPS initiative carries out U.S. scientific and technical studies on the surface of the Moon by robot explorers. As NASA prepares for future human exploration of the Moon, the CLPS initiative continues to support a growing lunar economy with American companies,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “Understanding the formation of the Gruithuisen Domes, as well as the ancient lava flows surrounding the landing site, will help the U.S. answer important questions about the lunar surface.”
      Firefly’s first lunar delivery is scheduled to launch no earlier than mid-January 2025 and will land near a volcanic feature called Mons Latreille within Mare Crisium, on the northeast quadrant of the Moon’s near side. Firefly’s second lunar mission includes two task orders: a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side and a delivery of a lunar orbital calibration source, scheduled in 2026.
      This new delivery in 2028 will send payloads to the Gruithuisen Domes and the nearby Sinus Viscositatus. The Gruithuisen Domes have long been suspected to be formed by a magma rich in silica, similar in composition to granite. Granitic rocks form easily on Earth due to plate tectonics and oceans of water. The Moon lacks these key ingredients, so lunar scientists have been left to wonder how these domes formed and evolved over time. For the first time, as part of this task order, NASA also has contracted to provide “mobility,” or roving, for some of the scientific instruments on the lunar surface after landing. This will enable new types of U.S. scientific investigations from CLPS.
      “Firefly will deliver six instruments to understand the landing site and surrounding vicinity,” said Chris Culbert, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston. “These instruments will study geologic processes and lunar regolith, test solar cells, and characterize the neutron radiation environment, supplying invaluable information as NASA works to establish a long-term presence on the Moon.”
      The instruments, collectively expected to be about 215 pounds (97 kilograms) in mass, include: 
      Lunar Vulkan Imaging and Spectroscopy Explorer, which consists of two stationary and three mobile instruments, will study rocks and regoliths on the summit of one of the domes to determine their origin and better understand geologic processes of early planetary bodies. The principal investigator is Dr. Kerri Donaldson Hanna of the University of Central Florida, Orlando. Heimdall is a flexible camera system that will be used to take pictures of the landing site from above the horizon to the ground directly below the lander. The principal investigator is Dr. R. Aileen Yingst of the Planetary Science Institute, Tucson, Arizona. Sample Acquisition, Morphology Filtering, and Probing of Lunar Regolith is a robotic arm that will collect samples of lunar regolith and use a robotic scoop to filter and isolate particles of different sizes. The sampling technology will use a flight spare from the Mars Exploration Rover project. The principal investigator is Sean Dougherty of Maxar Technologies, Westminster, Colorado. Low-frequency Radio Observations from the Near Side Lunar Surface is designed to observe the Moon’s surface environment in radio frequencies, to determine whether natural and human-generated activity near the surface interferes with science. The project is headed up by Natchimuthuk Gopalswamy of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.  Photovoltaic Investigation on the Lunar Surface will carry a set of the latest solar cells for a technology demonstration of light-to-electricity power conversion for future missions. The experiment will also collect data on the electrical charging environment of the lunar surface using a small array of solar cells. The principal investigator is Jeremiah McNatt from NASA’s Glenn Research Center in Cleveland. Neutron Measurements at the Lunar Surface is a neutron spectrometer that will characterize the surface neutron radiation environment, monitor hydrogen, and provide constraints on elemental composition. The principal investigator is Dr. Heidi Haviland of NASA’s Marshall Spaceflight Center in Huntsville, Alabama. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry. Two upcoming CLPS flights scheduled to launch in early 2025 will deliver NASA payloads to the Moon’s near side and south polar region, respectively.
      Learn more about CLPS and Artemis at:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Natalia Riusech / Nilufar Ramji    
      Johnson Space Center, Houston
      281-483-5111
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Share
      Details
      Last Updated Dec 18, 2024 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      LISTER (Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity) is one of 10 payloads flying aboard the next delivery for NASA’s CLPS (Commercial Lunar Payload Services) initiative. The instrument is equipped with a drilling system and thermal probe designed to dig into the lunar surface. Photo courtesy: Firefly Aerospace Earth’s nearest neighboring body in the solar system is its Moon, yet to date humans have physically explored just 5% of its surface. It wasn’t until 2023 – building on Apollo-era data and more detailed studies made in 2011-2012 by NASA’s automated GRAIL (Gravity Recovery and Interior Laboratory) mission – that researchers conclusively determined that the Moon has a liquid outer core surrounding a solid inner core.
      As NASA and its industry partners plan for continued exploration of the Moon under Artemis in preparation for future long-duration missions to Mars, improving our understanding of Earth’s 4.5-billion-year-old Moon will help teams of researchers and astronauts find the safest ways to study and live and work on the lunar surface.
      That improved understanding is  the primary goal of a state-of-the-art science instrument called LISTER (Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed jointly by Texas Tech University in Lubbock and Honeybee Robotics of Altadena, California, LISTER will measure the flow of heat from the Moon’s interior. Its sophisticated pneumatic drill will penetrate to a depth of three meters into the dusty lunar regolith. Every half-meter it descends, the drilling system will pause and extend a custom-built thermal probe into the lunar regolith. LISTER will measure two different aspects of heat flow: thermal gradient, or the changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it.
      “By making similar measurements at multiple locations on the lunar surface, we can reconstruct the thermal evolution of the Moon,” said Dr. Seiichi Nagihara, principal investigator for the mission and a geophysics professor at Texas Tech. “That will permit scientists to retrace the geological processes that shaped the Moon from its start as a ball of molten rock, which gradually cooled off by releasing its internal heat into space.”
      Demonstrating the drill’s effectiveness could lead to more innovative drilling capabilities, enabling future exploration of the Moon, Mars, and other celestial bodies.. The science collected by LISTER aims to contribute to our knowledge of lunar geology, improving our ability to establish a long-term presence on the Moon under the Artemis campaign.
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Dec 18, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      4 min read NASA Finds ‘Sideways’ Black Hole Using Legacy Data, New Techniques
      Article 4 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
      Article 5 hours ago 4 min read New Commercial Artemis Moon Rovers Undergo Testing at NASA
      Article 6 hours ago Keep Exploring Discover Related Topics
      Commercial Lunar Payload Services (CLPS)
      The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
      Moon
      The Moon makes Earth more livable, sets the rhythm of ocean tides, and keeps a record of our solar system’s…
      Marshall Space Flight Center
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...