Members Can Post Anonymously On This Site
Moon waves goodbye to Hera
-
Similar Topics
-
By NASA
NASA/Sara Lowthian-Hanna The phases of the lunar eclipse are visible in this time-lapse image of the Moon above the Space Environments Complex at NASA’s Neil Armstrong Test Facility in Sandusky, OH on March 14, 2025.
Toward the middle of the Moon’s track through the sky, it appears red – this is the Blood Moon. One meaning of a “Blood Moon” is based on its red glow. This blood moon occurs during a total lunar eclipse. During a total lunar eclipse, Earth lines up between the Moon and the Sun, hiding the Moon from sunlight. When this happens, the only light that reaches the Moon’s surface is from the edges of the Earth’s atmosphere. The air molecules from Earth’s atmosphere scatter out most of the blue light. The remaining light reflects onto the Moon’s surface with a red glow, making the Moon appear red in the night sky.
Image credit: NASA/Sara Lowthian-Hanna
View the full article
-
By European Space Agency
Video: 01:08:00 Watch the replay of our Hera mission Mars flyby event. On 12 March 2025, ESA’s Hera mission came to within 5000 km of the surface of the red planet and 300 km of Mars’s more distant and enigmatic moon Deimos. During this flyby, Hera performed observations of both Mars and the city-sized Deimos. Hera then needed to swing its High Gain Antenna back to Earth to transmit its data home. On Thursday, 13 March, these images were premiered by Hera’s science team from ESA’s ESOC mission control centre in Darmstadt, Germany, explaining what they reveal, during our public webcast starting at 11:50 CET. The team was joined by ESA astronaut Alexander Gerst and renowned science fiction writer Andy Weir, author of The Martian and Project Hail Mary, as well as a surprise special guest!
View the full article
-
By NASA
4 Min Read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
This compressed, resolution-limited video features a preliminary sequence of the Blue Ghost final descent and landing that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second. Altitude data is approximate. Credits: NASA/Olivia Tyrrell A team at NASA’s Langley Research Center in Hampton, Virginia, has captured first-of-its-kind imagery of a lunar lander’s engine plumes interacting with the Moon’s surface, a key piece of data as trips to the Moon increase in the coming years under the agency’s Artemis campaign.
The Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 instrument took the images during the descent and successful soft landing of Firefly Aerospace’s Blue Ghost lunar lander on the Moon’s Mare Crisium region on March 2, as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This compressed, resolution-limited video features a preliminary sequence of the Blue Ghost final descent and landing that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second. Altitude data is approximate.NASA/Olivia Tyrrell The compressed, resolution-limited video features a preliminary sequence that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second during the descent and landing.
The sequence, using approximate altitude data, begins roughly 91 feet (28 meters) above the surface. The descent images show evidence that the onset of the interaction between Blue Ghost’s reaction control thruster plumes and the surface begins at roughly 49 feet (15 meters). As the descent continues, the interaction becomes increasingly complex, with the plumes vigorously kicking up the lunar dust, soil and rocks — collectively known as regolith. After touchdown, the thrusters shut off and the dust settles. The lander levels a bit and the lunar terrain beneath and immediately around it becomes visible.
Although the data is still preliminary, the 3000-plus images we captured appear to contain exactly the type of information we were hoping for…
Rob Maddock
SCALPSS project manager
“Although the data is still preliminary, the 3000-plus images we captured appear to contain exactly the type of information we were hoping for in order to better understand plume-surface interaction and learn how to accurately model the phenomenon based on the number, size, thrust and configuration of the engines,” said Rob Maddock, SCALPSS project manager. “The data is vital to reducing risk in the design and operation of future lunar landers as well as surface infrastructure that may be in the vicinity. We have an absolutely amazing team of scientists and engineers, and I couldn’t be prouder of each and every one of them.”
As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to accurately predict the effects of landings. Data from SCALPSS will better inform future robotic and crewed Moon landings.
The SCALPSS 1.1 technology includes six cameras in all, four short focal length and two long focal length. The long-focal-length cameras allowed the instrument to begin taking images at a higher altitude, prior to the onset of the plume-surface interaction, to provide a more accurate before-and-after comparison of the surface. Using a technique called stereo photogrammetry, the team will later combine the overlapping images – one set from the long-focal-length cameras, another from the short focal length – to create 3D digital elevation maps of the surface.
This animation shows the arrangement of the six SCALPSS 1.1 cameras and the instrument’s data storage unit. The cameras are integrated around the base of the Blue Ghost lander. Credit: NASA/Advanced Concepts Lab The instrument is still operating on the Moon and as the light and shadows move during the long lunar day, it will see more surface details under and immediately around the lander. The team also hopes to capture images during the transition to lunar night to observe how the dust responds to the change.
“The successful SCALPSS operation is a key step in gathering fundamental knowledge about landing and operating on the Moon, and this technology is already providing data that could inform future missions,” said Michelle Munk, SCALPSS principal investigator.
The successful SCALPSS operation is a key step in gathering fundamental knowledge about landing and operating on the Moon, and this technology is already providing data that could inform future missions
Michelle Munk
SCALPSS principal investigator
It will take the team several months to fully process the data from the Blue Ghost landing. They plan to issue raw images from SCALPSS 1.1 publicly through NASA’s Planetary Data System within six months.
The team is already preparing for its next flight on Blue Origin’s Blue Moon lander, scheduled to launch later this year. The next version of SCALPSS is undergoing thermal vacuum testing at NASA Langley ahead of a late-March delivery to Blue Origin.
The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program.
NASA is working with several American companies to deliver science and technology to the lunar surface under the CLPS initiative. Through this opportunity, various companies from a select group of vendors bid on delivering payloads for NASA including everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.
About the Author
Joe Atkinson
Public Affairs Officer, NASA Langley Research Center
Share
Details
Last Updated Mar 13, 2025 Related Terms
General Explore More
4 min read Five Facts About NASA’s Moon Bound Technology
Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
Article 2 months ago 3 min read Electrodynamic Dust Shield Heading to Moon on Firefly Lander
Article 2 months ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
While performing yesterday’s flyby of Mars, ESA’s Hera mission for planetary defence made the first use of its payload for scientific purposes beyond Earth and the Moon. Activating a trio of instruments, Hera imaged the surface of the red planet as well as the face of Deimos, the smaller and more mysterious of Mars’s two moons.
View the full article
-
By European Space Agency
Video: 00:03:21 Meet Hera, our very own asteroid detective. Together with two CubeSats – Milani the rock decoder and Juventas the radar visionary – Hera is off on an adventure to explore Didymos, a double asteroid system that is typical of the thousands that pose an impact risk to planet Earth.
In September 2022 NASA’s DART spacecraft tested if it was possible to divert an asteroid by giving it a shove – and found out that it was! Important knowledge, should we wish to avoid going the same way as the dinosaurs. Astronomers can observe from afar how the smaller asteroid’s orbit has shifted since DART’s impact, but there is still a missing piece of the puzzle if we want to fully understand how ‘kinetic impacting’ works in practice. Suitable for kids and adults alike, this episode of ‘The Incredible Adventures of Hera’ explains what ESA’s asteroid detective and its CubeSat assistants are doing on their cosmic roadtrip through space towards the asteroid, and why it involves skimming close to Mars.
Watch the other episodes of The Incredible Adventures of the Hera Mission
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.