Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Jorge Chong is helping shape the future of human spaceflight, one calculation at a time. As a project manager for TRON (Tracking and Ranging via Optical Navigation) and a guidance, navigation, and control (GNC) test engineer in the Aeroscience and Flight Mechanics Division, he is leading efforts to ensure the Orion spacecraft can navigate deep space autonomously. 
      Jorge Chong in front of the Mission Control Center at NASA’s Johnson Space Center in Houston when he helped with optical navigation operations during Artemis I.Image courtesy of Jorge Chong “GNC is like the brain of a spacecraft. It involves a suite of sensors that keep track of where the vehicle is in orbit so it can return home safely,” he said. “Getting to test the components of a GNC system makes you very familiar with how it all works together, and then to see it fly and help it operate successfully is immensely rewarding.” 

      His work is critical to the Artemis campaign, which aims to return humans to the Moon and pave the way for Mars. From developing optical navigation technology that allows Orion to determine its position using images of Earth and the Moon to testing docking cameras and Light Detection and Ranging systems that enable autonomous spacecraft rendezvous, Chong is pushing the limits of exploration. He also runs high-fidelity flight simulations at Lockheed Martin’s Orion Test Hardware facility in Houston, ensuring Orion’s software is ready for the demands of spaceflight. 

      Chong’s NASA career spans seven years as a full-time engineer, plus three years as a co-op student at NASA’s Johnson Space Center in Houston. In 2024, he began leading Project TRON, an optical navigation initiative funded by a $2 million Early Career Initiative award. The project aims to advance autonomous space navigation—an essential capability for missions beyond Earth’s orbit. 
      Jorge Chong and his colleagues with the Artemis II docking camera in the Electro-Optics Lab at Johnson. From left to right: Paul McKee, Jorge Chong, and Kevin Kobylka. Bottom right: Steve Lockhart and Ronney Lovelace. Thanks to Chong’s work, the Artemis Generation is one step closer to exploring the Moon, Mars, and beyond. He supported optical navigation operations during Artemis I, is writing software that will fly on Artemis II, and leads optical testing for Orion’s docking cameras. But his path to NASA wasn’t always written in the stars. 

      “I found math difficult as a kid,” Chong admits. “I didn’t enjoy it at first, but my parents encouraged me patiently, and eventually it started to click and then became a strength and something I enjoyed. Now, it’s a core part of my career.” He emphasizes that perseverance is key, especially for students who may feel discouraged by challenging subjects. 

      Most of what Chong has learned, he says, came from working collaboratively on the job. “No matter how difficult something may seem, anything can be learned,” he said. “I could not have envisioned being involved in projects like these or working alongside such great teams before coming to Johnson.” 
      Jorge Chong (left) and his siblings Ashley and Bronsen at a Texas A&M University game. Image courtesy of Jorge Chong His career has also reinforced the importance of teamwork, especially when working with contractors, vendors, universities, and other NASA centers. “Coordinating across these dynamic teams and keeping the deliverables on track can be challenging, but it has helped to be able to lean on teammates for assistance and keep communication flowing,” said Chong.

      And soon, those systems will help Artemis astronauts explore places no human has gone before. Whether guiding Orion to the Moon or beyond, Chong’s work is helping NASA write the next chapter of space exploration. 

      “I thank God for the doors He has opened for me and the incredible mentors and coworkers who have helped me along the way,” he said. 
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA marked a key milestone Feb. 18 with installation of RS-25 engine No. E20001, the first new production engine to help power the SLS (Space Launch System) rocket on future Artemis missions to the Moon.
      The engine, built by lead SLS engines contractor L3Harris (formerly Aerojet Rocketdyne), was installed on the Fred Haise Test Stand in preparation for acceptance testing next month. It represents the first of 24 new flight engines being built for missions, beginning with Artemis V.
      Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin The NASA Stennis test team will conduct a full-duration, 500-second hot fire, providing critical performance data to certify the engine for use on a future mission. During missions to the Moon, RS-25 engines fire for about 500 seconds and up to the 111% power level to help launch SLS, with the Orion spacecraft, into orbit.
      The engine arrived at the test stand from the L3Harris Engine Assembly Facility on the engine transport trailer before being lifted onto the vertical engine installer (VEI) on the west side deck. After rolling the engine into the stand, the team used the VEI to raise and secure it in place.
      The upcoming acceptance test follows two certification test series that helped verify the new engine production process and components meet all performance requirements. Four RS-25 engines help launch SLS, producing up to 2 million pounds of combined thrust.
      All RS-25 engines for Artemis missions are tested and proven flightworthy at NASA Stennis prior to use. RS-25 tests are conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
      Explore More NASA Stennis Images View the full article
    • By NASA
      October 1, 2022 – September 30, 2023
      This eighth annual report provides an overall highlight of research results published from October 1, 2022 to September 30, 2023 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2022 – September 30, 2023) (PDF, 19.6 MB).
      List of Archived ISS Publications October 1, 2022 – September 30, 2023. (PDF, 1.2 MB)
      October 1, 2021 – September 30, 2022
      This seventh annual report provides an overall highlight of research results published from October 1, 2021 to September 30, 2022 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2021 – September 30, 2022) (PDF, 7.0 MB).
      List of Archived ISS Publications October 1, 2021 – September 30, 2022. (PDF, 1.2 MB)
      October 1, 2020 – October 1, 2021
      This sixth annual report provides an overall highlight of research results published from October 1, 2020 to October 1, 2021 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2020 – October 1, 2021) (PDF, 7.0 MB)
      October 1, 2019 – October 1, 2020
      This fifth annual report provides an overall highlight of research results published from October 1, 2019 to October 1, 2020 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2019 – October 1, 2020) (PDF, 7.0 MB)
      October 1, 2018 – October 1, 2019
      This fourth annual report provides an overall highlight of research results published from October 1, 2018 to October 1, 2019 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2018 – October 1, 2019) (PDF, 3.0 MB)    
      October 1, 2017 – October 1, 2018
      This third annual report provides an overall highlight of research results published from October 1, 2017 to October 1, 2018 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2017 – October 1, 2018) (PDF, 5.8MB)   
      October 1, 2016 – October 1, 2017
      This second annual report provides an overall highlight of research results published from October 1, 2016 to October 1, 2017 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2016 – October 1, 2017) (PDF, 5MB)  
      October 1, 2015 – October 1, 2016
      This first annual report provides an overall highlight of research results published from October 1, 2015 to October 1, 2016 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2015 – October 1, 2016) (PDF, 2.6MB)  
      Keep Exploring Discover More Topics
      Space Station Research Results
      Space Station Research and Technology
      ISS National Laboratory
      Opportunities and Information for Researchers
      View the full article
    • By NASA
      Rodent Research-28 fluorescein angiogram of the microvascular circulation of the mouse retina.Image courtesy: Oculogenex Inc. Key Takeaways
      A total of 361 publications were collected in FY-24. These publications include peer-reviewed scientific studies or other literature such as books and patents published recently or years prior. More than 80% of the publications collected in FY-24 were from research sponsored by NASA and JAXA. In FY-24, the predominant area of study for publications was Earth and Space science. The results obtained were primarily generated via Derived Results, studies that retrieve open data from online sources to make new discoveries. These Derived publications indicate a 39% return on investment. A total of 4,438 publications have been gathered since the beginning of station, and about 16% of this literature has been published in top-tier journals. The year-over-year growth of top-tier publications has been greater than the growth of regular publications. In 13 years, there was a  22% growth of top-tier publications and a 0.47% growth of regular publications. Almost 80% of top-tier results have been published in the past seven years. Station research continues to surpass national and global standards of citation impact. This year, a simplified hierarchy map showing the nested categories of station disciplines, subdisciplines, and selected keywords is presented to represent the more than 15,000 topic key words generated by the studies. Station research has seen a remarkable growth of international collaboration since its first days of assembly in 1999. Currently, about 40% of the research produced by station is the result of a collaboration between two or more countries. To date, the United States has participated in 23% of international collaborations. Of the nearly 4,000 investigations operated on station since Expedition 0, approximately 59% are identified as completed. From this subset of completed investigations, studies directly conducted on station rather than Derived Results have produced the most scientific results. This pattern differs from analyses conducted with all publication data. Introduction
      The International Space Station is a state-of-the art laboratory in low Earth orbit. Since the year 2000, distinguished researchers from a myriad of disciplines around the world have been sending equipment and investigations to station to learn how space-related variables affect the human body, plant and microbial life, physical processes, equipment function, and more. Sophisticated remote sensing techniques and telescopes attached to station also observe the Earth and the universe to enhance our understanding of weather patterns, biomass changes, and cosmic events.
      Investigations can be operated remotely from Earth with ground control support, directly on station with the help of crew members, or autonomously (without human assistance). The most recent science conducted on station has engaged private astronauts to advance the research endeavors of the commercial sector. The improvement of these science operations (i.e., how data is collected and returned) has led to more reliable scientific results. Additionally, extensive domestic and international collaboration bridging academic institutions, corporations, and funding agencies has produced high quality and impactful research that inspires new generations of students, researchers, and organizations looking to solve problems or innovate in emerging fields.
      The studies highlighted in this report are only a small, representative sample of the research conducted on station in the past 12 months. Many more groundbreaking findings were reported in fiscal year 2024 (FY- 24), including:
      Plant adaptation through the adjustment of regulatory proteins, which can lead to sustainable food production on the Moon and Mars (BRIC-LED-001). A connection between downregulated mitochondrial gene pathways and neurotransmitter signaling dysfunction that could assist the development of new pharmaceutical or nutritional therapies to prevent strength loss in neuromuscular disorders. (Microbial Observatory-1). The precise measurement of hydrogen isotopes to provide a better assessment of dark matter (AMS-02). The adaptation of a permanent flow cytometer in space that enables the examination of blood counts, hormones, enzymes, nucleic acids, proteins, and biomarkers to assess crew health in real time (rHEALTH). The behavior of oil-in-water drops in microgravity (i.e., oil drops grow over time, but drop displacement decreases). Understanding the behavior of oils, dyes, and detergents can lead to a safer environment and sustainability of emulsion technologies in the food, pharmaceutical, paint, and lubrication industries (FSL Soft Matter Dynamics-PASTA). Fundamental and applied research conducted on station improves the state of scientific understanding. Whether it is through the examination of microgravity and radiation effects, or through the testing of countermeasures, new materials, and computing algorithms; the hard work of integrating flight operations with scientific objectives is carried out to protect our planet, improve our health, and learn more about our place in the universe.
      The following pages aim to demonstrate how station is revolutionizing science through cooperation, curiosity, and ingenuity. Projects that may have begun as simple ideas are now shaping the way we think about and operate in space to advance our goal of going to the Moon and beyond.
      NASA astronaut and Expedition 70 Flight Engineer Jasmin Moghbeli poses in front of the Kibo laboratory module’s Advanced Plant Habitat housing tomato plants for an experiment investigating how the plant immune system adapts to spaceflight and how spaceflight affects plant production. NASA ID: iss070e073612.Credits: NASA Bibliometric Analyses: Measuring Space Station Impacts
      Literature associated with space station research results (e.g., scientific journal articles, books, patents) is collected, curated, and linked to investigations. The content from these publications is classified based on how the results are obtained. The current classifications are:
      Flight Preparation Results – publications about the development work performed for an investigation or facility prior to operation on space station. Station Results – publications that provide information about the performance and results of an investigation or facility as a direct implementation on station or on a vehicle to space station. Derived Results – publications that use open data from an investigation that operated on station. Access to raw data for new researchers expands global knowledge and scientific benefits. Related – publications that indirectly lead to the development of an investigation or facility. To date, over 2,200 publications have been identified as Related. This count of Related publications is not included in the analyses presented in this report.
      Projects taking place on station (facilities or investigations) are assigned to one of six science disciplines:
      Biology and Biotechnology: Includes plant, animal, cellular biology, habitats, macromolecular crystal growth, and microbiology. Earth and Space Science: Includes astrophysics, remote sensing, near-Earth space environment, astrobiology, and heliophysics. Educational and Cultural Activities: Includes student-developed investigations and competitions. Human Research: Includes crew healthcare systems, all human-body systems, nutrition, sleep, and exercise. Physical Science: Includes combustion, materials, fluid, and fundamental physics. Technology Development and Demonstration: Includes air, water, surface, and radiation monitoring, robotics, small satellites and control technologies, and spacecraft materials. Facilities consist of the infrastructure and equipment on station that enable the research to be conducted (e.g., workstation “racks” containing power, data and thermal control, furnaces, crystallization units, animal and plant habitats). Investigations are research projects with one or multiple science objectives. Investigations may use a facility to execute the experiments. A publicly accessible database of space station investigations, facilities, and publications can be found in the Space Station Research Explorer (SSRE) website. Through bibliometric analyses, the examination of publications and citations in different categories, we learn about research productivity, quality, collaboration, and impact. These measurements allow our organization to identify trends in research growth to better plan and support new scientific endeavors. The analyses included in this report serve to answer questions related to fiscal year data and total publication data to promote research accountability and integrity and ensure benefits to humanity.

      Station research produced in FY-2024
      Between Oct. 1, 2023, and Sept. 30, 2024, we identified a total of 361 publications associated with station research. Of these 361 publications, 52 were published in Biology and Biotechnology, 176 in Earth and Space, 5 in Educational and Cultural Activities, 40 in Human Research, 56 in Physical Science, and 32 in Technology Development and Demonstration. This publication count broken out by research discipline and space agency is shown in Figure 1A. Of the 361 publications, 41 were classified as Flight Preparation Results, 178 as Station Results, and 140 as Derived Results. Because Derived Results are new scientific studies generated from shared data, derived science is an additional return on the investment entrusted to station. In FY-24, this return on investment was 39%; a 12% increase from FY-23. Figure 1B shows this publication data broken out by research discipline and publication type.
      Figure 1A. A total of 361 publications were collected in FY-24. Over 80% of the publications reported results in Earth and Space, primarily from investigations associated with NASA and JAXA research. Figure 1B, A total of 361 publications were collected in FY-24. Most publications in Earth and Space came from Derived Results associated with NASA and JAXA research. These Derived Results demonstrate a return on investment of 39%, a 12% increase from FY-23. Overall growth, quality, impact, and diversity of station research
      Growth: A total of 4,438 publications have been collected since station began operations with 176 publications (4%) from work related to facilities on station. In Figure 2A, we show the growth of both regular and top-tier science over the years. Top-tier publications are studies published in scientific journals ranked in the top 100 according to ClarivateTM (Web of ScienceTM)1, a global database that compiles readership and citation standards to calculate a journal’s Eigenfactor Score2 and ranking. Regular publications include literature published in sources that may be specific to microgravity research but are not ranked.
      Our data shows that over a 13-year period from 2011 to 2023, regular publications grew 0.47% per year and top-tier publications grew 22% per year. Some of the subdisciplines that have experienced most growth from station research are astrophysics (707 publications), Earth remote sensing (266 publications), fluid physics (245 publications), and microbiology (214 publications).
      Quality: About 16% of station results have been published in top-tier journals. However, in Figure 2B we zoom in to examine the growth of top-tier publications given their station science discipline, showing that almost 80% of top-tier research has been published in the past seven years. Currently, a total of 696 articles have been published in top-tier journals and about 53% of this total are Derived Results from Earth and Space science investigations.
      Figure 2A. Growth of regular and top-tier research publications over time. About 16% of station results have been published in top-tier journals. Inset shows the growth of microgravity- and non-microgravity-specific sources used in regular publications. Figure 2B. Growth of top-tier research publications by station research discipline (n = 696). There has been a significant
      increase of top-tier articles published since 2018, with a little over 50% emerging from Derived Results in Earth and Space
      science. Table inset shows the top-tier journals with most station research published. Impact: Previous analyses have demonstrated that the citation impact of station research has superseded national and global standards since 2011 (See Annual Highlights of Results FY-2023). This pattern continues today.
      Diversity: Station science covers six major science disciplines, 73 subdisciplines, and thousands of topic keywords within each subdiscipline. A precise visualization of such abundant diversity would be overwhelming and impenetrable. However, plotting a few topic keywords within each sub-discipline succinctly shows the breadth of science station has to offer (Figure 3). For a better appreciation of station’s diversity, see the interactive hierarchy diagram online. Note that some topics, such as radiation, are studied from multiple perspectives (e.g., radiation measurement through physical science, radiation effects through human research, and shielding through technology development). Topic keywords were obtained using ClarivateTM (Web of ScienceTM).1
      Station research collaboration
      Previous analyses have shown the growth of collaboration between countries throughout the years based on co-authorship (See Annual Highlights of Results FY-2023). In a new analysis conducted with country data obtained through Dimensions.ai3 (n = 3,309 publications), we calculated that about 40% of the publications produced from station research are collaborations between several countries, and about 60% are intercollegiate collaborations within individual countries. As seen in the space agency networks in Figure 4, the United States participates in approximately 23% of the collaborations with other countries, making it the most collaborative country.
      Figure 4: Country collaboration in station research based on publication co-authorship. Networks include up to five countries collaborating in an investigation. Nodes and links from countries that published their research independently are not included. From research ideas to research findings
      Nearly 4,000 investigations have operated since Expedition 0; with a subset of 2,352 investigations (approximately 59%) marked as complete. These completed investigations have concluded their science objectives and reported findings. In Figure 5, we show the citation output from publications exclusively tied to completed investigations. In this Sankey diagram, Times Cited corresponds to the count of publications with at least one citation in each publication type (Station Results, Flight Preparation Results, and Derived Results). This citation count adequately parallels the total number of citations per publication and allows the visualization of a comprehensible chart. This analysis demonstrates that most completed investigations have reported results directly from studies conducted on station, followed by studies conducted in preparation to go to space, and finally by studies derived from open science available online. Likewise, results obtained straight from station receive more citations (e.g, over 46,000) than Flight Preparation (3,636 citations) or Derived results (936 citations). This pattern differs from analyses including all publication data in Figures 1 and 2.
      Linking Space Station Benefits
      Space station research results lead to benefits for human exploration of space, benefits to humanity, and the advancement of scientific discovery. This year’s Annual Highlights of Results from the International Space Station includes descriptions of just a few of the results that were published from across the space station partnership during the past year.
      EXPLORATION: Space station investigation results have yielded updated insights into how to live and work more effectively in space by addressing such topics as understanding radiation effects on crew health, combating bone and muscle loss, improving designs of systems that handle fluids in microgravity, and determining how to maintain environmental control efficiently. DISCOVERY: Results from the space station provide new contributions to the body of scientific knowledge in the physical sciences, life sciences, and Earth and space sciences to advance scientific discoveries in multi-disciplinary ways. BENEFITS FOR HUMANITY: Space station science results have Earth-based applications, including understanding our climate, contributing to the treatment of disease, improving existing materials, and inspiring the future generation of scientists, clinicians, technologists, engineers, mathematicians, artists, and explorers. References
      1Journal ranking and Figure 5 data were derived from ClarivateTM (Web of ScienceTM). © Clarivate 2024. All rights reserved.
      2West JD, Bergstrom TC, Bergstrom CT. The Eigenfactor MetricsTM: A Network approach to assessing scholarly journals. College and Research Libraries. 2010;71(3). DOI: 10.5860/0710236.
      3Digital Science. (2018-) Dimensions [Software] available from https://app.dimensions.ai. Accessed on October 10, 2024, under license agreement.

      View the full article
    • By NASA
      The 2024 Annual Highlights of Results from the International Space Station is now available. This new edition contains updated bibliometric analyses, a list of all the publications documented in fiscal year 2024, and synopses of the most recent and recognized scientific findings from investigations conducted on the space station. These investigations are sponsored by NASA and all international partners – CSA (Canadian Space Agency), ESA (European Space Agency), JAXA (Japan Aerospace Exploration Agency), and the State Space Corporation Roscosmos (Roscosmos) – for the advancement of science, technology, and education.
      Dr. Dmitry Oleynikov remotely operates a surgical robot aboard the Space Station using controls at the Virtual Incision offices in Lincoln, Nebraska. Robotic Surgery Tech Demo tests techniques for performing a simulated surgical procedure in microgravity using a miniature surgical robot that can be remotely controlled from Earth. Credits: University of Nebraska-Lincoln Between Oct. 1, 2023, and Sept. 30, 2024, more than 350 publications were reported. With approximately 40% of the research produced in collaboration between more than two countries and almost 80% of the high-impact studies published in the past seven years, station has continued to generate compelling and influential science above national and global standards since 2010.
      The results achieved from station research provide insights that advance the commercialization of space and benefit humankind.
      Some of the findings presented in this edition include:
      Improved machine learning algorithms to detect space debris (Italian Space Agency, Roscosmos, ESA) Visuospatial processing before and after spaceflight (CSA) Metabolic changes during fasting intervals in astronauts (ESA) Vapor bubble production for the improvement of thermal systems (NASA) Immobilization of particles for the development of optical materials (JAXA) Maintained function of cardiac 3D stem cells after weeks of exposure to space (NASA) The content in the Annual Highlights of Results from the International Space Station has been reviewed and approved by the International Space Station Program Science Forum, a team of scientists and administrators representing NASA and international partners that are dedicated to planning, improving, and communicating the research operated on the space station.
      [See the list of Station Research Results publications here and find the current edition of the Annual Highlights of Results here.]  
      Keep Exploring Discover More Topics
      Space Station Research Results
      Space Station Research and Technology
      ISS National Laboratory
      Opportunities and Information for Researchers
      View the full article
  • Check out these Videos

×
×
  • Create New...