Jump to content

Station Nation: Meet Carlos Fontanot, the Imagery Manager Leaving a Legacy of Visual Storytelling 


Recommended Posts

  • Publishers
Posted

Born and raised in Mexico City, Carlos Fontanot has dedicated 34 years to NASA. He supports the International Space Station Mission Integration and Operations Office, ensuring that high-quality imagery enhances mission objectives and operations.  

Fontanot is known for conceiving and leading the High Definition Earth Viewing (HDEV) project, which has brought stunning live visuals of Earth to millions around the globe. As he approaches his well-deserved retirement, we are excited to spotlight Fontanot’s remarkable career, celebrating his contributions to NASA and the lasting impact he has made on the agency’s mission to share the wonders of space. 

Carlos Fontanot receives a glass award from Joel Montelbano.
Carlos Fontanot (left) receives the Great Minds in STEM Lifetime Achievement Award from Joel Montelbano, NASA at the Hispanic Engineer National Achievement Award Conference.

What does your position entail? 

Integrate all aspects of station imagery, from initial requirements to acquisition, processing, cataloging, archiving, and distribution of station imagery to multiple stakeholders, our clients.  

How would you describe your job to family or friends who may not be as familiar with NASA? 

I manage an array of television and digital still imagery cameras on the International Space Station. Each day we receive eight channels of high definition (HD) video and thousands of digital images that allow the ground team to see what the crew is doing in their daily lives and as part of scientific activities. In today’s age of social media and high-quality imagery, having these images is crucial for effectively conveying the station narrative. 

I also chair the International Space Station’s Multilateral Imagery Working Group. Our team captures and processes the video and still images on a large server, where they are cataloged, archived, and distributed to our clients. Additionally, we are responsible for the photo and TV hardware aboard the space station and provide training to astronauts on how to use this equipment. 

Carlos Fontanot with Liam Kennedy at the International Space Station Research and Development Conference.
Carlos Fontanot with Liam Kennedy at the International Space Station Research and Development Conference.

How do you feel the imagery and public affairs teams contribute to the overall mission of NASA? 

Imagery is critical for communication in today’s visual environment. If people can’t see it, they won’t believe it! Effective communication through multimedia and pointed messaging is essential for securing continued support for NASA missions from both Congress and the public. 

What was your path to NASA? 

I was always interested in photography and film, so I studied radio, TV, and film in college. My first job after graduation was with a local TV station, and I also managed a media center for a multinational company. Then, I joined Johnson Space Center’s television and film division, where I managed space shuttle and institutional imagery. 

Once at Johnson, I worked in the Office of Public Affairs as the audiovisual manager and served for two years as the public affairs officer in Moscow at the start of the International Space Station Program, including the launch of the first station crew. 

What advice would you give to young individuals aspiring to work in the space industry or at NASA? 

NASA is not just about astronauts, flight controllers, and engineers—there are countless disciplines and job opportunities here. Take imagery, for example: in today’s digital age, having the highest resolution imagery of our incredible orbiting laboratory environment and our home planet is essential. 

For those aspiring to join the NASA team, I encourage you be open-minded and a team player. We need well-educated and talented individuals from diverse backgrounds across all disciplines to help us achieve our goals and explore the wonders of space. 

Is there a space figure you’ve looked up to? 

The space figure I will always remember and look up to is John Glenn. I had the fortune and privilege to meet him during his training. He was an extraordinary human being with incredibly high goals throughout his career. 

I was assigned to escort John Glenn and the STS-95 crew on a two-week official visit to several European countries. John was by far the most inspiring and dedicated crew member that I’d ever met. He was always ready and willing to engage with dignitaries, politicians, leaders, journalists, and the public to share the NASA story and promote future programs to gain support from various governments and the public. 

What do you love sharing about the International Space Station to general audiences? 

I love sharing the wonders of life in space, especially the unique and breathtaking views of our planet Earth that can only be appreciated from space. I like to tell audiences about the observations and inspiration our astronauts share upon returning from their missions. I emphasize our thin and fragile atmosphere that sustains life as we know it, the beauty of Earth’s deserts, mountains, jungles, and oceans, and most importantly, the absence of borders. There’s always a profound realization that we are all human and that Earth belongs to all of us. 

How has the technology for capturing images and video in space evolved over the years? 

There was no digital imagery when I started my professional career. Photographs were taken on film that had to be processed in a dark room using chemicals to produce images. Video was recorded on two-inch magnetic tape at low resolution. We even flew film on our spacecraft that had to be brought back and processed on the ground. 

Today, in the digital world, images can be streamed directly from our spacecraft and almost instantaneously shared with the entire globe. The evolution of technology has truly transformed how we capture and share the wonders of space! 

Carlos Fontanot works to install an imagery display in Houston early in his career.
Carlos Fontanot (left) sets up a NASA imagery exhibit in the Houston Downtown Tunnel System.

What are some of the key projects you’ve worked on during your time at NASA? What have been your favorites? 

During my time at NASA, I co-led the High Definition Earth Viewing (HDEV) project, which deployed four Earth-viewing cameras on the International Space Station, reaching over 318 million viewers globally. I also contributed to designing Johnson’s new PAO studio, collaborated on upgrading the space station’s downlink system from four standard-definition to eight high-definition channels, and advanced television technology, including the first HD and later UHD live downlinks from the station. These projects have allowed me to enhance NASA’s capacity for sharing space imagery with the world. 

What are your plans for retirement, and how do you hope to stay connected to the space community? 

I plan to travel across the U.S. in a travel trailer with my wife and dog and enjoying my hobbies I will now have time for, such as photography and spending quality time with my family.

Carlos Fontanot explores the Grand Canyon with his wife, Pat.
Carlos and Pat Fontanot at the Grand Canyon South Rim in Arizona.

 How do you believe NASA’s imagery can continue to inspire future generations? 

Astronaut John Young would come to the photo lab after every shuttle mission to review the film shot onboard. He would say, “A picture is worth a thousand words.” What can inspire more than a breathtaking image of a sunset captured from space or the aurora borealis over the polar regions? 

What legacy do you hope to leave behind after your time at NASA? 

I hope to leave behind a legacy of passion and dedication to acquiring and making pristine, high-resolution imagery from space available for the public to enjoy. 

If you could have dinner with any astronaut, past or present, who would it be? 

I would choose John Young. He flew during both the Apollo and shuttle eras, was an imagery expert, and had a deep understanding of the space station. 

Favorite space movie? 

Interstellar   

NASA Worm or Meatball logo? 

Worm   

*** 

Every day we are conducting exciting research aboard our orbiting laboratory that will help us explore farther into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It is a curated hub of space station research and digital media from Johnson and other centers and space agencies. 

Sign up for our weekly email newsletter to get the updates delivered directly to you. 

Follow updates on social media at @ISS_Research on X, and on the space station accounts on Facebook and Instagram

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Victor Glover tests collection methods for ISS External Microorganisms in the Neutral Buoyancy Lab at Johnson Space Center.NASA Astronauts are scheduled to venture outside the International Space Station to collect microbiological samples during crew spacewalks for the ISS External Microorganisms experiment. This investigation focuses on sampling at sites near life support system vents to examine whether the spacecraft releases microorganisms, how many, and how far they may travel.
      This experiment could help researchers understand whether and how these microorganisms survive and reproduce in the harsh space environment and how they may perform at planetary destinations such as the Moon and Mars. Extremophiles, or microorganisms that can survive harsh environments, are also of interest to industries on Earth such as pharmaceuticals and agriculture.
      Spacecrafts and spacesuits are thoroughly sterilized before missions; however, humans carry their own microbiomes and continuously regenerate microbial communities. It’s important to understand and address how well current designs and processes prevent or limit the spread of human contamination.  The data could help determine whether changes are needed to crewed spacecraft, including spacesuits, that are used to explore destinations where life may exist now or in the past.
      Learn more about how researchers monitor microbes on the space station.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      International Space Station News
      Space Station Research Reference Materials
      Station Benefits for Humanity
      View the full article
    • By NASA
      Insights into metal alloy solidification

      Researchers report details of phase and structure in the solidification of metal alloys on the International Space Station, including formation of microstructures. Because these microstructures determine a material’s mechanical properties, this work could support improvements in techniques for producing coatings and additive manufacturing or 3D printing processes.

      METCOMP, an ESA (European Space Agency) investigation, studied solidification in microgravity using transparent organic mixtures as stand-ins for metal alloys. Conducting the research in microgravity removed the influence of convection and other effects of gravity. Results help scientists better understand and validate models of solidification mechanisms, enabling better forecasting of microstructures and improving manufacturing processes.
      Image from the METCOMP investigation of how a metal alloy could look like as it solidifies. E-USOC Measuring the height of upper-atmospheric electrical discharges

      Researchers determined the height of a blue discharge from a thundercloud using ground-based electric field measurements and space-based optical measurements from Atmosphere-Space Interactions Monitor (ASIM). This finding helps scientists better understand how these high-altitude lightning-related events affect atmospheric chemistry and could help improve atmospheric models and climate and weather predictions.

      ESA’s ASIM is an Earth observation facility that studies severe thunderstorms and upper-atmospheric lighting events and their role in the Earth’s atmosphere and climate. Upper-atmospheric lightning, also known as transient luminous events, occurs well above the altitudes of normal lightning and storm clouds. The data collected by ASIM could support research on the statistical properties of many upper atmosphere lightning events, such as comparison of peak intensities of blue and red pulses with reports from lightning detection networks.
      An artist’s impression of a blue jet as observed from the International Space Station.Mount Visual/University of Bergen/DTU Modeling a complex neutron star

      Scientists report that they can use modeling of neutron star PSRJ1231−1411’s X-ray pulses to infer its mass and radius and narrow the possible behaviors of the dense matter at its core. This finding provides a better understanding of the composition and structure of these celestial objects, improving models that help answer questions about conditions in the universe.

      The Neutron star Interior Composition Explorer provides high-precision measurements of pulses of X-ray radiation from neutron stars. This particular neutron star presented challenges in finding a fit between models and data, possibly due to fundamental issues with its pulse profile. The authors recommend a program of simulations using synthetic data to determine whether there are fundamental issues with this type of pulse profile that could prevent efforts to obtain tighter and more robust constraints.
      Concentrators on the Neutron star Interior Composition Explorer instrument.NASAView the full article
    • By NASA
      Measurements from space support wildfire risk predictions

      Researchers demonstrated that data from the International Space Station’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instrument played a significant role in the ability of machine learning algorithms to predict wildfire susceptibility. This result could help support development of effective strategies for predicting, preventing, monitoring, and managing wildfires.

      As the frequency and severity of wildfires increases worldwide, experts need reliable models of fire susceptibility to protect public safety and support natural resource planning and risk management. ECOSTRESS measures evapotranspiration, water use efficiency, and other plant-water dynamics on Earth. Researchers report that its water use efficiency data consistently emerged as the leading factor in predicting wildfires, with evaporative stress and topographic slope data also significant.
      This ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station evapotranspiration image of California’s Central Valley in May 2022 shows high water use (blue) and dry conditions (brown). NASA Combining instruments provides better emissions data

      Scientists found that averaging data from the International Space Station’s OCO‐3 and EMIT external instruments can accurately measure the rate of carbon dioxide emissions from power plants. This work could improve emissions monitoring and help communities respond to climate change.

      Carbon dioxide emissions from fossil fuel combustion make up nearly a third of human-caused emissions and are a major contributor to climate change. In many places, though, scientists do not know exactly how much carbon dioxide these sources emit. The Orbiting Carbon Observatory-3 or OCO-3 can quantify emissions over large areas and Earth Surface Mineral Dust Source Investigation data can help determine emissions from individual facilities. The researchers suggest future work continue to investigate the effect of wind conditions on measurements.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The The Orbiting Carbon Observatory-3 data showing carbon dioxide concentrations in Los Angeles. NASA Thunderstorm phenomena observed from space

      Observations by the International Space Station’s Atmosphere-Space Interactions Monitor (ASIM) instrument during a tropical cyclone in 2019 provide insight into the formation and nature of blue corona discharges often observed at the tops of thunderclouds. A better understanding of such processes in Earth’s upper atmosphere could improve atmospheric models and weather and climate predictions.

      Scientists do not fully understand the conditions that lead to formation of blue corona discharges, bursts of electrical streamers, which are precursors to lightning. Observations from the ground are affected by scattering and absorption in the clouds. ASIM, a facility from ESA (European Space Agency), provides a unique opportunity for observing these high-atmosphere events from space.
      View of Atmosphere-Space Interactions Monitor, the white and blue box on the end of the International Space Station’s Columbus External Payload Facility. NASAView the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Butch Wilmore works inside the International Space Station’s Columbus laboratory module to begin installing the European Enhanced Exploration Exercise Device. (Credit: NASA) Students from the Toms River School District in New Jersey will have the chance to connect with NASA astronauts Don Pettit and Butch Wilmore as they answer  prerecorded science, technology, engineering, and mathematics (STEM) related questions from aboard the International Space Station.
      Watch the 20-minute space-to-Earth call in collaboration with Science Friday at 10 a.m. EST on Tuesday, Jan. 14, on NASA+ and learn how to watch NASA content on various platforms, including social media.
      Science Friday is a nonprofit dedicated to sharing science with the public through storytelling, educational programs, and connections with audiences. Middle school students will use their knowledge from the educational downlink to address environmental problems in their communities.
      Media interested in covering the event must RSVP by 5 p.m., Friday, Jan. 10, to Santiago Florez at: sflorez@sciencefriday.com or 221-840-2244.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      City lights streak across Earth and an aurora is visible on the horizon as the International Space Station passes over Lake Michigan.NASA For more than 24 years, NASA has supported a continuous U.S. human presence aboard the International Space Station, advancing scientific knowledge and making research breakthroughs not possible on Earth for the benefit of humanity. The space station is a springboard to NASA’s next great leaps in exploration, including future missions to the Moon under Artemis, and ultimately, human exploration of Mars.

      Read more about the groundbreaking work conducted in 2024 aboard the station:
      Robot performs remote simulated surgery
      On long-duration missions, crew members may need surgical procedures, whether simple stitches or an emergency appendectomy. A small robot successfully performed simulated surgical procedures on the space station in early February 2024 for the Robotic Surgery Tech Demo, using two “hands” to grasp and cut rubber bands simulating tissue. Researchers compare the procedures conducted aboard the station and on Earth to evaluate the effects of microgravity and communication delays between space and ground.
      NASA astronaut Loral O’Hara holds the Robotic Surgery Tech Demo hardware on the International Space Station.NASA 3D metal print in space
      On May 30,2024, the ESA (European Space Agency) Metal 3D Printer investigation created a small stainless steel s-curve, the first metal 3D print in space. Crew members on future missions could print metal parts for equipment maintenance, eliminating the need to pack spare parts and tools at launch. This technology also has the potential to improve additive manufacturing on Earth.
      NASA astronaut Jeanette Epps prints samples for Metal 3D Printer on the International Space Station.NASA Here’s looking at you, Earth
      The space station orbits roughly 250 miles above and passes over 90 percent of Earth’s population, providing a unique perspective for photographing the planet. Astronauts have taken more than 5.3 million images of Earth to monitor the planet’s changing landscape. The Expedition 71 crew took over 630,000 images, well above the average of roughly 105,000 for a single mission. This year, images included the April solar eclipse and auroras produced as the Sun’s 11-year activity cycle peaks. Others supported response to over 14 disaster events including hurricanes. In addition, 80,000 images were geolocated using machine learning, improving public search capabilities.
      This astronaut photo from the International Space Station shows Hurricane Milton, a category 4 storm in the Gulf of Mexico, nearing the coast of Florida in October.NASA Miles of flawless fibers
      From mid-February to mid-March of 2024, the Flawless Space Fibers-1 system produced more than seven miles of optical fiber in space. One draw of more than a half mile of fiber surpassed the prior record of 82 feet for the longest fiber manufactured in space, demonstrating that commercial lengths of fiber can be produced in orbit. Fibers produced in microgravity can be superior to those produced in Earth’s gravity. These fibers are made from ZBLAN, a glass alloy with the potential to provide more than 10 times the transmission capacity of traditional silica-based fibers.
      NASA astronaut Loral O’Hara conducting Flawless Space Fibers operations in the Microgravity Science Glovebox inside the International Space Station.NASA Tell-tale heart
      In May 2024, BFF-Cardiac successfully bioprinted a three-dimensional human heart tissue sample using the Redwire BioFabrication Facility. Tissues bioprinted in the microgravity of the space station hold their shape without the use of artificial scaffolds. These bioprinted human heart tissues eventually could be used to create personalized patches for tissue damaged by events such as heart attacks. The tissue sample is undergoing further testing on Earth.
      At left, NASA astronaut Matthew Dominick works on the BFF-Cardiac investigation aboard the International Space Station. At right, cardiac tissue is 3D bioprinted for the investigation.NASA Station-tested radiation technology flown on Artemis I
      The Orion spacecraft carried 5,600 passive and 34 active radiation detectors on its Artemis I uncrewed mission around the Moon in November 2022. Some of these devices previously were tested on the space station: HERA (Hybrid Electronic Radiation Assessor), which detects radiation events such as solar flares; the ESA (European Space Agency) Active Dosimeters, a wearable device collecting real-time data on individual radiation doses; and the AstroRad Vest, a garment to protect radiation-sensitive organs and tissues. In 2024, researchers released evaluation of data collected in 2022 by these tools that indicate the Orion spacecraft can protect astronauts on lunar missions from potentially hazardous radiation. The orbiting laboratory remains a valuable platform for testing technology for missions beyond Earth’s orbit.
      The AstroRad Vest, a radiation protection garment, floats in the International Space Station’s cupola.NASA Record participation in Fifth Robo-Pro Challenge
      A record 661 teams and 2,788 applicants from thirteen countries, regions, and organizations participated in the fifth Kibo Robo-Pro Challenge, which wrapped its final round in September. This educational program from JAXA (Japan Aerospace Exploration Agency) has students solve various problems by programming free-flying Astrobee robots aboard the space station. Participants gain hands-on experience with space robot technology and software programming and interact with others from around the world.
      An Astrobee robot moves through the space station for the Robo-Pro Challenge.NASA Melissa Gaskill
      International Space Station Research Communications Team|
      Johnson Space Center

      Keep Exploring Discover More Topics From NASA
      Station Benefits for Humanity
      Space Station Research and Technology
      International Space Station News
      Humans In Space
      View the full article
  • Check out these Videos

×
×
  • Create New...