Members Can Post Anonymously On This Site
Lets Talk Space - The Search For Intelligent Life.
-
Similar Topics
-
By USH
While observing the Orion Nebula with his 12-inch Dobsonian telescope, a sky-watcher noticed an unusual flashing object. As stars appeared to drift due to Earth's rotation, this particular object while flashing approximately every 20 seconds clearly travels through deep space.
The observer wonders whether it might be a rotating satellite or not. However, this isn’t the first sighting of cigar-shaped UFOs or other mysterious objects traveling through space near the Orion Nebula, so it is quite possible that it could be an interstellar craft.
Over the years, I have shared several articles, complete with images and videos, documenting similar UFO sightings around the Orion Nebula. You can explore these under the tag: Orion Nebula.
Interestingly, these sightings have all occurred between November and February, suggesting there may be a seasonal pattern to these observations.
View the full article
-
By NASA
NASA Space shuttle Atlantis lifts off in this Nov. 3, 1994, image, with NASA astronauts Donald R. McMonagle, Curtis L. Brown, Jr., Ellen S. Ochoa, Scott E. Parazynski, and Joseph R. Tanner, and ESA (European Space Agency) astronaut Jean-Francois-Clervoy aboard. During the 11-day mission, the crew studied Earth’s atmosphere, gathering data on the Sun’s energy output, the atmosphere’s chemical composition, and how these affect global ozone levels.
Learn more about the mission.
Image credit: NASA
View the full article
-
By Space Force
An exhibit spotlighting an unheralded but vital element of America’s space capabilities was unveiled in an October ribbon-cutting ceremony at Los Angeles Air Force Base, both to celebrate the program’s achievements and inspire future Space Force Guardians.
View the full article
-
By NASA
5 min read
30 Years On, NASA’s Wind Is a Windfall for Studying our Neighborhood in Space
An artist’s concept of NASA’s Wind spacecraft outside of Earth’s magnetosphere. NASA Picture it: 1994. The first World Wide Web conference took place in Geneva, the first Chunnel train traveled under the English Channel, and just three years after the end of the Cold War, the first Russian instrument on a U.S. spacecraft launched into deep space from Cape Canaveral. The mission to study the solar wind, aptly named Wind, held promise for heliophysicists and astrophysicists around the world to investigate basic plasma processes in the solar wind barreling toward Earth —key information for helping us understand and potentially mitigate the space weather environment surrounding our home planet.
Thirty years later, Wind continues to deliver on that promise from about a million miles away at the first Earth-Sun Lagrange Point (L1). This location is gravitationally balanced between Earth and the Sun, providing excellent fuel economy that requires mere puffs of thrust to stay in place.
According to Lynn Wilson, who is the Wind project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, fuel is only one indicator of Wind’s life expectancy, however. “Based on fuel alone, Wind can continue flying until 2074,” he said. “On the other hand, its ability to return data hinges on the last surviving digital tape recorder onboard.”
An artist’s concept shows a closeup of the Wind spacecraft. NASA Wind launched with two digital tape recorders to record data from all the instruments on the spacecraft and provide reports on the spacecraft’s thermal conditions, orientation, and overall health. Each recorder has two tape decks, A and B, which Wilson affectionately refers to as “fancy eight-tracks.”
After six years of service, the first digital tape recorder failed in 2000 along with its two tape decks, forcing mission operators to switch to the second one. Tape Deck A on that one started showing signs of wear in 2016, so the mission operators now use Tape Deck B as the primary deck, with A as a backup.
“They built redundancy into the digital tape recorder system by building two of them, but you can never predict how technology will perform when it’s a million miles away, bathing in ionizing radiation,” said Wilson. “We’re fortunate that after 30 years, we still have two functioning tape decks.”
Wind launched on Nov. 1, 1994, on a Delta IV rocket from Cape Canaveral Air Force Station in Florida. NASA Bonus Science
When Wind launched on Nov. 1, 1994, nobody could have possibly predicted that exactly 30 years later, NASA would be kicking off “Bonus Science” month in the Heliophysics Big Year. Beyond the mission’s incredible track record of mesmerizing discoveries about the solar wind — some detailed on its 25th anniversary — Wind continues to deliver with bonus science abound.
Opportunity and Collaborative Discovery
Along its circuitous journey to L1, Wind dipped in and out of Earth’s magnetosphere more than 65 times, capturing the largest whistler wave — a low-frequency radio wave racing across Earth’s magnetic field — ever recorded in Earth’s Van Allen radiation belts. Wind also traveled ahead of and behind Earth — about 150 times our planet’s diameter in both directions, informing potential future missions that would operate in those areas with extreme exposure to the solar wind. It even took a side quest to the Moon, cruising through the lunar wake, a shadow devoid of solar wind on the far side of the Moon.
Later, from its permanent home at L1, Wind was among several corroborating spacecraft that helped confirm what scientists believe is the brightest gamma-ray burst to occur since the dawn of human civilization. The burst, GRB 221009A, was first detected by NASA’s Fermi Gamma-ray Space Telescope in October 2022. Although not in its primary science objectives, Wind carries two bonus instruments designed to observe gamma-ray bursts that helped scientists confirm the burst’s origin in the Sagitta constellation.
Academic Inspiration
More than 7,200 research papers have been published using Wind data, and the mission has supported more than 100 graduate and post-graduate degrees.
Wilson was one of those degree candidates. When Wind launched, Wilson was in sixth grade, on the football, baseball, and wrestling teams, with spare time spent playing video games and reading science fiction. He had a knack for science and considered becoming a medical doctor or an engineer before committing to his love of physics, which ultimately led to his current position as Wind’s project scientist. While pursuing his doctorate, he worked with Adam Szabo who was the Wind project scientist at NASA Goddard at the time and used Wind data to study interplanetary collisionless shock waves. Szabo eventually hired Wilson to work on the Wind mission team at Goddard.
Also in sixth grade at the time, Joe Westlake, NASA Heliophysics division director,was into soccer and music, and was a voracious reader consumed with Tolkein’s stories about Middle Earth. Now he leads the NASA office that manages Wind.
“It’s amazing to think that Lynn Wilson and I were in middle school, and the original mission designers and scientists have long since retired,” said Westlake. “When a mission makes it to 30 years, you can’t help but be inspired by the role it has played not only in scientific discovery, but in the careers of multiple generations of scientists.”
By Erin Mahoney
NASA Headquarters, Washington
Share
Details
Last Updated Nov 01, 2024 Related Terms
Goddard Space Flight Center Heliophysics Heliophysics Division Science & Research Solar Wind The Sun Wind Mission Explore More
6 min read NASA’s Hubble, Webb Probe Surprisingly Smooth Disk Around Vega
Article
4 hours ago
5 min read ‘Blood-Soaked’ Eyes: NASA’s Webb, Hubble Examine Galaxy Pair
Article
1 day ago
3 min read Buckle Up: NASA-Funded Study Explores Turbulence in Molecular Clouds
Article
2 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Roman Coronagraph is integrated with the Instrument Carrier for NASA’s Nancy Grace Roman Space Telescope in a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Md., in October 2024.NASA/Sydney Rohde
NASA’s Nancy Grace Roman Space Telescope team has successfully completed integration of the Roman Coronagraph Instrument onto Roman’s Instrument Carrier, a piece of infrastructure that will hold the mission’s instruments, which will be integrated onto the larger spacecraft at a later date. The Roman Coronagraph is a technology demonstration that scientists will use to take an important step in the search for habitable worlds, and eventually life beyond Earth.
This integration took place at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, where the space telescope is located and in development. This milestone follows the coronagraph’s arrival at the center earlier this year from NASA’s Jet Propulsion Laboratory (JPL) in Southern California where the instrument was developed, built, and tested.
In a clean room at NASA’s Jet Propulsion Laboratory in Southern California in October 2023, scientist Vanessa Bailey stands behind the Roman Coronagraph, which has been undergoing testing at the lab. Designed to block starlight and allow scientists to see the faint light from planets outside our solar system, the Coronagraph is a technology demonstration that will be part of the Roman telescope.NASA/JPL-Caltech The Roman Coronagraph Instrument is a technology demonstration that will launch aboard the Nancy Grace Roman Space Telescope, NASA’s next flagship astrophysics mission. Roman will have a field of view at least 100 times larger than the agency’s Hubble Space Telescope and explore scientific mysteries surrounding dark energy, exoplanets, and infrared astrophysics. Roman is expected to launch no later than May 2027.
The mission’s coronagraph is designed to make direct observations of exoplanets, or planets outside of our solar system, by using a complex suite of masks and active mirrors to obscure the glare of the planets’ host stars, making the planets visible. Being a technology demonstration means that the coronagraph’s goal is to test this technology in space and showcase its capabilities. The Roman Coronagraph is poised to act as a technological stepping stone, enabling future technologies on missions like NASA’s proposed Habitable Worlds Observatory, which would be the first telescope designed specifically to search for signs of life on exoplanets.
“In order to get from where we are to where we want to be, we need the Roman Coronagraph to demonstrate this technology,” said Rob Zellem, Roman Space Telescope deputy project scientist for communications at NASA Goddard. “We’ll be applying those lessons learned to the next generation of NASA flagship missions that will be explicitly designed to look for Earth-like planets.”
A team member works underneath the Instrument Carrier for Roman during the integration of the Coronagraph in a clean room at NASA Goddard in October 2024.NASA/Sydney Rohde A Major Mission Milestone
The coronagraph was successfully integrated into Roman’s Instrument Carrier, a large grid-like structure that sits between the space telescope’s primary mirror and spacecraft bus, which will deliver the telescope to orbit and enable the telescope’s functionality upon arrival in space. Assembly of the mission’s spacecraft bus was completed in September 2024.
The Instrument Carrier will hold both the coronagraph and Roman’s Wide Field Instrument, the mission’s primary science instrument, which is set to be integrated later this year along with the Roman telescope itself. “You can think of [the Instrument Carrier] as the skeleton of the observatory, what everything interfaces to,” said Brandon Creager, lead mechanical engineer for the Roman Coronagraph at JPL.
The integration process began months ago with mission teams from across NASA coming together to plan the maneuver. Additionally, after its arrival at NASA Goddard, mission teams ran tests to prepare the coronagraph to be joined to the spacecraft bus.
The Instrument Carrier for Roman is lifted during the integration of the Coronagraph in October 2024 at NASA Goddard.NASA/Sydney Rohde During the integration itself, the coronagraph, which is roughly the size and shape of a baby grand piano (measuring about 5.5 feet or 1.7 meters across), was mounted onto the Instrument Carrier using what’s called the Horizontal Integration Tool.
First, a specialized adapter developed at JPL was attached to the instrument, and then the Horizontal Integration Tool was attached to the adapter. The tool acts as a moveable counterweight, so the instrument was suspended from the tool as it was carefully moved into its final position in the Instrument Carrier. Then, the attached Horizontal Integration Tool and adapter were removed from the coronagraph. The Horizontal Integration Tool previously has been used for integrations on NASA’s Hubble and James Webb Space Telescope.
As part of the integration process, engineers also ensured blanketing layers were in place to insulate the coronagraph within its place in the Instrument Carrier. The coronagraph is designed to operate at room temperature, so insulation is critical to keep the instrument at the right temperature in the cold vacuum of space. This insulation also will provide an additional boundary to block stray light that could otherwise obscure observations.
Following this successful integration, engineers will perform different checks and tests to ensure that everything is connected properly and is correctly aligned before moving forward to integrate the Wide Field Instrument and the telescope itself. Successful alignment of the Roman Coronagraph’s optics is critical to the instrument’s success in orbit.
Team members stand together during the integration of the Roman Coronagraph in a clean room at NASA Goddard in October 2024. NASA/Sydney Rohde This latest mission milestone is the culmination of an enduring collaboration between a number of Roman partners, but especially between NASA Goddard and NASA JPL.
“It’s really rewarding to watch these teams come together and build up the Roman observatory. That’s the result of a lot of teams, long hours, hard work, sweat, and tears,” said Liz Daly, the integrated payload assembly integration and test lead for Roman at Goddard.
“Support and trust were shared across both teams … we were all just one team,” said Gasia Bedrosian, the integration and test lead for the Roman Coronagraph at JPL. Following the integration, “we celebrated our success together,” she added.
The Roman Coronagraph Instrument was designed and built at NASA JPL, which manages the instrument for NASA. Contributions were made by ESA (European Space Agency), JAXA (Japan Aerospace Exploration Agency), the French space agency CNES (Centre National d’Études Spatiales), and the Max Planck Institute for Astronomy in Germany. Caltech, in Pasadena, California, manages NASA JPL for the agency. The Roman Science Support Center at Caltech/IPAC partners with NASA JPL on data management for the Coronagraph and generating the instrument’s commands.
Virtually tour an interactive version of the telescope The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Chelsea Gohd
NASA’s Jet Propulsion Lab, Pasadena, Calif.
Media Contact:
Claire Andreoli
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
Share
Details
Last Updated Oct 28, 2024 EditorJeanette KazmierczakContactClaire AndreoliLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Goddard Space Flight Center Jet Propulsion Laboratory View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.