Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The Space Force Year in Review is a collection of photos that showcase the men and women of the U.S. Space Force participating in activities and operations necessary to develop and protect U.S. interests in space.

      View the full article
    • By Space Force
      The Space Force Year in Review is a collection of photos that showcase the men and women of the U.S. Space Force participating in activities and operations necessary to develop and protect U.S. interests in space.

      View the full article
    • By NASA
      A Satellite for Optimal Control and Imaging (SOC-i) CubeSat awaits integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Thursday, June 6, 2024. SOC-i, along with several other CubeSats, will launch to space on an Alpha rocket during NASA’s Educational Launch of Nanosatellites (ELaNa) 43 mission as part of the agency’s CubeSat Launch Initiative and Firefly’s Venture-Class Launch Services Demonstration 2 contract.NASA NASA is collaborating with the U.S. Air Force and U.S. Space Force to offer a set of hands-on learning engagements that will help higher education institutions, faculty, and students learn more about what it takes to build small satellites and enhance the potential to be selected for flight opportunities. 
      Teams selected for the University Nanosatellite Program Mission Concept 2025 Summer Series will receive systems engineering training that prepares them for the industrial workforce while developing small satellite expertise at U.S. universities. The program, which runs from May through August 2025, also enhances students’ potential to be selected for flights to space as part of NASA’s CSLI (CubeSat Launch Initiative) and the U.S. Air Force University Nanosatellite Program. 
      “Part of NASA’s mission is to inspire the next generation,” said Liam Cheney, CSLI mission manager at the agency’s Kennedy Space Center in Florida. “The CubeSat Launch Initiative is providing opportunities for students and educators to experiment with technology and send their missions to space.”
      The program allows faculty and students to form teams for the summer program without using university resources, and includes travel funding for kickoff, final event, and any in-person reviews, among other benefits. 
      All U.S colleges and universities are eligible, and teams at minority-serving institutions and Historically Black Colleges and Universities are strongly encouraged to apply for the Mission Concepts 2025 Summer Series in accordance with the criteria in the request for proposal. The solicitation opened on Jan. 6, with a deadline to apply by Monday, Feb. 3. 
      The agency’s collaboration with the U.S. Air Force and U.S. Space Force helps broaden access to space and strengthen the capabilities and knowledge of higher education institutions, faculty, and students. 
      NASA’s CubeSat Launch Initiative provides opportunities for CubeSats built by U.S. educational institutions, and non-profit organizations, including informal educational institutions such as museums and science centers to fly on upcoming launches. Through innovative technology partnerships NASA provides these CubeSat developers a low-cost pathway to conduct scientific investigations and technology demonstrations in space, thus enabling students, teachers, and faculty to obtain hands-on flight hardware design, development, and build experience.
      For more information, visit: Solicitation – UNP

      View the full article
    • By NASA
      This map of Earth in 2024 shows global surface temperature anomalies, or how much warmer or cooler each region of the planet was compared to the average from 1951 to 1980. Normal temperatures are shown in white, higher-than-normal temperatures in red and orange, and lower-than-normal temperatures in blue. An animated version of this map shows global temperature anomalies changing over time, dating back to 1880. Download this visualization from NASA Goddard’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5450. Credit: NASA’s Scientific Visualization Studio Earth’s average surface temperature in 2024 was the warmest on record, according to an analysis led by NASA scientists.
      Global temperatures in 2024 were 2.30 degrees Fahrenheit (1.28 degrees Celsius) above the agency’s 20th-century baseline (1951-1980), which tops the record set in 2023. The new record comes after 15 consecutive months (June 2023 through August 2024) of monthly temperature records — an unprecedented heat streak.
      “Once again, the temperature record has been shattered — 2024 was the hottest year since record keeping began in 1880,” said NASA Administrator Bill Nelson. “Between record breaking temperatures and wildfires currently threatening our centers and workforce in California, it has never been more important to understand our changing planet.”
      NASA scientists further estimate Earth in 2024 was about 2.65 degrees Fahrenheit (1.47 degrees Celsius) warmer than the mid-19th century average (1850-1900). For more than half of 2024, average temperatures were more than 1.5 degrees Celsius above the baseline, and the annual average, with mathematical uncertainties, may have exceeded the level for the first time.
      “The Paris Agreement on climate change sets forth efforts to remain below 1.5 degrees Celsius over the long term. To put that in perspective, temperatures during the warm periods on Earth three million years ago — when sea levels were dozens of feet higher than today — were only around 3 degrees Celsius warmer than pre-industrial levels,” said Gavin Schmidt, director of NASA’s Goddard Institute for Space Studies (GISS) in New York. “We are halfway to Pliocene-level warmth in just 150 years.”
      Scientists have concluded the warming trend of recent decades is driven by heat-trapping carbon dioxide, methane, and other greenhouse gases. In 2022 and 2023, Earth saw record increases in carbon dioxide emissions from fossil fuels, according to a recent international analysis. The concentration of carbon dioxide in the atmosphere has increased from pre-industrial levels in the 18th century of approximately 278 parts per million to about  420 parts per million today.
      NASA and other federal agencies regularly collect data on greenhouse gas concentrations and emissions. These data are available at the U.S. Greenhouse Gas Center, a multi-agency effort that consolidates information from observations and models, with a goal of providing decision-makers with one location for data and analysis.
      Exceptional heat trends
      The temperatures of individual years can be influenced by natural climate fluctuations such as El Niño and La Niña, which alternately warm and cool the tropical Pacific Ocean. The strong El Niño that began in fall 2023 helped nudge global temperatures above previous records.
      The heat surge that began in 2023 continued to exceed expectations in 2024, Schmidt said, even though El Niño abated. Researchers are working to identify contributing factors, including possible climate impacts of the January 2022 Tonga volcanic eruption and reductions in pollution, which may change cloud cover and how solar energy is reflected back into space.
      “Not every year is going to break records, but the long-term trend is clear,” Schmidt said. “We’re already seeing the impact in extreme rainfall, heat waves, and increased flood risk, which are going to keep getting worse as long as emissions continue.”
      Seeing changes locally
      NASA assembles its temperature record using surface air temperature data collected from tens of thousands of meteorological stations, as well as sea surface temperature data acquired by ship- and buoy-based instruments. This data is analyzed using methods that account for the varied spacing of temperature stations around the globe and for urban heating effects that could skew the calculations.
      A new assessment published earlier this year by scientists at the Colorado School of Mines, National Science Foundation, the National Atmospheric and Oceanic Administration (NOAA), and NASA further increases confidence in the agency’s global and regional temperature data.
      “When changes happen in the climate, you see it first in the global mean, then you see it at the continental scale and then at the regional scale. Now, we’re seeing it at the local level,” Schmidt said. “The changes occurring in people’s everyday weather experiences have become abundantly clear.”
      Independent analyses by NOAA, Berkeley Earth, the Hadley Centre (part of the United Kingdom’s weather forecasting Met Office) and Copernicus Climate Services in Europe have also concluded that the global surface temperatures for 2024 were the highest since modern record-keeping began. These scientists use much of the same temperature data in their analyses but use different methodologies and models. Each shows the same ongoing warming trend.
      NASA’s full dataset of global surface temperatures, as well as details of how NASA scientists conducted the analysis, are publicly available from GISS, a NASA laboratory managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
      For more information about NASA’s Earth science programs, visit: 
      https://www.nasa.gov/earth
      -end-
      Liz Vlock
      Headquarters, Washington
      202-358-1600
      elizabeth.a.vlock@nasa.gov

      Peter Jacobs
      Goddard Space Flight Center, Greenbelt, Md.
      301-286-0535
      peter.jacobs@nasa.gov
      View the full article
    • By NASA
      Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 2 min read
      Hubble Rings In the New Year
      ESA/Hubble, NASA, and D. Erb This NASA/ESA Hubble Space Telescope image reveals a tiny patch of sky in the constellation Hydra. The stars and galaxies depicted here span a mind-bending range of distances. The objects in this image that are nearest to us are stars within our own Milky Way galaxy. You can easily spot these stars by their diffraction spikes, lines that radiate from bright light sources, like nearby stars, as a result of how that light interacts with Hubble’s secondary mirror supports. The bright star that sits just at the edge of the prominent bluish galaxy is only 3,230 light-years away, as measured by ESA’s Gaia space observatory.
      Behind this star is a galaxy named LEDA 803211. At 622 million light-years distant, this galaxy is close enough that its bright galactic nucleus is clearly visible, as are numerous star clusters scattered around its patchy disk. Many of the more distant galaxies in this frame appear star-like, with no discernible structure, but without the diffraction spikes of a star in our galaxy.
      Of all the galaxies in this frame, one pair stands out: a smooth golden galaxy encircled by a nearly complete ring in the upper-right corner of the image. This curious configuration is the result of gravitational lensing that warps and magnifies the light of distant objects. Einstein predicted the curving of spacetime by matter in his general theory of relativity, and galaxies seemingly stretched into rings like the one in this image are called Einstein rings.
      The lensed galaxy, whose image we see as the ring, lies incredibly far away from Earth: we are seeing it as it was when the universe was just 2.5 billion years old. The galaxy acting as the gravitational lens itself is likely much closer. A nearly perfect alignment of the two galaxies is necessary to give us this rare kind of glimpse into galactic life in the early days of the universe.
      Explore More

      Science Behind the Discoveries: Gravitational Lenses


      Hubble Science Highlights: Focusing in on Gravitational Lenses


      Hubble’s Gravitational Lenses

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Jan 10, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Elliptical Galaxies Galaxies Goddard Space Flight Center Gravitational Lensing Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Online Activities



      Hubble’s Night Sky Challenge



      Hubble e-Books


      View the full article
  • Check out these Videos

×
×
  • Create New...