Jump to content

A Small Business Success Story: Mentor-Protégé Agreements Drive Growth in Aerospace Sector


NASA

Recommended Posts

  • Publishers
The Mentor Protegé Program icon on a starry background

In the ever-evolving aerospace industry, collaboration and mentorship are vital for fostering innovation and growth. Recent achievements highlight the positive impact of Mentor-Protégé Agreements (MPA) facilitated by Jacobs Engineering Group, now known as Amentum Space Exploration Group. Two standout partnerships have demonstrated remarkable success and expansion, underscoring the value of such initiatives.

CODEplus and Amentum Space Exploration Group

The 24-Month MPA between CODEplus and Amentum Space Exploration Group has proven to be a game-changer. Recognized as the FY24 Marshall Space Flight Center (MSFC) Mentor-Protégé Agreement of the Year, this collaboration has significantly boosted CODEplus’s operations. Since the agreement’s inception on March 1, 2023, CODEplus has expanded its workforce to ten full-time employees and currently has two active job requisitions. This growth exemplifies the transformative potential of mentorship in nurturing small businesses within the aerospace sector.

KS Ware and Amentum Space Exploration Group / CH2M Hill

Another exemplary partnership involves KS Ware, which has benefitted from a 36-Month MPA with Amentum Space Exploration Group and CH2M Hill. This agreement has garnered accolades as both the FY23 NASA Agency Mentor-Protégé Agreement of the Year and the FY23 MSFC Mentor-Protégé Agreement of the Year. Through targeted business and technical counseling, KS Ware successfully launched a new drilling division in 2022 and expanded its offerings to include surveying services in 2023. The impact of this mentorship is evident, with a remarkable 30% growth rate reported for KS Ware.

These success stories highlight the critical role of Mentor-Protégé Agreements in empowering small businesses in the aerospace industry. By fostering collaboration and providing essential support, Amentum Space Exploration Group has not only strengthened its partnerships but also contributed to the broader growth and innovation landscape. As the aerospace sector continues to evolve, such initiatives will be essential in driving future success.

Published by: Tracy L. Hudspeth

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Editor’s note: This article was published May 23, 2003, in NASA Armstrong’s X-Press newsletter. NASA’s Dryden Flight Research Center in Edwards, California, was redesignated Armstrong Flight Research Center on March 1, 2014. Ken Iliff was inducted into the National Hall of Fame for Persons with Disabilities in 1987. He died Jan. 4, 2016.
      Alphonso Stewart, from left, Ken Iliff, and Dale Reed study lifting body aircraft models at NASA’s Armstrong (then Dryden) Flight Research Center in Edwards, California.NASA As an Iowa State University engineering student in the early 1960s, Ken Iliff was hard at work on a glider flight simulation.
      Upon examining the final results – which, in those early days of the computer revolution, were viewed on a long paper printout – he noticed one glaring imperfection: the way he had programmed it, his doomed glider would determinedly accelerate as it headed for the ground.
      The culprit was a single keystroke. At the time, programming was based on data that had been painstakingly entered into the computer by hand, on punch cards and piece by piece. Somewhere, Iliff had entered a plus sign instead of a minus sign.
      The seemingly minor incident was to foreshadow great things to come in Iliff’s career.
      Not long after graduation, the West Union, Iowa, native found himself at what was then called simply the NASA Flight Research Center located on Edwards Air Force Base.
      “I just knew I didn’t want to be sitting somewhere in a big room full of engineers who were all doing the same thing,” Iliff said of choosing Dryden over other jobs and other NASA centers. “It was a small center doing important things, and it was in California. I knew I wanted to be there.”
      Once at Dryden, the issue of data tidbits was central to the new hire’s workday. Iliff’s post called for him and many of his colleagues to spend much of their time “reading up” data – a laborious process of measuring data from film using a single reference line and a ruler. Measurements were made every tenth of a second; for a ten-second maneuver, a total of one hundred “traces” were taken for every quantity being recorded.
      “I watched talented people spending entire days analyzing data,” he recalled. “And then, maybe two people would arrive at two entirely different conclusions” from the same data sets.
      As has happened so often at the birth of revolutionary ideas, then, one day Iliff had a single, simple thought about the time-intensive and maddeningly inexact data analysis process:
      “There just has to be a better way to do this.”
      The remedy he devised was to result in a sea change at Dryden, and would reverberate throughout the world of computer-based scientific research.
      Iliff’s work spanned the decades that encompassed some of Dryden’s greatest achievements, from the X-15 through the XB-70 and the tentative beginnings of the shuttle program. The solution he created to the problem of inaccuracy in data analysis focused on aerodynamic performance – how to formulate questions about an aircraft’s performance once answers about it are already known, how to determine the “why?” when the “what happens?” has already happened.
      The work is known as “parameter estimation,” and is used in aerospace applications to extract precise definitions of aerodynamic, structural and performance parameters from flight data.
      His methodology – cemented in computer coding Iliff developed using Fortran’s lumbering binary forerunner, machine code – allowed researchers to determine precisely the type of information previously derived only as best-estimate guesses through analysis of data collected in wind tunnels and other flight-condition simulators. In addition to aerospace science, parameter estimation is also used today in a wide array of research applications, including those involving submarines, economic models, and biomedicine.
      With characteristic deference, Iliff now brushes off any suggestion of his discovery’s significance. Instead, he credits other factors for his successes, such as a Midwestern work ethic and Iowa State University’s early commitment to giving its engineering students good access to the new and emerging computer technology.
      To hear him tell it, “all good engineers are a little bit lazy. We know how to innovate – how to find an easier way.
      “I’d been trained well, and given the right tools – I was just in the right place at the right time.”
      But however modestly he might choose to see it characterized, it’s fair to number Iliff’s among the longest and most distinguished careers to take root in the ranks of Dryden research engineers. Though his groundbreaking work will live forever in research science, when Iliff retired in December he brought to a close his official role in some of the most important chapters in Dryden history.
      Ken Iliff worked for four decades on revolutionary aircraft and spacecraft, including the X-29 forward swept wing aircraft behind him, at NASA’s Armstrong (then Dryden) Flight Research Center in Edwards, California.NASA His pioneering work with parameter estimation carried through years of aerodynamic assessment and data analysis involving lifting-body and wing-body aircraft, from the X-15 through the M2-F1, M2-F2 and M2-F3 projects, the HL-10, the X-24B and NASA’s entire fleet of space shuttles. His contributions aided in flight research on the forward-swept-wing X-29 and the F/A-18 High Angle of Attack program, on F-15 spin research vehicles, on thrust vectoring and supermaneuverability.
      Iliff began work on the space shuttle program when it was little more than a speculative “what’s next?” chapter in manned spaceflight, long before it reached officially sanctioned program status. Together with a group spearheaded by the late NASA research pilot and long-time Dryden Chief Engineer Milt Thompson – who Iliff describes unflinchingly as “my hero” – Iliff helped explore the vast range of possibilities for a new orbiting craft that would push NASA to its next frontier after landing on the moon.
      In an environment much more informal than today’s, when there were few designations of “program manager” or “task monitor” or “deputy director” among NASA engineers like Iliff and Thompson, a handful of creative, disciplined minds were at work dreaming up a reusable aircraft that would launch, orbit the Earth and return. Iliff’s role was to offer up the rigor of comparison in size, speed and performance among potential aircraft designs; Thompson and Iliff’s group was responsible, for example, for the decision to abandon the notion of jet engines on the orbiter, decreeing them too heavy, too risky and too inefficient.
      Month in and month out, Iliff and his colleagues painstakingly researched and developed the myriad design details that eventually materialized into the shuttle fleet. There was, in Iliff’s words, “a love affair between the shuttle and the engineers.”
      And in a display typifying the charged environment of creative collaboration that governed the effort – an effort many observe wryly that it would be difficult to replicate at NASA, today or anytime – the body of research was compiled into the now-legendary aero-data book, a living document that records in minute detail every scrap of design and performance data recorded about the shuttles’ flight activity.
      Usually with more than a touch of irony, the compiling of the aero-data book has been described with phrases like “a remarkably democratic process,” involving as it did the need for a hundred independent minds and strong personalities to agree on indisputable facts about heat, air flow, turbulence, drag, stability and a dozen other aerodynamic principles. But Iliff says the success of the mammoth project, last updated in 1996, was ultimately enabled by a shared commitment to a culture that was unique to Dryden, one that made the Center great.
      “Well, big, complicated things don’t always come out like you think they will,” Iliff said.
      “But we understood completely the idea of ‘informed risk.’ We had a thorough understanding of risks before taking them – nobody ever did anything on the shuttle that they thought was dangerous, or likely to fail.
      “The truly great thing (about that era at Dryden) was that they mentored us, and let us take those risks, and helped us get good right away. That was how we were able to do what we did.”
      It was an era that Iliff says he was thrilled to be a part of, and which he admits was difficult to leave. It was also, he adds with a note of uncharacteristic nostalgia, a time that would be hard to reinvent today after the intrusion of so many bureaucratic tentacles into the hot zone that spawned Dryden’s greatest achievements.
      A man not much given to dwelling on the past, however, Iliff has moved on to a retirement he is making the most of. Together with his wife, Mary Shafer, also retired from her career as a Dryden engineer, he plans to dedicate time to cataloging the couple’s extensive travel experiences with new video and graphics software, and adding to the travel library with footage from new trips. Iraq ranks high on the short list.
      During his 40-year tenure, Iliff held the post of senior staff scientist of Dryden’s research division from 1988 to 1994, when he became the Center’s chief scientist. Among numerous awards he received were the prestigious Kelly Johnson Award from the Society of Flight Test Engineers (1989), an award permanently housed in the Smithsonian National Air and Space Museum, and NASA’s highest scientific honor, the NASA Exceptional Scientific Achievement Award (1976).
      He was inducted into the National Hall of Fame for Persons with Disabilities in 1987, and served on many national aeronautic and aerospace committees throughout his career. He is a Fellow in the American Institute of Aeronautics and Astronautics (AIAA) and is the author of more than 100 technical papers and reports. He has given eleven invited lectures for NATO and AGARD (Advisory Group for Aerospace Research and Development), and served on four international panels as an expert in aircraft and spacecraft dynamics. Recently, he retired from his position as an adjunct professor of electrical engineering at the University of California, Los Angeles.
      Iliff holds dual bachelor of science degrees in mathematics and aerospace engineering from Iowa State University; a master of science in mechanical engineering from the University of Southern California; a master of engineering degree in engineering management and a Ph.D. in electrical engineering, both from UCLA.
      Iliff’s is the kind of legacy shared by a select group of American engineers, and to read the papers these days, there’s the suggestion that his is a vanishing breed. NASA and other science-based organizations are often depicted as scrambling for new engineering talent – particularly of the sort personified by Iliff and his pioneering achievements.
      But, typical of the visionary approach he applies to life in general as well as to science, Iliff takes a wider view.
      “I remember, after the X-1 – people figured all the good things had been done,” he said, with a smile in his voice. “And of course, they had not.
      “If I was starting out now, I’d be starting in work with DNA, or biomedicine – improving lives with drug research. There are so many exciting things to be discovered there. They might not be as showy as lighting off a rocket, but they’re there.
      “I’ve seen cycles. We’re at a low spot right now – but military, or space, will eventually be at the center again.”
      And when that day comes, Iliff says he hopes officials in the flight research world will heed the example of Dryden’s early years, and give its engineers every opportunity to succeed unfettered – as he had been.
      “Beware the ‘Chicken Littles’ out there,” he said. “I hope the government will be strong enough to resist them.”
      Sarah Merlin
      Former X-Press newsletter assistant editor
      Former Dryden historian Curtis Peebles contributed to this article.
      Share
      Details
      Last Updated Oct 29, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center People of Armstrong People of NASA Explore More
      5 min read Carissa Arillo: Testing Spacecraft, Penning the Owner’s Manuals
      Article 2 hours ago 4 min read NASA Group Amplifies Voices of Employees with Disabilities
      Article 6 hours ago 4 min read Destacado de la NASA: Felipe Valdez, un ingeniero inspirador
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Research & Engineering
      Armstrong Technologies
      Armstrong People
      View the full article
    • By Space Force
      The conference brought together component field commands, Space Force leadership, field commands, mission area teams, and allies and partners to communicate requirements to influence USSF Force Generation, prioritization and sourcing activities.

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA operations engineer Daniel Velasquez, left, is reviewing the Mobile Vertipad Sensor Package system as part of the Air Mobility Pathways test project at NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 17, 2023.NASA/Steve Freeman Lee esta historia en Español aquí.
      Born and raised in Peru, Daniel Velasquez moved to the United States when was 10 years old.  While that decision was a big transition for his family, it also created many opportunities for him. Now Velasquez is an operations engineer for NASA’s Air Mobility Pathfinders project at NASA’s Armstrong Flight Research Center in Edwards, California.
      Velasquez develops flight test plans for electric vertical take-off and landing (eVTOL) aircraft, specifically testing how they perform during various phases of flight, such as taxi, takeoff, cruise, approach, and landing. He was drawn to NASA Armstrong because of the legacy in advancing flight research and the connection to the Space Shuttle program.
      “Being part of a center with such a rich history in supporting space missions and cutting-edge aeronautics was a major motivation for me,” Velasquez said. “One of the biggest highlights of my career has been the opportunity to meet (virtually) and collaborate with an astronaut on a possible future NASA project.”
      Daniel Velasquez stands next to the main entrance sign at NASA’s Armstrong Flight Research Center in Edwards, California, in 2022.Daniel Velasquez Velasquez is incredibly proud of his Latino background because of its rich culture, strong sense of community and connection to his parents. “My parents are my biggest inspiration. They sacrificed so much to ensure my siblings and I could succeed, leaving behind the comfort of their home and family in Peru to give us better opportunities,” Velasquez said. “Their hard work and dedication motivate me every day. Everything I do is to honor their sacrifices and show them that their efforts weren’t wasted. I owe all my success to them.”
      Velasquez began his career at NASA in 2021 as an intern through the Pathways Internship Program while he was studying aerospace engineering at Rutgers University in New Brunswick, New Jersey. Through that program, he learned about eVTOL modeling software called NASA Design and Analysis of Rotorcraft to create a help guide for other NASA engineers to reference when they worked with the software.
      At the same time, he is also a staff sergeant in the U.S Army Reserves and responsible for overseeing the training and development of junior soldiers during monthly assemblies. He plans, creates, and presents classes for soldiers to stay up-to-date and refine their skills while supervising practical exercises, after action reviews, and gathering lessons learned during trainings.
      Daniel Velasquez graduated in 2023 from Rutgers University in New Jersey while he was an intern at NASA. Behind him is the New York City skyline.Daniel Velasquez “This job is different than what I do day-to-day at NASA, but it has helped me become a more outspoken individual,” he said. “Being able to converse with a variety of people and be able to do it well is a skill that I acquired and refined while serving my country.”
      Velasquez said he never imagined working for NASA as it was something he had only seen in movies and on television, but he is so proud to be working for the agency after all the hard work and sacrifices he made that lead him to this point. “I am incredibly proud to work every day with some of the most motivated and dedicated individuals in the industry.”
      Share
      Details
      Last Updated Oct 16, 2024 Related Terms
      Armstrong Flight Research Center Air Mobility Pathfinders project General Hispanic Heritage Month People of Armstrong People of NASA Explore More
      4 min read Sacrificio y Éxito: Ingeniero de la NASA honra sus orígenes familiares
      Article 23 mins ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
      Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
      Article 7 hours ago 7 min read What is a Coral Reef?
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Hispanic Heritage Month
      NASA en español
      Explora el universo y descubre tu planeta natal con nosotros, en tu idioma.
      Armstrong People
      View the full article
    • By NASA
      4 Min Read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 
      An artist's concept of commercial and NASA space relays. Credits: NASA/Morgan Johnson NASA is one step closer on its transition to using commercially owned and operated satellite communications services to provide future near-Earth space missions with increased service coverage, availability, and accelerated science and data delivery.     
      As of Friday, Nov. 8, the agency’s legacy TDRS (Tracking and Data Relay Satellite) system, as part of the Near Space Network, will support only existing missions while new missions will be supported by future commercial services.    
      “There have been tremendous advancements in commercial innovation since NASA launched its first TDRS satellite more than 40 years ago,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “TDRS will continue to provide critical support for at least the next decade, but now is the time to embrace commercial services that could enhance science objectives, expand experimentation, and ultimately provide greater opportunities for discovery.”    
      TDRS will continue to provide critical support for at least the next decade, but now is the time to embrace commercial services."
      Kevin Coggins
      Deputy Associate Administrator for NASA’s SCaN
      Just as NASA has adopted commercial crew, commercial landers, and commercial transport services, the Near Space Network, managed by NASA’s SCaN, will leverage private industry’s vast investment in the Earth-based satellite communications market, which includes communications on airplanes, ships, satellite dish television, and more. Now, industry is developing a new space-based market for these services, where NASA plans to become one of many customers, bolstering the domestic space industry.    
      NASA’s Communications Services Project is working with industry through funded Space Act Agreements to develop and demonstrate commercial satellite communications services that meet the agency’s mission needs, and the needs of other potential users.   
      In 2022, NASA provided $278.5 million in funding to six domestic partners so they could develop and demonstrate space relay communication capabilities.  
      Inmarsat Government Inc.   Kuiper Government Solutions (KGS) LLC    SES Government Solutions   Space Exploration Technologies (SpaceX)   Telesat U.S. Services LLC   Viasat Incorporated   Read More About the CSP Partners An artist’s concept of commercial relay satellites. NASA/Morgan Johnson A successful space-based commercial service demonstration would encompass end-to-end testing with a user spacecraft for one or more of the following use cases: launch support, launch and early operations phase, low and high data rate routine missions, terrestrial support, and contingency services. Once a demonstration has been completed, it is expected that the commercial company would be able to offer their services to government and commercial users.    
      NASA also is formulating non-reimbursable Space Act Agreements with members of industry to exchange capability information as a means of growing the domestic satellite communications market. The Communications Services Project currently is partnered with Kepler Communications US Inc. through a non-reimbursable Space Act Agreement.    
      As the agency and the aerospace community expand their exploration efforts and increase mission complexity, the ability to communicate science, tracking, and telemetry data to and from space quickly and securely will become more critical than ever before. The goal is to validate and deliver space-based commercial communications services to the Near Space Network by 2031, to support future NASA missions.   
      NASA’s Tracking and Data Relay System  
      While TDRS will not be accepting new missions, it won’t be retiring immediately. Current TDRS users, like the International Space Station, Hubble Space Telescope, and many other Earth- and universe-observing missions, will still rely on TDRS until the mid-2030s. Each TDRS spacecraft’s retirement will be driven by individual health factors, as the seven active TDRS satellites are expected to decline at variable rates.     
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      An artist's concept of the International Space Station using NASA’s Tracking and Data Relay Satellite (TDRS) fleet to transmit data to Earth. NASA The TDRS fleet began in 1983 and consists of three generations of satellites, launching over the course of 40 years. Each successive generation of TDRS improved upon the previous model, with additional radio frequency band support and increased automation.    
      The first TDRS was designed for a mission life of 10 years, but lasted 26 years before it was decommissioned in 2009. The last in the third generation – TDRS-13 –was launched Aug. 18, 2017.   
      The TDRS constellation has been a workhorse for the agency, enabling significant data transfer and discoveries.”   
      DAve Israel
      Near Space Network Chief Architect
      “Each astronaut conversation from the International Space Station, every picture you’ve seen from Hubble Space Telescope, Nobel Prize-winning science data from the COBE satellite, and much more has flowed through TDRS,” said Dave Israel, Near Space Network chief architect. “The TDRS constellation has been a workhorse for the agency, enabling significant data transfer and discoveries.”   
      NASA’s Tracking and Data Relay Satellite 13 (TDRS-13) atop an Atlas V rocket at NASA’s Kennedy Space Center in Florida before launch. NASA/Tony Gray and Sandra Joseph The Near Space Network and the Communications Services Project are funded by NASA’s SCaN (Space Communications and Navigation) program office at NASA Headquarters in Washington. The network is operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Communications Services Project is managed out of NASA’s Glenn Research Center in Cleveland. 
      Share
      Details
      Last Updated Oct 16, 2024 EditorGoddard Digital TeamContactKatherine Schauerkatherine.s.schauer@nasa.govMolly KearnsLocationGoddard Space Flight Center Related Terms
      Communicating and Navigating with Missions Glenn Research Center Goddard Space Flight Center Space Communications & Navigation Program The Future of Commercial Space Tracking and Data Relay Satellite (TDRS) Explore More
      4 min read Communications Services Project
      Article 7 months ago 5 min read Wideband Technology
      Article 9 months ago 3 min read NASA Seeks Commercial Near Space Network Services
      NASA is seeking commercial communication and navigation service providers for the Near Space Network.
      Article 2 years ago View the full article
    • By NASA
      Credit: NASA NASA has selected Metis Technology Solutions Inc. of Albuquerque, New Mexico, to provide engineering services as well as develop and maintain software and hardware used to conduct simulations for aerospace research and development across the agency.
      The Aerospace Research, Technology, and Simulations (ARTS) contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract with an indefinite-delivery/indefinite-quantity component and has a maximum potential value of $177 million. The performance period begins Sunday, Dec. 1, 2024, with a one-year base period, and options to extend performance through November 2029.
      Under this contract, the company will support the preparation, development, operation, and maintenance of future and existing simulators, integration laboratories, aircraft research systems, simulation work areas, and aircraft research systems. The scope of work also will include the development, testing, and validation of advanced air traffic management automation tools, including, but not limited to, advanced concepts for aviation ecosystems. Work will primarily be performed at NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, as well as other agency or government locations, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      Share
      Details
      Last Updated Oct 10, 2024 LocationNASA Headquarters Related Terms
      Ames Research Center Langley Research Center NASA Centers & Facilities NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...