Jump to content

NASA’s Perseverance Rover Looks Back While Climbing Slippery Slope


Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Image of Mars from Perseverance
This enhanced-color mosaic was taken on Sept. 27 by the Perseverance rover while climbing the western wall of Jezero Crater. Many of the landmarks visited by the rover during its 3½-year exploration of Mars can be seen.
NASA/JPL-Caltech/ASU/MSSS

On its way up the side of Jezero Crater, the agency’s latest Red Planet off-roader peers all the way back to its landing site and scopes the path ahead.  

NASA’s Perseverance Mars rover is negotiating a steeply sloping route up Jezero Crater’s western wall with the aim of cresting the rim in early December. During the climb, the rover snapped not only a sweeping view of Jezero Crater’s interior, but also imagery of the tracks it left after some wheel slippage along the way. 

e1-pia26378-figure-a-sol1282p-zcam09340-
An annotated version of the mosaic captured by Perseverance highlights nearly 50 labeled points of interest across Jezero Crater, including the rover’s landing site. The 44 images that make up the mosaic were taken Sept. 27.
NASA/JPL-Caltech/ASU/MSSS

Stitched together from 44 frames acquired on Sept. 27, the 1,282nd Martian day of Perseverance’s mission, the image mosaic features many landmarks and Martian firsts that have made the rover’s 3½-year exploration of Jezero so memorable, including the rover’s landing site, the spot where it first found sedimentary rocks, the location of the first sample depot on another planet, and the final airfield for NASA’s Ingenuity Mars Helicopter. The rover captured the view near a location the team calls “Faraway Rock,” at about the halfway point in its climb up the crater wall.  

“The image not only shows our past and present, but also shows the biggest challenge to getting where we want to be in the future,” said Perseverance’s deputy project manager, Rick Welch of NASA’s Jet Propulsion Laboratory in Southern California. “If you look at the right side of the mosaic, you begin to get an idea what we’re dealing with. Mars didn’t want to make it easy for anyone to get to the top of this ridge.”

Visible on the right side of the mosaic is a slope of about 20 degrees. While Perseverance has climbed 20-degree inclines before (both NASA’s Curiosity and Opportunity rovers had crested hills at least 10 degrees steeper), this is the first time it’s traveled that steep a grade on such a slippery surface.

This animated orbital-map view shows the route NASA’s Perseverance Mars rover has taken since its February 2021 landing at Jezero Crater to July 2024, when it took its “Cheyava Falls” sample. As of October 2024, the rover has driven over 30 kilometers (18.65 miles), and has collected 24 samples of rock and regolith as well as one air sample. NASA/JPL-Caltech

Soft, Fluffy

During much of the climb, the rover has been driving over loosely packed dust and sand with a thin, brittle crust. On several days, Perseverance covered only about 50% of the distance it would have on a less slippery surface, and on one occasion, it covered just 20% of the planned route.

“Mars rovers have driven over steeper terrain, and they’ve driven over more slippery terrain, but this is the first time one had to handle both — and on this scale,” said JPL’s Camden Miller, who was a rover planner, or “driver,” for Curiosity and now serves the same role on the Perseverance mission. “For every two steps forward Perseverance takes, we were taking at least one step back. The rover planners saw this was trending toward a long, hard slog, so we got together to think up some options.”

On Oct. 3, they sent commands for Perseverance to test strategies to reduce slippage. First, they had it drive backward up the slope (testing on Earth has shown that under certain conditions the rover’s “rocker-bogie” suspension system maintains better traction during backward driving). Then they tried cross-slope driving (switchbacking) and driving closer to the northern edge of “Summerland Trail,” the name the mission has given to the rover’s route up the crater rim.

NASA’s Perseverance drives first backward then forward as it negotiates some slippery terrain found along a route up to the rim of Jezero Crater on Oct. 15. The Mars rover used one of its navigation cameras to capture the 31 images that make up this short video.
NASA/JPL-Caltech

Data from those efforts showed that while all three approaches enhanced traction, sticking close to the slope’s northern edge proved the most beneficial. The rover planners believe the presence of larger rocks closer to the surface made the difference.

“That’s the plan right now, but we may have to change things up the road,” said Miller. “No Mars rover mission has tried to climb up a mountain this big this fast. The science team wants to get to the top of the crater rim as soon as possible because of the scientific opportunities up there. It’s up to us rover planners to figure out a way to get them there.”

Tube Status

In a few weeks, Perseverance is expected to crest the crater rim at a location the science team calls “Lookout Hill.” From there, it will drive about another quarter-mile (450 meters) to “Witch Hazel Hill.” Orbital data shows that Witch Hazel Hill contains light-toned, layered bedrock. The team is looking forward to comparing this new site to “Bright Angel,” the area where Perseverance recently discovered and sampled the “Cheyava Falls” rock.

Tracks Tell Tale of Perseverance’s Crater Rim Climb
Tracks shown in this image indicate the slipperiness of the terrain Perseverance has encountered during its climb up the rim of Jezero Crater. The image was taken by one of rover’s navigation cameras on Oct. 11.
NASA/JPL-Caltech

The rover landed on Mars carrying 43 tubes for collecting samples from the Martian surface. So far, Perseverance has sealed and cached 24 samples of rock and regolith (broken rock and dust), plus one atmospheric sample and three witness tubes. Early in the mission’s development, NASA set the requirement for the rover to be capable of caching at least 31 samples of rock, regolith, and witness tubes over the course of Perseverance’s mission at Jezero. The project added 12 tubes, bringing the total to 43. The extras were included in anticipation of the challenging conditions found at Mars that could result in some tubes not functioning as designed.

NASA decidedto retire two of the spare empty tubes because accessing them would pose a risk to the rover’s small internal robotic sample-handling arm needed for the task: A wire harness connected to the arm could catch on a fastener on the rover’s frame when reaching for the two empty sample tubes. 

With those spares now retired, Perseverance currently has 11 empty tubes for sampling rock and two empty witness tubes.

More About Perseverance

A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.

NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.

For more about Perseverance:

https://science.nasa.gov/mission/mars-2020-perseverance

News Media Contacts

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

2024-144

Share

Details

Last Updated
Oct 28, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Perseverance Blasts Past the Top of Jezero Crater Rim
      This SuperCam Remote Micro-Imager (RMI) mosaic shows part of the target “Duran,” observed on Sol 1357 near the top of Jezero crater’s rim. It was processed using a color-enhancing Gaussian stretch algorithm. NASA/JPL-Caltech/LANL/CNES/IRAP. I have always loved the mountains. Growing up on the flat plains of Midwestern USA, every summer I looked forward to spending a few days on alpine trails while on vacation. Climbing upward from the trailhead, the views changed constantly. After climbing a short distance, the best views were often had by looking back down on where we had started. As we climbed higher, views of the valleys below eventually became shrouded in haze. Near the top we got our last views of the region behind us; then it disappeared from view as we hiked over the pass and started down the other side. Approaching the summit held a special reward, as the regions beyond the pass slowly revealed themselves. Frequent stops to catch our breath during our ascent were used to check the map to identify the new peaks and other features that came into view. Sometimes the pass was an exciting gateway to a whole new area to explore.
      This ever-changing landscape has been our constant companion over the last five months as Perseverance first climbed out of Neretva Vallis, then past “Dox Castle,” and “Pico Turquino.” We stopped at “Faraway Rock” on Sol 1282 to get a panorama of the crater floor. More recently, we could see many more peaks of the crater rim. As Perseverance crested the summit of “Lookout Hill,” half a mile (800 meters) above the traverse’s lowest point, we got our first views beyond the crater rim, out into the great unknown expanse of Mars’ Nili Planum, including the upper reaches of Neretva Vallis and the locations of two other candidate landing sites that were once considered for Perseverance. As the rover crested the summit, Mastcam-Z took a large panoramic mosaic, and team members are excitedly poring over the images, looking at all the new features. With Perseverance’s powerful cameras we can analyze small geological features such as boulders, fluvial bars, and dunes more than 5 miles (8 kilometers) distant, and major features like mountains up to 35 miles (60 kilometers) away. One of our team members excitedly exclaimed, “This is an epic moment in Mars exploration!”
      While Curiosity has been climbing “Mount Sharp” for 10 years, and Spirit and Opportunity explored several smaller craters, no extraterrestrial rover has driven out of such a huge crater as Jezero to see a whole new “continent” ahead. We are particularly excited because it is potentially some of the most ancient surface on the Red Planet. Let’s go explore it!
      Perseverance is now in Gros Morne quad, named for a beautiful Canadian national park in Newfoundland, and we will be naming our targets using locations and features in the national park. For the drive ahead, described in a video in a recent press release, our next destination is on the lower western edge of the Jezero crater rim at a region named “Witch Hazel Hill.”
      Perseverance made more than 250 meters of progress over the weekend (about 820 feet) and is already at the upper part of Witch Hazel Hill, a location called “South Arm.” Much of the climb up the crater rim was on sandy material without many rocks to analyze. Witch Hazel Hill appears to have much more exposed rock, and the science team is excited about the opportunity for better views and analyses of the geology directly beneath our wheels.
      Written by Roger C. Wiens, Principal Investigator of the SuperCam instrument, Purdue University
      Share








      Details
      Last Updated Dec 19, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4396-4397: Roving in a Martian Wonderland


      Article


      2 days ago
      2 min read Sols 4393-4395: Weekend Work at the Base of Texoli Butte


      Article


      3 days ago
      3 min read Sols 4391-4392: Rounding the Bend


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Photographers at NASA capture the sunset on Tuesday, Jan. 30, 2024, near the headquarters building of the agency’s Kennedy Space Center in Florida.NASA/Ben Smegelsky As NASA’s Kennedy Space Center in Florida wraps up a year that will see more than 90 government, commercial, and private missions launch from Florida’s Space Coast, a look to 2025 shows the missions, partnerships, projects, and programs at the agency’s main launch site will continue innovating, inspiring, and pushing the boundaries of exploration for the benefit of humanity.
      “The next year promises to be another exciting one at Earth’s premier spaceport,” said Kennedy Center Director Janet Petro. “We have an amazing workforce, and when we join forces with industry and our other government partners, even the sky is no limit to what we can accomplish.”
      New Year, New Missions to Space Station
      NASA’s Commercial Crew Program (CCP), based out of Kennedy, and its commercial partner SpaceX plan two crew rotation missions to the International Space Station: NASA’s SpaceX Crew-10 and Crew-11. This also means the return of the Crew-9 mission and later Crew-10 during 2025. CCP continues working with Boeing toward NASA certification of the company’s Starliner system for future crew rotations to the orbiting laboratory.
      NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA’s Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA astronauts Commander Anne McClain and Pilot Nichole Ayers. SpaceX “Operations in 2025 are a testament to NASA’s workforce carefully planning and preparing to safely execute a vital string of missions that the agency can depend on,” said Dana Hutcherson, CCP deputy program manager. “This is the 25th year of crewed operations for the space station, and we know that with every launch, we are sustaining a critical national asset and enabling groundbreaking research.”
      NASA also plans several Commercial Resupply Services missions, utilizing SpaceX’s Dragon cargo spacecraft, Northrop Grumman’s Cygnus spacecraft, and the inaugural flight of Sierra Space’s cargo spaceplane, Dream Chaser.  The missions will ferry thousands of pounds of supplies, equipment, and science investigations to the crew aboard the orbiting laboratory from NASA Kennedy and nearby Cape Canaveral Space Force Station.
      The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Tuesday, Nov. 4, on the company’s 31st commercial resupply services mission for the agency to the International Space Station. Liftoff was at 9:29 p.m. EST. SpaceX In addition to the agency’s crewed flights, Axiom Space’s fourth crewed private spaceflight mission, Axiom Mission 4 – organized in collaboration with NASA through the International Space Station Program and operated by SpaceX – will launch to the orbital outpost.  
      Reestablishing Humanity’s Lunar Presence
      Preparations for NASA’s Artemis II test flight mission are ramping up, with all major components for the SLS (Space Launch System) hardware undergoing processing at Kennedy, including the twin solid rocket boosters and 212-foot-tall core stage. Teams with EGS (Exploration Ground Systems) will continue stacking the booster segments inside the spaceport’s VAB (Vehicle Assembly Building). Subsequent integration and testing of the rocket’s hardware and Orion spacecraft will continue not only for the Artemis II mission, but for Artemis III and IV. Technicians also continue building mobile launcher 2, which will serve as the launch and integration platform for the SLS Block 1B configuration starting with Artemis IV.
      Teams with NASA’s Exploration Ground Systems transport the agency’s 212-foot-tall SLS (Space Launch System) core stage into High Bay 2 at the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Wednesday, Dec. 11, 2024. The one-of-a kind lifting beam is designed to lift the core stage from the transfer aisle to High Bay 2 where it will remain while teams stack the two solid rocket boosters on top of mobile launcher 1 for the SLS core stage.NASA/Kim Shiflett “Looking ahead to 2025, teams will embark on a transformative year as we integrate the flight hardware for Artemis II, while simultaneously developing the foundation for future Artemis missions that will reestablish humanity’s presence on the Moon,” said Shawn Quinn, EGS program manager.
      A key part of the Artemis campaign, NASA’s CLPS (Commercial Lunar Payload Services) initiative will continue leveraging commercial partnerships to quickly land scientific instruments and technology demonstrations on the Moon. Firefly Aerospace’s first lunar CLPS flight, Blue Ghost Mission 1, will carry 10 NASA science and technology instruments to the lunar surface, including the Electrodynamic Dust Shield, a technology built by Kennedy engineers. Intuitive Machines, meanwhile, will embark on its second CLPS flight to the Moon. Providing the first in-situ resource utilization demonstration on the lunar surface, IM-2 will carry the Polar Resources Ice Mining Experiment-1 (PRIME-1), which features The Regolith and Ice Drill for Exploring New Terrain from Honeybee Robotics, as well as the Mass Spectrometer Observing Lunar Operations built by Kennedy. Both flights are targeted to lift off from Kennedy’s Launch Complex 39A during the first quarter of 2025.
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission One lander will carry 10 NASA science and technology instruments to the Moon’s near side.Firefly Aerospace In development for Artemis IV and beyond, Gateway will be a critical platform for developing a sustained human presence beyond low Earth orbit. Deep Space Logistics (DSL) is the Gateway Program project office at Kennedy responsible for leading the development of a commercial supply chain in deep space. In 2025, DSL will continue developing the framework for the DSL-1 mission and working with commercial provider SpaceX to mature spacecraft design. Upcoming milestones include a system requirements review and preliminary design review to determine the program’s readiness to proceed with the detailed design phase supporting the agency’s Gateway Program and Artemis IV mission objectives.
      Science Missions Studying Our Solar System and Beyond
      NASA’s Launch Services Program (LSP), based at Kennedy, is working to launch three ambitious missions. Launching early in the year on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) is a space telescope to survey the universe using visible and near-infrared light, observing more colors than ever before and allowing astronomers to piece together a three-dimensional map of the universe with stunning accuracy. Launching with SPHEREx, NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will study how the mass and energy of the Sun’s corona transition into the solar wind.
      NASA’s SPHEREx space observatory was photographed at BAE Systems in Boulder, Colorado, in November 2024 after completing environmental testing. The spacecraft’s three concentric cones help direct heat and light away from the telescope and other components, keeping them cool. BAE Systems IMAP (Interstellar Mapping and Acceleration Probe), scheduled to launch from Cape Canaveral in late 2025, will help map out thethe heliosphere – the magnetic environment surrounding and protecting our solar system. Carrying 10 instruments to make its observations, the IMAP mission is targeting the L1 Lagrange Point, an area between Earth and the Sun that is easy for spacecraft to maintain orbit, along with two Sun observing rideshare missions – NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s SWFO-L1 (Space Weather Follow-On at L1). Also launching in late 2025 on a Falcon 9 from Vandenberg is the second of two identical satellites, Sentinel-6B, which will monitor global sea levels with unprecedented precision. Its predecessor, Sentinel-6 Michael Freilich, has been delivering crucial data since it launched in 2020, and Sentinel-6B will ensure the continuation of this mission through 2030.
      “Our missions launching next year will include groundbreaking technologies to help us learn more about the universe than ever before and provide new data for researchers that will have positive benefits here on Earth,” said LSP’s Deputy Program Manager Jenny Lyons.
      NASA’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) identical dual spacecraft are inspected and processed on dollies in a high bay of the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Thursday, Aug. 22, 2024. As the first multi-spacecraft orbital science mission to Mars, ESCAPADE’s twin orbiters will take simultaneous observations from different locations around the planet and reveal the real-time response to space weather and how the Martian magnetosphere changes over time.NASA/Kim Shiflett The program’s support for small satellite missions next year includes several missions to monitor the Sun, collect climate data, and more. NASA’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission to explore Mars’ magnetosphere will lift off from Cape Canaveral’s Launch Complex 36 on NASA’s inaugural flight of Blue Origin’s New Glenn rocket. Some of these small satellite missions are part of NASA’s CubeSat Launch Initiative, which offers the next generation of scientists, engineers, and technologists a unique opportunity to conduct scientific research and develop and demonstrate novel technologies in space.
      Building the Spaceport’s Future
      Teams expect a busy year of construction projects to accommodate new missions, hardware, and milestones. In preparation for Artemis IV, mobile launcher 2 construction and modifications in the VAB’s High Bays 3 and 4 for the larger SLS Block 1B configuration will ramp up. Teams also will upgrade the spaceport’s Converter Compressor Facility (CCF) to meet the helium needs of its commercial launch partners and the Artemis campaign, increasing efficiency, reliability, and speed of pumping helium to rockets. Upgrades to the CCF’s internal infrastructure are also part of Kennedy’s plan to earn the U.S. Green Building Council’s Leadership in Energy and Environmental Design certification, joining nine other Kennedy facilities in achieving that rating.
      Photographers at NASA capture the sunset on Tuesday, Jan. 30, 2024, near Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida. The iconic Vehicle Assembly Building, currently used for assembly of NASA’s Space Launch System rocket for Artemis missions, remains the only building in which rockets were assembled that carried humans to the surface of another world. NASA/Ben Smegelsky “Kennedy’s spaceport will continue to see its launch cadence grow, and we have to meet our program and commercial partner needs in the most efficient way possible,” said Sasha Sims, deputy director of Kennedy’s Spaceport Integration and Services Directorate. “Process improvements and integrated approaches should improve the speed at which government and commercial construction takes place while also improving Kennedy’s infrastructure so that it’s robust, sustainable, and able to support America’s future in space.”
      Driving down acquisition costs, increasing competition, and using innovative contracting mechanisms for construction are just some of the initiatives to maximize efficiency and reliability in 2025. The center’s “Critical Day” policy prohibits certain types of work during launches requiring full flight range support but will no longer apply to commercial launches where minimal flight range support is required, training events, static fires, exercises, tests, rehearsals, nor other activities leading up to or supporting launches. This policy change is expected to create more flexibility and free up over 150 days annually for construction, maintenance, and other essential work needed to keep the spaceport running smoothly.
      Finally, Kennedy will continue carrying Apollo’s legacy through Artemis. Seeds that traveled aboard the Orion spacecraft during the Artemis I mission will be planted at the spaceport, honoring the legacy of the original Moon Trees that grew from seeds flown on Apollo 14. The Florida spaceport will become one of the select locations across the country where the “new generation” of Moon Trees will take root and provide living testimony to the agency’s continuing legacy of lunar exploration.
      “With so many missions and initiatives on the horizon, I’m looking forward to another banner year at Kennedy Space Center,” Petro said. “We truly are launching humanity’s future.”
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Perseverance Mars rover used its right-front navigation camera to capture this first view over the rim of Jezero Crater on Dec. 10, 2024, the 1,354th Martian day, or sol, of the mission. The camera is facing west from a location nicknamed “Lookout Hill.”NASA/JPL-Caltech NASA’s Perseverance Mars rover captured this scene showing the slippery terrain that’s made its climb up to the rim of Jezero Crater challenging. Rover tracks can be seen trailing off into the distance, back toward the crater’s floor.NASA/JPL-Caltech The road ahead will be even more scientifically intriguing, and probably somewhat easier-going, now that the six-wheeler has completed its long climb to the top.
      NASA’s Perseverance Mars rover has crested the top of Jezero Crater’s rim at a location the science team calls “Lookout Hill” and rolling toward its first science stop after the monthslong climb. The rover made the ascent in order to explore a region of Mars unlike anywhere it has investigated before.
      Taking about 3½ months and ascending 1,640 vertical feet (500 vertical meters), the rover climbed 20% grades, making stops along the way for science observations. Perseverance’s science team shared some of their work and future plans at a media briefing held Thursday, Dec. 12, in Washington at the American Geophysical Union’s annual meeting, the country’s largest gathering of Earth and space scientists.
      “During the Jezero Crater rim climb, our rover drivers have done an amazing job negotiating some of the toughest terrain we’ve encountered since landing,” said Steven Lee, deputy project manager for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “They developed innovative approaches to overcome these challenges — even tried driving backward to see if it would help — and the rover has come through it all like a champ. Perseverance is ‘go’ for everything the science team wants to throw at it during this next science campaign.”
      A scan across a panorama captured by NASA’s Perseverance Mars rover shows the steepness of the terrain leading to the rim of Jezero Crater. The rover’s Mastcam-Z camera system took the images that make up this view on Dec. 5. NASA/JPL-Caltech/ASU/MSSS Since landing at Jezero in February 2021, Perseverance has completed four science campaigns: the “Crater Floor,” “Fan Front,” “Upper Fan,” and “Margin Unit.” The science team is calling Perseverance’s fifth campaign the “Northern Rim” because its route covers the northern part of the southwestern section of Jezero’s rim. Over the first year of the Northern Rim campaign, the rover is expected to visit as many as four sites of geologic interest, take several samples, and drive about 4 miles (6.4 kilometers).
      “The Northern Rim campaign brings us completely new scientific riches as Perseverance roves into fundamentally new geology,” said Ken Farley, project scientist for Perseverance at Caltech in Pasadena. “It marks our transition from rocks that partially filled Jezero Crater when it was formed by a massive impact about 3.9 billion years ago to rocks from deep down inside Mars that were thrown upward to form the crater rim after impact.”
      This animation shows the position of NASA’s Perseverance Mars rover as of Dec. 4, 2024, the 1,347th Martian day, or sol, of the mission, along with the proposed route of the mission’s fifth science campaign, dubbed Northern Rim, over the next several years. NASA/JPL-Caltech/ESA/University of Arizona “These rocks represent pieces of early Martian crust and are among the oldest rocks found anywhere in the solar system. Investigating them could help us understand what Mars — and our own planet — may have looked like in the beginning,” Farley added.
      First Stop: ‘Witch Hazel Hill’
      With Lookout Hill in its rearview mirror, Perseverance is headed to a scientifically significant rocky outcrop about 1,500 feet (450 meters) down the other side of the rim that the science team calls “Witch Hazel Hill.”
      “The campaign starts off with a bang because Witch Hazel Hill represents over 330 feet of layered outcrop, where each layer is like a page in the book of Martian history. As we drive down the hill, we will be going back in time, investigating the ancient environments of Mars recorded in the crater rim,” said Candice Bedford, a Perseverance scientist from Purdue University in West Layfette, Indiana. “Then, after a steep descent, we take our first turns of the wheel away from the crater rim toward ‘Lac de Charmes,’ about 2 miles south.”
      Lac de Charmes intrigues the science team because, being located on the plains beyond the rim, it is less likely to have been significantly affected by the formation of Jezero Crater.
      After leaving Lac de Charmes, the rover will traverse about a mile (1.6 kilometers) back to the rim to investigate a stunning outcrop of large blocks known as megabreccia. These blocks may represent ancient bedrock broken up during the Isidis impact, a planet-altering event that likely excavated deep into the Martian crust as it created an impact basin some 745 miles (1,200 kilometers) wide, 3.9 billion years in the past.
      More About Perseverance
      A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-174
      Share
      Details
      Last Updated Dec 12, 2024 Related Terms
      Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Explore More
      5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
      Article 21 mins ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
      Article 22 hours ago 4 min read NASA Study: Crops, Forests Responding to Changing Rainfall Patterns
      Earth’s rainy days are changing: They’re becoming less frequent, but more intense. Vegetation is responding.
      Article 22 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A group of middle school students engage with a model aircraft while learning from NASA experts in the model lab at NASA’s Armstrong Flight Research Center in Edwards, California during an event hosted by NASA’s California Office of STEM Engagement.NASA/Steve Freeman In celebration of National Aviation History Month, experts from NASA’s Armstrong Flight Research Center in Edwards, California, spoke with middle school students during a recent event hosted by NASA’s California Office of STEM Engagement. NASA Armstrong employees shared stories about the center’s role in aviation history and current research projects while also talking about their own paths to working at NASA. During the virtual and in-person event on Nov. 6, Southern California middle school students were presented with the importance of pursing their passions, the value of internships and exploring diverse career opportunities within NASA.
      Kicking off the event, NASA Armstrong Center Director Brad Flick talked about his journey from a small town to becoming a NASA engineer. “I never, in my wildest dreams thought I had the opportunity to work for someplace like NASA,” Flick said. “I’ve been here for almost 40 years and at a little part of NASA that most people don’t know exists, right? Which is really cool that we’re tying this to aviation history month, because this is one of the places where aviation history has been made, is being made and will continue to be made.” Flick encouraged students to participate in STEAM programs that integrate the arts with science, technology, engineering, and math and stressed the importance of asking questions and being curious.
      A panel of four NASA Armstrong experts – Laurie Grindle, deputy center director; Troy Asher, director of Flight Operations; Nicki Reid, lead operations engineer; and Julio Trevino, operations engineer – shared their stories about their career paths and experiences at NASA.
      NASA Armstrong experts share their stories about their career paths and experiences at NASA to middle school students during an event hosted by NASA’s California Office of STEM Engagement at NASA’s Armstrong Flight Research Center in Edwards, California. From left to right: Laurie Grindle, Julio Trevino, Nicki Reid and Troy Asher.NASA/Steve Freeman Reid talked about her initial struggle with math and science and how it didn’t stop her from obtaining an engineering degree and applying for internships, which is what ultimately opened the door for her at NASA. “It was a really cool experience because it gives you a chance to decide whether or not you like the job and I got to learn from different people every summer,” Reid said.
      Grindle’s dream as a kid was to become an astronaut and although did not happen for her, her interest in aviation and space continued, which ultimately led to working at NASA as a student. “I had a lot of different opportunities working in different roles. I had fun while doing it and did a job I really enjoyed that made it not like work,” Grindle said.
      For Asher, determination and commitment helped him become a pilot. “I remember sitting in the back seat of the airplane, looking out and thinking, ‘I love this. I’m doing this forever,’” Asher said. “But it took me five or six years before I had that moment, and it was the commitment the kept me going.”
      A group of middle school students and their teachers sit in the control room for a hands-on experience at NASA’s Armstrong Flight Research Center in Edwards, California during an event hosted by NASA’s California Office of STEM Engagement for National Aviation History Month.NASA/Steve Freeman Stories and experiences like these are important for students to hear to inspire them in their own journeys into adulthood. Students also received tours around the center with stops in the model lab, life support office and control room.
      “This was a wonderful opportunity for my seventh-grade students to learn more about careers and career paths in NASA,” said Shauna Tinich, Tropico Middle School teacher. “They were surprised that people other than astronauts and rocket scientists work for NASA, and this excited many of my students.”
      NASA’s California Office of STEM Engagement collaborates with the regional STEM community to provide opportunities like these, with the support of Next Gen STEM, to help students in sparking their interest and inspiring the next generation of leaders. To learn more, visit www.nasa.gov/learning-resources.
      Share
      Details
      Last Updated Dec 02, 2024 EditorDede DiniusContactElena Aguirreelena.aguirre@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Aeronautics Learning Resources Next Gen STEM STEM Engagement at NASA Explore More
      4 min read Aaron Yazzie: Bridging Indigenous Heritage and Space Exploration
      Article 5 days ago 2 min read Why NASA Is a Great Place to Launch Your Career 
      Article 1 week ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge 
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Learning Resources
      Armstrong People
      Armstrong Flight Research Center History
      View the full article
    • By NASA
      4 min read
      NASA, JAXA XRISM Mission Looks Deeply Into ‘Hidden’ Stellar System
      The Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) observatory has captured the most detailed portrait yet of gases flowing within Cygnus X-3, one of the most studied sources in the X-ray sky.
      Cygnus X-3 is a binary that pairs a rare type of high-mass star with a compact companion — likely a black hole.
      Cygnus X-3 is a high-mass binary consisting of a compact object (likely a black hole) and a hot Wolf-Rayet star. This artist’s concept shows one interpretation of the system. High-resolution X-ray spectroscopy indicates two gas components: a heavy background outflow, or wind, emanating from the massive star and a turbulent structure — perhaps a wake carved into the wind — located close to the orbiting companion. As shown here, a black hole’s gravity captures some of the wind into an accretion disk around it, and the disk’s orbital motion sculpts a path (yellow arc) through the streaming gas. During strong outbursts, the companion emits jets of particles moving near the speed of light, seen here extending above and below the black hole. NASA’s Goddard Space Flight Center “The nature of the massive star is one factor that makes Cygnus X-3 so intriguing,” said Ralf Ballhausen, a postdoctoral associate at the University of Maryland, College Park, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s a Wolf-Rayet star, a type that has evolved to the point where strong outflows called stellar winds strip gas from the star’s surface and drive it outward. The compact object sweeps up and heats some of this gas, causing it to emit X-rays.”
      A paper describing the findings, led by Ballhausen, will appear in a future edition of The Astrophysical Journal.
      “For XRISM, Cygnus X-3 is a Goldilocks target — its brightness is ‘just right’ in the energy range where XRISM is especially sensitive,” said co-author Timothy Kallman, an astrophysicist at NASA Goddard. “This unusual source has been studied by every X-ray satellite ever flown, so observing it is a kind of rite of passage for new X-ray missions.”
      XRISM (pronounced “crism”) is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency). NASA and JAXA developed the mission’s microcalorimeter spectrometer instrument, named Resolve.
      Observing Cygnus X-3 for 18 hours in late March, Resolve acquired a high-resolution spectrum that allows astronomers to better understand the complex gas dynamics operating there. These include outflowing gas produced by a hot, massive star, its interaction with the compact companion, and a turbulent region that may represent a wake produced by the companion as it orbits through the outrushing gas.
      XRISM’s Resolve instrument has captured the most detailed X-ray spectrum yet acquired of Cygnus X-3. Peaks indicate X-rays emitted by ionized gases, and valleys form where the gases absorb X-rays; many lines are also shifted to both higher and lower energies by gas motions. Top: The full Resolve spectrum, from 2 to 8 keV (kiloelectron volts), tracks X-rays with thousands of times the energy of visible light. Some lines are labeled with the names of the elements that produced them, such as sulfur, argon, and calcium, along with Roman numerals that refer to the number of electrons these atoms have lost. Bottom: A zoom into a region of the spectrum often dominated by features produced by transitions in the innermost electron shell (K shell) of iron atoms. These features form when the atoms interact with high-energy X-rays or electrons and respond by emitting a photon at energies between 6.4 and 7 keV. These details, clearly visible for the first time with XRISM’s Resolve instrument, will help astronomers refine their understanding of this unusual system. JAXA/NASA/XRISM Collaboration In Cygnus X-3, the star and compact object are so close they complete an orbit in just 4.8 hours. The binary is thought to lie about 32,000 light-years away in the direction of the northern constellation Cygnus.
      While thick dust clouds in our galaxy’s central plane obscure any visible light from Cygnus X-3, the binary has been studied in radio, infrared, and gamma-ray light, as well as in X-rays.
      The system is immersed in the star’s streaming gas, which is illuminated and ionized by X-rays from the compact companion. The gas both emits and absorbs X-rays, and many of the spectrum’s prominent peaks and valleys incorporate both aspects. Yet a simple attempt at understanding the spectrum comes up short because some of the features appear to be in the wrong place.
      That’s because the rapid motion of the gas displaces these features from their normal laboratory energies due to the Doppler effect. Absorption valleys typically shift up to higher energies, indicating gas moving toward us at speeds of up to 930,000 mph (1.5 million kph). Emission peaks shift down to lower energies, indicating gas moving away from us at slower speeds.
      Some spectral features displayed much stronger absorption valleys than emission peaks. The reason for this imbalance, the team concludes, is that the dynamics of the stellar wind allow the moving gas to absorb a broader range of X-ray energies emitted by the companion. The detail of the XRISM spectrum, particularly at higher energies rich in features produced by ionized iron atoms, allowed the scientists to disentangle these effects.
      “A key to acquiring this detail was XRISM’s ability to monitor the system over the course of several orbits,” said Brian Williams, NASA’s project scientist for the mission at Goddard. “There’s much more to explore in this spectrum, and ultimately we hope it will help us determine if Cygnus X-3’s compact object is indeed a black hole.”
      XRISM is a collaborative mission between JAXA and NASA, with participation by ESA. NASA’s contribution includes science participation from CSA (Canadian Space Agency).  

      Download additional images from NASA’s Scientific Visualization Studio

      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 25, 2024 Related Terms
      Black Holes Electromagnetic Spectrum Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Stars Stellar-mass Black Holes The Universe X-ray Binaries XRISM (X-Ray Imaging and Spectroscopy Mission) Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...