Jump to content

High-Altitude ER-2 Flights Get Down-to-Earth Data


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A man clad in a white protective suit, black apron, and blue gloves administers liquid oxygen from a tank to a parked aircraft via hose. Gas clouds hover near his feet and the man is wearing a helmet with a clear visor over his face. 
Francisco Rodriguez (aircraft mechanic) services liquid oxygen or LOX on the ER-2 during the Geological Earth Mapping Experiment (GEMx) research project. Experts like Rodriguez sustain a high standard of safety on airborne science aircraft like the ER-2 and science missions like GEMx. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.
NASA/Steve Freeman

Operating at altitudes above 99% of the Earth’s atmosphere, NASA’s ER-2 aircraft is the agency’s highest-flying airborne science platform. With its unique ability to observe from as high as 65,000 feet, the ER-2 aircraft is often a platform for Earth science that facilitates new and crucial information about our planet, especially when the plane is part of collaborative and multidisciplinary projects.

“We’re deploying instruments and people everywhere from dry lakebeds in the desert to coastal oceans and from the stratosphere to marine layer clouds just above the surface,” said Kirk Knobelspiesse, an atmospheric scientist at NASA’s Goddard Space Flight Center.  “We live on a changing planet, and it is through collaborative projects that we can observe and understand those changes.”

One mission that recently benefitted from the ER-2’s unique capabilities is the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) project. The PACE-PAX mission uses the ER-2’s capabilities to confirm data collected from the PACE satellite, which launched in February 2024.

The PACE observatory is making novel measurements of the ocean, atmosphere, and land surfaces, noted Knobelspiesse, the mission scientist for PACE-PAX. This mission is all about checking the accuracy of those new satellite measurements.

Three men examine an instrument: the man on the left has a green shirt and looks over the shoulder of the center man, who wears a black shirt and reads a piece of paper he holds in his hands. The man on the right is wearing a black shirt and cap, and uses his hands to engage with the inside of the white instrument body.
Sam Habbal (quality inspector), Darick Alvarez (aircraft mechanic), and Juan Alvarez (crew chief) work on the network “canoe” on top of the ER-2 aircraft, which provides network communication with the pilot onboard. Experts like these sustain a high standard of safety while outfitting instruments onboard science aircraft like the ER-2 and science missions like the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.
NASA/Genaro Vavuris

“The ER-2 is the ideal platform for PACE-PAX because it’s about the closest we can get to putting instruments in orbit without actually doing so,” Knobelspiesse said.

The collaborative project includes a diverse team of researchers from across NASA, plus the National Oceanic and Atmospheric Administration (NOAA), the Netherlands Institute for Space Research (SRON), the University of Maryland, Baltimore County, the Naval Postgraduate School, and other institutions.

Similarly, the Geological Earth Mapping eXperiment (GEMx) science mission is using the ER-2 over multiple years to collect observations of critical mineral resources across the Western United States.

“Flying at this altitude means the GEMx mission can acquire wide swaths of data with every overflight,” said Kevin Reath, NASA’s associate project manager for the GEMx mission, a collaboration between the United States Geological Survey (USGS) and NASA.

A white plane heads down a runway preparing for takeoff with a white chase vehicle following behind. The background is a clear, sunny day and the foreground is desert foliage and landscape.
The ER-2 conducted over 80 flight hours in service of the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is uniquely qualified to conduct the high-altitude scientific flights that this project required, and is based at NASA’s Armstrong Flight Research Center in Edwards, California.
NASA/Genaro Vavuris

The GEMx team collects visible, shortwave infrared, and thermal infrared data using instruments installed onboard the ER-2. Combining these instruments with the aircraft’s capability to fly at high altitudes bears promising results.

“The dataset being produced is the largest airborne surface mineralogy dataset captured in a single NASA campaign,” Reath said. “These data could help inform federal, tribal, state, and community leaders to make decisions that protect or develop our environment.”

Learn more about the ER-2 aircraft.

Learn more about the PACE-PAX mission.

Learn more about the GEMx mission.

Learn more about NASA’s Airborne Science Program.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      How Long Does it Take to Get to the Moon... Mars... Jupiter? We Asked a NASA Expert
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      During the Apollo program, when NASA sent humans to the Moon, those missions took several days to reach the Moon. The fastest of these was Apollo 8, which took just under three days to go from Earth orbit to orbit around the Moon.

      Now it’s possible to save some fuel by flying different kinds of trajectories to the Moon that are shaped in such a way to save fuel. And those trajectories can take more time, potentially weeks or months, to reach the Moon, depending on how you do it.

      Mars is further away, about 50 percent further away from the Sun than Earth is. And reaching Mars generally takes somewhere between seven to ten months, flying a relatively direct route.

      NASA’s Mars Reconnaissance Orbiter mission took about seven and a half months to reach Mars. And NASA’s MAVEN mission took about ten months to reach Mars.

      Jupiter is about five times further away from the Sun than the Earth is. And so in order to make those missions practical, we have to find ways to reduce the fuel requirements. And the way we do that is by having the spacecraft do some flybys of Earth and or Venus to help shape the spacecraft’s trajectory and change the spacecraft’s speed without using fuel. And using that sort of approach, it takes between about five to six years to reach Jupiter.

      So NASA’s Galileo mission, the first mission to Jupiter, took just a little over six years. And then NASA’s second mission to Jupiter, which was called Juno, took just under five years.

      So to get to the Moon takes several days. To get to Mars takes seven to ten months. And getting to Jupiter takes between five and six years.

      [END VIDEO TRANSCRIPT]

      Full Episode List
      Full YouTube Playlist
      Share
      Details
      Last Updated Feb 19, 2025 Related Terms
      Science Mission Directorate Planetary Science Planetary Science Division The Solar System Explore More
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
      In 2023 and 2024, two eclipses crossed the United States, and the NASA Science Activation…
      Article 18 hours ago 2 min read NASA Science: Being Responsive to Executive Orders
      February 18, 2025 To the NASA Science Community –  As the nation’s leader in Earth…
      Article 19 hours ago 5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging
      One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are…
      Article 22 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      An image of a coastal marshland combines aerial and satellite views in a technique similar to hyperspectral imaging. Combining data from multiple sources gives scientists information that can support environmental management.John Moisan When it comes to making real-time decisions about unfamiliar data – say, choosing a path to hike up a mountain you’ve never scaled before – existing artificial intelligence and machine learning tech doesn’t come close to measuring up to human skill. That’s why NASA scientist John Moisan is developing an AI “eye.”
      Oceanographer John MoisanNASA Moisan, an oceanographer at NASA’s Wallops Flight Facility near Chincoteague, Virginia, said AI will direct his A-Eye, a movable sensor. After analyzing images his AI would not just find known patterns in new data, but also steer the sensor to observe and discover new features or biological processes. 
      “A truly intelligent machine needs to be able to recognize when it is faced with something truly new and worthy of further observation,” Moisan said. “Most AI applications are mapping applications trained with familiar data to recognize patterns in new data. How do you teach a machine to recognize something it doesn’t understand, stop and say ‘What was that? Let’s take a closer look.’ That’s discovery.”
      Finding and identifying new patterns in complex data is still the domain of human scientists, and how humans see plays a large part, said Goddard AI expert James MacKinnon. Scientists analyze large data sets by looking at visualizations that can help bring out relationships between different variables within the data.
      Infrared images like this one from a marsh area on the Maryland/Virginia Eastern Shore coastal barrier and back bay regions reveal clues to scientists about plant health, photosynthesis, and other conditions that affect vegetation and ecosystems.John Moisan It’s another story to train a computer to look at large data streams in real time to see those connections, MacKinnon said. Especially when looking for correlations and inter-relationships in the data that the computer hasn’t been trained to identify. 
      Moisan intends first to set his A-Eye on interpreting images from Earth’s complex aquatic and coastal regions. He expects to reach that goal this year, training the AI using observations from prior flights over the Delmarva Peninsula. Follow-up funding would help him complete the optical pointing goal.
      “How do you pick out things that matter in a scan?” Moisan asked. “I want to be able to quickly point the A-Eye at something swept up in the scan, so that from a remote area we can get whatever we need to understand the environmental scene.” 
      Moisan’s on-board AI would scan the collected data in real-time to search for significant features, then steer an optical sensor to collect more detailed data in infrared and other frequencies. 
      Thinking machines may be set to play a larger role in future exploration of our universe. Sophisticated computers taught to recognize chemical signatures that could indicate life processes, or landscape features like lava flows or craters, might offer to increase the value of science data returned from lunar or deep-space exploration. 
      Today’s state-of-the-art AI is not quite ready to make mission-critical decisions, MacKinnon said.
      “You need some way to take a perception of a scene and turn that into a decision and that’s really hard,” he said. “The scary thing, to a scientist, is to throw away data that could be valuable. An AI might prioritize what data to send first or have an algorithm that can call attention to anomalies, but at the end of the day, it’s going to be a scientist looking at that data that results in discoveries.” 
      Share
      Details
      Last Updated Feb 10, 2025 Related Terms
      Goddard Space Flight Center Artificial Intelligence (AI) Goddard Technology People of Goddard Technology Wallops Flight Facility Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      “Data visualization has recently exploded as a communication tool,” said Mark SubbaRao, information technology specialist and lead for NASA’s Scientific Visualization Studio. “As data becomes bigger and more complex, visualization becomes an even more important tool for understanding that data.”Rachel Connolly / Courtesy of Mark SubbaRao Name: Mark SubbaRao
      Title: Lead, Scientific Visualization Studio (SVS)
      Formal Job Classification: Information Technology Specialist
      Organization: SVS, Science Mission Directorate (Code 606.4)
      What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      I have an amazing job. I get to work with all the most interesting NASA science and make it visual to help people can understand it. The Scientific Visualization Studio, the SVS, supports all of NASA and is located at Goddard.
      What is your educational background?
      I have B.S. in engineering physics, minor in astronomy, from Lehigh University in Bethlehem, Pennsylvania. I have a Ph.D. in astrophysics from Johns Hopkins University.
      What is data visualization? How is it different from animation?
      Data visualization is the graphical representation of actual data (in our case usually scientific data). At its most basic it takes the forms of charts, graphs, and maps. In contrast, conceptual animation, such as the work of our colleagues in the CI Lab, is the graphical representation of ideas. Conceptual animation and data visualization are both needed to communicate the full scientific process.
      How did your work for the University of Chicago develop your interest in visualization?
      I worked on software for the Sloan Digital Sky Survey, a project to create the biggest 3D map of the universe. Our goal was to map 3D positions of a million galaxies, which we did. My role was to develop the software to determine the distance to galaxies. To see the result we needed a way to see how the galaxies were distributed in 3D, which led to my interest in visualization.
      Viewing this map, I felt like we had revealed a new world which no one had yet seen altogether. The desire to share that with the public led me a position at the Adler Planetarium in Chicago.
      “Astrographics,” a video piece Mark SubbaRao produced for the Adler Planetarium, being projected on the Merchandise Mart on the Chicago riverfront.Michael SubbaRao / Courtesy of Mark SubbaRao How did planetariums evolve during your 18 years of working for the Adler Planetarium?
      I led their visualization efforts for their Space Visualization Laboratory, a laboratory that was on the museum floor and had multiple specialized displays. The local scientific community used our laboratory to present to the public including other scientists and students.
      I also produced planetarium shows and designed exhibits. My last project, “Astrographics” for Art on the Mart, was a 2.6-acre, outdoor projection onto a building near the Chicago River. We believe that this is the largest, permanent outdoor digital projection in the world.
      I began to see the power of the planetarium as a data visualization environment. Traditionally, a planetarium has been a place to project stars and tell stories about constellations. Planetariums have now evolved into a general-purpose visualization platform to communicate science.
      I got more involved with the planetarium community, which led to me becoming president of the International Planetarium Society. A major focus of my presidency was promoting planetariums in Africa.
      Why did you come to NASA’s SVS at Goddard?
      I came to Goddard in December 2020. I always admired NASA’s SVS and had used their products. I consider the SVS the preeminent group using scientific visualization for public communication.
      I wanted to work on visualizations for a broader variety of sciences, in particular, climate science. Our group created visualizations for the United Nations Climate Conference (COP26) in Glasgow, Scotland, the fall of 2021. In March 2022, I created a visualization called Climate Spiral, which went viral.
      This visualization shows monthly global temperature anomalies (changes from an average) between the years 1880 and 2021. Whites and blues indicate cooler temperatures, while oranges and reds show warmer temperatures.
      Credits: NASA’s Goddard Space Flight Center / NASA’s Scientific Visualization Studio
      Download high-resolution video and images from NASA’s Scientific Visualization Studio As the lead, how do you hope to inspire your group?
      Our group is very talented, experienced, and self-motivated. Data visualization has recently exploded as a communication tool. Our goal is to continue to stay on top of this rapidly evolving field. Coupled with this, there has been an explosion in scientific data from satellites and super computers. As data becomes bigger and more complex, visualization becomes an even more important tool for understanding that data.
      Karen St. Germain, NASA’s Director of Earth Science, presenting an SVS visualization of carbon dioxide to the 2021 United Nations Climate Change Conference in Glasgow, Scotland.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/31168NASA’s Goddard Space Flight Center / NASA’s Scientific Visualization Studio Your work combines art and science. What are the benefits of combining art and science?
      One huge benefit is that you can reach people through an artistic visual presentation of science who may not be interested in simply reading an article. You can go beyond teaching people, you can move them emotionally through a good, artistic presentation.
      For example, in “Climate Spiral,” we did not want to just inform people that global average temperatures have increased, we wanted people to feel that the temperature has increased.
      Also, our universe is just beautiful. Why not let the beauty of the universe create something artistic for you? I sometimes feel like I cheat by letting the universe do my design for me.
      What do you do for fun?
      Since moving to Maryland, and living near the Chesapeake Bay, I have taken up stand up paddleboarding. I like to cook too. My father is Indian, so I cook a lot of Indian food.
      Who inspires you?
      Arthur C. Clarke, the science fiction writer, also wrote a lot of popular science. He played a big part in my decision to become a scientist.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      8 min read John Moisan Studies the Ocean Through the ‘Eyes’ of AI
      Article 14 mins ago 5 min read NASA Scientists & Historian Named AAAS 2022 Fellows
      Article 14 mins ago 6 min read Phathom Donald Brings Space Closer as a Hubble Mission Engineer
      Article 14 mins ago Share
      Details
      Last Updated Feb 10, 2025 EditorJessica EvansContactRob Garnerrob.garner@nasa.gov Related Terms
      Goddard Space Flight Center People of Goddard View the full article
    • By Space Force
      Department of the Air Force releases the memorandum DAF Initial Return to In-Person Work Data for the DoD Implementation Plan.
      View the full article
  • Check out these Videos

×
×
  • Create New...