Jump to content

NASA Science on Health, Safety to Launch on 31st SpaceX Resupply Mission


NASA

Recommended Posts

  • Publishers

5 min read

NASA Science on Health, Safety to Launch on 31st SpaceX Resupply Mission

New science experiments for NASA are set to launch aboard the agency’s SpaceX 31st commercial resupply services mission to the International Space Station. The six investigations aim to contribute to cutting-edge discoveries by NASA scientists and research teams. The SpaceX Dragon spacecraft will liftoff aboard the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Science experiments aboard the spacecraft include a test to study smothering fires in space, evaluating quantum communications, analyzing antibiotic-resistant bacteria, examining health issues like blood clots and inflammation in astronauts, as well as growing romaine lettuce and moss in microgravity.

Developing Firefighting Techniques in Microgravity

Putting out a fire in space requires a unique approach to prioritize the safety of the spacecraft environment and crew. The SoFIE-MIST (Solid Fuel Ignition and Extinction – Material Ignition and Suppression Test) is one of five investigations chosen by NASA since 2009 to develop techniques on how to contain and put out fires in microgravity. Research from the experiment could strengthen our understanding of the beginning stages of fire growth and behavior, which will assist in building and developing more resilient space establishments and creating better plans for fire suppression in space

A female astronaut wearing blue gloves looks at wires and tubes that make up a science experiment aboard the International Space Station
NASA astronaut Jessica Watkins services components that support the SOFIE (Solid Fuel Ignition and Extinction) fire safety experiment inside the International Space Station’s combustion integrated rack
Credit: NASA

Combating Antibiotic Resistance

Resistance to antibiotics is as much of a concern for astronauts in space as it is for humans on Earth. Research determined that the impacts of microgravity can weaken a human’s immune system during spaceflight, which can lead to an increase of infection and illness for those living on the space station.

The GEARS (Genomic Enumeration of Antibiotic Resistance in Space) investigation scans the orbiting outpost for bacteria resistant to antibiotics and these organisms are studied to learn how they thrive and adapt to microgravity. Research results could help increase the safety of astronauts on future missions as well as provide clues to improving human health on Earth.

Two hands with white gloves hold a rectangle box filled with black and yellow circles that are samples for a science experiment
A sample media plate pictured aboard the International Space Station. The GEARS (Genomic Enumeration of Antibiotic Resistance in Space) investigation surveys the orbiting laboratory for antibiotic-resistant organisms. Genetic analysis could provide knowledge that informs measures to protect astronauts on future long-duration missions
Credit: NASA

Understanding Inflammation and Blood Clotting

Microgravity takes a toll on the human body and studies have shown that astronauts have had cases of inflammation and abnormally regulated blood clotting. The MeF-1 (Megakaryocytes Orbiting in Outer Space and Near Earth: The MOON Study (Megakaryocyte Flying-One)) investigation will conduct research on how the conditions in microgravity can impact the creation and function of platelets and bone-marrow megakaryocytes. Megakaryocytes, and their progeny, platelets, are key effector cells bridging the inflammatory, immune, and hemostatic continuum.

This experiment could help scientists learn about the concerns caused by any changes in the formation of clots, inflammation, and immune responses both on Earth and during spaceflight.

Two side by side square images of textured blobs in grayscale that are human platelets. Underneath each square in very small print are letters and numbers
A scanning electron-microscopy image of human platelets taken at the NASA Space Radiation Laboratory
NASA Space Radiation Laboratory

Building the Space Salad Bar

The work continues to grow food in the harsh environment of space that is both nutritious and safe for humans to consume. With Plant Habitat-07, research continues on ‘Outredgeous’ romaine lettuce, first grown on the International Space Station in 2014.

This experiment will sprout this red lettuce in microgravity in the space station’s Advanced Plant Habitat and study how optimal and suboptimal moisture conditions impact plant growth, nutrient content, and the plant microbiome. The knowledge gained will add to NASA’s history of growing vegetables in space and could also benefit agriculture on Earth.

A man wearing a blue shirt, glasses, and bright purple gloves touches red and green colored lettuce in a black plant holder at a NASA laboratory with white walls
Pace crop production scientist Oscar Monje harvests Outredgeous romaine lettuce for preflight testing of the Plant Habitat-07 experiment inside a laboratory at the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida
NASA/Ben Smegelsky

Mixing Moss with Space Radiation

ARTEMOSS (ANT1 Radiation Tolerance Experiment with Moss in Orbit on the Space Station) continues research that started on Earth with samples of Antarctic moss that underwent simulated solar radiation at the NASA Space Radiation Lab at Brookhaven National Lab in Upton, New York.

After exposure to radiation some of the moss samples will spend time on the orbiting outpost in the microgravity environment and some will remain on the ground in the 1g environment. ARTEMOSS will study how Antarctic moss recovers from any potential damage from ionizing radiation exposure when plants remain on the ground and when plants grow in spaceflight microgravity. This study leads the way in understanding the effects of combined simulated cosmic ionizing radiation and spaceflight microgravity on live plants, providing more clues to plant performance in exploration missions to come.  

A circle dish contains 13 green fuzzy moss plants that are circular and the size of marbles. On the right side of the photo, there is a square box with a red outline that contains another image of one of the circles zoomed in to show the grassy texture of the sample; it is mainly dark green and with a lighter green around the edges
An example of moss plants grown for the ARTEMOSS mission
Credit: NASA

Enabling Communication in Space Between Quantum Computers

The SEAQUE (Space Entanglement and Annealing Quantum Experiment) will experiment with technologies that, if successful, will enable communication on a quantum level using entanglement. Researchers will focus on validating in space a new technology, enabling easier and more robust communication between two quantum systems across large distances. The research from this experiment could lead to developing building blocks for communicating between equipment such as quantum computers with enhanced security.

The SEAQUE platform is a rectangle 3-D box with four smaller rectangle plates screwed on to the box that contains software to perform experiments on the space station.
A quantum communications investigation, called SEAQUE (Space Entanglement and Annealing Quantum Experiment), is pictured as prepared for launch to the International Space Station on NASA’s SpaceX 31st commercial resupply services mission. The investigation is integrated on a MISSE-20 (Materials International Space Station Experiment) device, which is a platform for experiments on the outside of space station exposing instrumentation directly to the space environment. SEAQUE will conduct experiments in quantum entanglement while being exposed to the radiation environment of space
Credit: NASA

Related resources:

NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Guanyu Huang, Stony Brook University
      Graduate Mentor:
      Ryan Schmedding, McGill University

      Ryan Schmedding, Graduate Mentor
      Ryan Schmedding, graduate mentor for the 2024 SARP Atmospheric Science group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Danielle Jones
      Remote sensing of poor air quality in mountains: A case study in Kathmandu, Nepal
      Danielle Jones
      Urban activity produces particulate matter in the atmosphere known as aerosol particles. These aerosols can negatively affect human health and cause changes to the climate system. Measures for aerosols include surface level PM2.5 concentration and aerosol optical depth (AOD). Kathmandu, Nepal is an urban area that rests in a valley on the edge of the Himalayas and is home to over three million people. Despite the prevailing easterly winds, local aerosols are mostly concentrated in the valley from the residential burning of coal followed by industry. Exposure to PM2.5 has caused an estimated ≥8.6% of deaths annually in Nepal. We paired NASA satellite AOD and elevation data, model  meteorological data, and local AirNow PM2.5 and air quality index (AQI) data to determine causes of variation in pollutant measurement during 2023, with increased emphasis on the post-monsoon season (Oct. 1 – Dec. 31). We see the seasonality of meteorological data related to PM2.5 and AQI. During periods of low temperature, low wind speed, and high pressure, PM2.5 and AQI data slightly diverge. This may indicate that temperature inversions increase surface level concentrations of aerosols but have little effect on the total air column. The individual measurements of surface pressure, surface temperature, and wind speed had no observable correlation to AOD (which was less variable than PM2.5 and AQI over the entire year). Elevation was found to have no observable effect on AOD during the period of study. Future research should focus on the relative contributions of different pollutants to the AQI to test if little atmospheric mixing causes the formation of low-altitude secondary pollutants in addition to PM2.5 leading to the observed divergence in AQI and PM2.5.

      Madison Holland
      Analyzing the Transport and Impact of June 2023 Canadian Wildfire Smoke on Surface PM2.5 Levels in Allentown, Pennsylvania
      Madison Holland
      The 2023 wildfire season in Canada was unparalleled in its severity. Over 17 million hectares burned, the largest area ever burned in a single season. The smoke from these wildfires spread thousands of kilometers, causing a large population to be exposed to air pollution. Wildfires can release a variety of air pollutants, including fine particulate matter (PM2.5). PM2.5 directly affects human health – exposure to wildfire-related PM2.5 has been associated with respiratory issues such as the exacerbation of asthma and chronic obstructive pulmonary disease. In June 2023, smoke from the Canadian wildfires drifted southward into the United States. The northeastern United States reported unhealthy levels of air quality due to the transportation of the smoke. In particular, Pennsylvania reported that Canadian wildfires caused portions of the state to have “Hazardous” air quality. Our research focused on how Allentown, PA experienced hazardous levels of air quality from this event. To analyze the concentrations of PM2.5 at the surface level, NASA’s Hazardous Air Quality Ensemble System (HAQES) and the EPA’s Air Quality System (AQS) ground-based site data were utilized. By comparing HAQES’s forecast of hazardous air quality events with recorded daily average PM2.5 with the EPA’s AQS, we were able to compare how well the ensemble system was at predicting total PM2.5 during unhealthy air quality days. NOAA’s Hybrid Single-Particle Lagrangian Integrated Trajectory model, pyrsig, and the Canadian National Fire Database were used. These datasets revealed the trajectory of aerosols from the wildfires to Allentown, Pennsylvania, identified the densest regions of the smoke plumes, and provided a map of wildfire locations in southeastern Canada. By integrating these datasets, we traced how wildfire smoke transported aerosols from the source at the ground level.

      Michele Iraci
      Trends and Transport of Tropospheric Ozone From New York City to Connecticut in the Summer of 2023
      Michele Iraci
      Tropospheric Ozone, or O₃, is a criteria pollutant contributing to most of Connecticut and New York City’s poor air quality days. It has adverse effects on human health, particularly for high-risk individuals. Ozone is produced by nitrogen oxides and volatile organic compounds from fuel combustion reacting with sunlight. The Ozone Transport Region (OTR) is a collection of states in the Northeast and Mid-Atlantic United States that experience cross-state pollution of O₃. Connecticut has multiple days a year where O₃ values exceed the National Ambient Air Quality Standards requiring the implementation of additional monitoring and standards because it falls in the OTR. Partially due to upstream transport from New York City, Connecticut experiences increases in O₃ concentrations in the summer months. Connecticut has seen declines in poor air quality days from O₃ every year due to the regulations on ozone and its precursors. We use ground-based Lidar, Air Quality System data, and a back-trajectory model to examine a case of ozone enhancement in Connecticut caused by air pollutants from New York between June and August 2023. In this time period, Connecticut’s ozone enhancement was caused by air pollutants from New York City. As a result, New York City and Connecticut saw similar O₃ spikes and decline trends. High-temperature days increase O₃ in both places, and wind out of the southwest may transport O₃ to Connecticut. Production and transport of O₃ from New York City help contribute to Connecticut’s poor air quality days, resulting in the need for interstate agreements on pollution management.

      Stefan Sundin
      Correlations Between the Planetary Boundary Layer Height and the Lifting Condensation Level
      Stefan Sundin
      The Planetary Boundary Layer (PBL) characterizes the lowest layer in the atmosphere that is coupled with diurnal heating at the surface. The PBL grows during the day as solar heating causes pockets of air near the surface to rise and mix with cooler air above. Depending on the type of terrain and surface albedo that receives solar heating, the depth of the PBL can vary to a great extent. This makes PBL height (PBLH) a difficult variable to quantify spatially and temporally. While several methods have been used to obtain the PBLH such as wind profilers and lidar techniques, there is still a level of uncertainty associated with PBLH. One method of predicting seasonal PBLH fluctuation and potentially lessening uncertainty that will be discussed in this study is recognizing a correlation in PBLH with the lifting condensation level (LCL). Like the PBL, the LCL is used as a convective parameter when analyzing upper air data, and classifies the height in the atmosphere at which a parcel becomes saturated when lifted by a forcing mechanism, such as a frontal boundary, localized convergence, or orographic lifting. A reason to believe that PBLH and LCL are interconnected is their dependency on both the amount of surface heating and moisture that is present in the environment. These thermodynamic properties are of interest in heavily populated metropolitan areas within the Great Plains, as they are more susceptible to severe weather outbreaks and associated economic losses. Correlations between PBLH and LCL over the Minneapolis-St. Paul metropolitan statistical area during the summer months of 2019-2023 will be discussed.

      Angelica Kusen
      Coupling of Chlorophyll-a Concentrations and Aerosol Optical Depth in the Subantarctic Southern Ocean and South China Sea (2019-2021)
      Angelica Kusen
      Air-sea interactions form a complex feedback mechanism, whereby aerosols impact physical and biogeochemical processes in marine environments, which, in turn, alter aerosol properties. One key indicator of these interactions is chlorophyll-a (Chl-a), a pigment common to all phytoplankton and a widely used proxy for primary productivity in marine ecosystems. Phytoplankton require soluble nutrients and trace metals for growth, which typically come from oceanic processes such as upwelling. These nutrients can also be supplied via wet and dry deposition, where atmospheric aerosols are removed from the atmosphere and deposited into the ocean. To explore this interaction, we analyze the spatial and temporal variations of satellite-derived chl-a and AOD, their correlations, and their relationship with wind patterns in the Subantarctic Southern Ocean and the South China Sea from 2019 to 2021, two regions with contrasting environmental conditions.
      In the Subantarctic Southern Ocean, a positive correlation (r²= 0.26) between AOD and Chl-a was found, likely due to dust storms following Austrian wildfires. Winds deposit dust aerosols rich in nutrients, such as iron, to the iron-limited ocean, enhancing phytoplankton photosynthesis and increasing chl-a. In contrast, the South China Sea showed no notable correlation (r² = -0.02) between AOD and chl-a. Decreased emissions due to COVID-19 and stricter pollution controls likely reduced the total AOD load and shifted the composition of aerosols from anthropogenic to more natural sources.
      These findings highlight the complex interrelationship between oceanic biological activity and the chemical composition of the atmosphere, emphasizing that atmospheric delivery of essential nutrients, such as iron and phosphorus, promotes phytoplankton growth. Finally, NASA’s recently launched PACE mission will contribute observations of phytoplankton community composition at unprecedented scale, possibly enabling attribution of AOD levels to particular groups of phytoplankton.

      Chris Hautman
      Estimating CO₂ Emission from Rocket Plumes Using in Situ Data from Low Earth Atmosphere
      Chris Hautman
      Rocket emissions in the lower atmosphere are becoming an increasing environmental concern as space exploration and commercial satellite launches have increased exponentially in recent years. Rocket plumes are one of the few known sources of anthropogenic emissions directly into the upper atmosphere. Emissions in the lower atmosphere may also be of interest due to their impacts on human health and the environment, in particular, ground level pollutants transported over wildlife protected zones, such as the Everglades, or population centers near launch sites. While rockets are a known source of atmospheric pollution, the study of rocket exhaust is an ongoing task. Rocket exhaust can have a variety of compositions depending on the type of engine, the propellants used, including fuels, oxidizers, and monopropellants, the stoichiometry of the combustion itself also plays a role. In addition, there has been increasing research into compounds being vaporized in atmospheric reentry. These emissions, while relatively minimal compared to other methods of travel, pose an increasing threat to atmospheric stability and environmental health with the increase in human space activity. This study attempts to create a method for estimating the total amount of carbon dioxide released by the first stage of a rocket launch relative to the mass flow of RP-1, a highly refined kerosene (C₁₂H₂₆)), and liquid oxygen (LOX) propellants. Particularly, this study will focus on relating in situ CO₂ emission data from a Delta II rocket launch from Vandenberg Air Force Base on April 15, 1999, to CO₂ emissions from popular modern rockets, such as the Falcon 9 (SpaceX) and Soyuz variants (Russia). The findings indicate that the CO₂ density of any RP-1/LOX rocket is 6.9E-7 times the mass flow of the sum of all engines on the first stage. The total mass of CO₂ emitted can be further estimated by modeling the volume of the plume as cylindrical. Therefore, the total mass can be calculated as a function of mass flow and first stage main engine cutoff. Future CO₂ emissions on an annual basis are calculated based on these estimations and anticipated increases in launch frequency.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
      The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
      Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      NASA Headquarters, Washington
      202-358-1600
      tiernan.p.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy speaks during an agency town hall on Sept. 21, 2021 at NASA Headquarters in Washington. Credit: NASA/Aubrey Gemignani NASA Deputy Administrator Pam Melroy and Nicola Fox, associate administrator for NASA’s Science Mission Directorate, will travel to Mexico City on Sunday, Nov. 24, for a multi-day trip to build on previous engagements and advance scientific and technological collaboration between the United States and Mexico.
      This visit will focus on fostering partnerships in astronomy and astrophysics research, as well as highlighting opportunities for economic, educational, and science, technology, engineering, and math collaborations between the two nations.
      Melroy’s trip will include high-level meetings with senior Mexican government officials, including the secretariat-designate for Science, Technology, Humanities, and Innovation. Melroy and Fox also will meet with leaders from academia, industry, and scientific institutions. These discussions will emphasize expanding cooperation in space science, with particular focus on Mexico’s growing astronomy programs.
      This visit builds on Melroy’s trip to Mexico City earlier this year and reflects NASA’s commitment to advancing international cooperation in space and science for the benefit of all.
      For more information about NASA’s international partnerships, visit:
      https://www.nasa.gov/oiir
      -end-
      Amber Jacobson / Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / katherine.a.rohloff@nasa.gov
      Share
      Details
      Last Updated Nov 22, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Science Mission Directorate Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By NASA
      2 Min Read Why NASA Is a Great Place to Launch Your Career 
      Students at NASA's Jet Propulsion Laboratory pose for photos around the laboratory wearing their eclipse glasses. Credits: NASA/JPL-Caltech  Recently recognized as the most prestigious internship program by Vault.com, NASA has empowered countless students and early-career professionals to launch careers in science, technology, engineering, and mathematics (STEM) fields. NASA interns make real contributions to space and science missions, making it one of the best places to start your career. 
      “NASA internships give students the chance to work on groundbreaking projects alongside experts, providing impactful opportunities for professional growth,” said Mike Kincaid, associate administrator for NASA’s Office of STEM Engagement. “Since starting my career as an intern at NASA’s Johnson Space Center in Houston, I’ve experienced firsthand how NASA creates lasting connections and open doors—not just for me, but for former interns who are now colleagues across the agency. These internships build STEM skills, confidence, and networks, preparing the next generation of innovators and leaders.” 
      NASA interns achieve impressive feats, from discovering new exoplanets to becoming astronauts and even winning Webby Awards for their science communication efforts. These valuable contributors play a crucial role in NASA’s mission to explore the unknown for the benefit of all. Many NASA employees start their careers as interns, a testament to the program’s lasting impact. 
      Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Additionally, NASA is recognized as one of America’s Best Employers for Women and one of America’s Best Employers for New Graduates by Forbes, reflecting the agency’s commitment to fostering a diverse and inclusive environment. NASA encourages people from underrepresented groups to apply, creating a diverse cohort of interns who bring a wide range of perspectives and ideas to the agency.  
      “My internship experience has been incredible. I have felt welcomed by everyone I’ve worked with, which has been so helpful as a Navajo woman as I’ve often felt like an outsider in male-dominated STEM spaces,” said Tara Roanhorse, an intern for NASA’s Office of STEM Engagement. 
      If you’re passionate about space, technology, and making a difference in the world, NASA’s internship program is the perfect place to begin your journey toward a fulfilling and impactful career.  
      To learn more about NASA’s internship programs, visit: https://www.intern.nasa.gov/ 
      Keep Exploring Discover More STEM Topics From NASA
      For Colleges and Universities
      For Students Grades 9-12
      Join Artemis
      Learning Resources
      View the full article
  • Check out these Videos

×
×
  • Create New...