Jump to content

I Am Artemis: Casey Wolfe


NASA

Recommended Posts

  • Publishers
Casey Wolfe is developing and producing the next generation payload adapter for NASA’s SLS (Space Launch System) super-heavy lift rocket. The adapter is made with some of the world’s most advanced composite manufacturing techniques.
Casey Wolfe is developing and producing the next generation payload adapter for NASA’s SLS (Space Launch System) super-heavy lift rocket. The adapter is made with some of the world’s most advanced composite manufacturing techniques.
NASA/Sam Lott

While precision, perseverance, and engineering are necessary skills in building a Moon rocket, Casey Wolfe knows that one of the most important aspects for the job is teamwork.

“Engineering is vital, but to get this type of work done, you need to take care of the human element,” said Wolfe, the assistant branch chief of the advanced manufacturing branch in the Materials and Processes Laboratory at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

Together with her team, Wolfe is developing and producing the next generation payload adapter for NASA’s SLS (Space Launch System) super-heavy lift rocket. The adapter is made with some of the world’s most advanced composite manufacturing techniques.

Wolfe’s work integrates the technical day-to-day operations and personnel management of the composites manufacturing team and additive manufacturing team, balancing production of SLS hardware with the creation of new engines using the latest manufacturing technologies. 

“A lot of my day to day is in managing our two teams, making connections, building relationships, and making sure people feel supported,” Wolfe explains. “I conduct individual tag ups with each team member so we can be proactive about anticipating and addressing problems.”

Wolfe grew up in Huntsville, a place known as the “Rocket City,” but it wasn’t until she visited a job fair while studying at Auburn University for a polymer and fiber engineering degree that she began to consider a career at NASA Marshall. Wolfe applied for and was selected to be a NASA intern through the Pathways Program, working in the non-metallic materials branch of the Materials and Processes Laboratory.

Wolfe supported a coating system for electrostatic discharge on the first uncrewed test flight of the Orion spacecraft. Launching December 5, 2014, Orion traveled to an altitude of 3,600 miles, orbited Earth twice, and splashed down in the Pacific Ocean. It was during her internship that Wolfe realized how inspirational it felt to be treated like a vital part of a team:

“The SLS program gave everyone permission to sign the hardware, even me – even though I was just an intern,” says Wolfe. “It was impactful to me, knowing that something I had worked on had my name on it and went to space.” 

Since being hired by NASA, Wolfe’s work has supported development of the Orion stage adapter diaphragms for Artemis II and Artemis III, and the payload adapters for Artemis IV and beyond. The first three Artemis flights use the SLS Block 1 rocket variant, which can send more than 27 metric tons (59,500 pounds) to the Moon in a single launch. Beginning with Artemis IV, the SLS Block 1B variant will use the new, more powerful exploration upper stage to enable more ambitious missions to deep space, with the cone-shaped payload adapter situated atop the rocket’s exploration upper stage. The new variant will be capable of launching more than 38 metric tons (84,000 pounds) to the Moon in a single launch.

“While the engineering development unit of the payload adapter is undergoing large-scale testing, our team is working on the production of the qualification article, which will also be tested,” Wolfe says. “Flight components should be starting fabrication in the next six months.”

When Wolfe isn’t working, she enjoys hiking, gardening, and hanging out with her dogs and large family. Recently, she signed another piece of SLS hardware headed to space: the Orion stage adapter for the second Artemis mission.

With as many responsibilities as Wolfe juggles, it’s easy to lose sight of her work’s impact. “I work in the lab around the hardware all the time, and in many ways, it can become very rote,” she says.

But Wolfe won’t forget what she saw one evening when she worked late: “Everybody was gone, and as I walked past the launch vehicle stage adapter, there were two security guards taking pictures of each other in front of it. It was one of those things that made me step back and reflect on what my team accomplishes every day: making history happen.”

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Astronaut and Artemis II pilot, Victor Glover, maneuvers the latch handle on an Orion test side hatch during performance evaluations at the Lockheed Martin Space campus in Littleton, Colorado.Photo credit: Lockheed Martin Artemis II NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, and CSA (Canadian Space Agency) astronaut Jeremy Hansen recently traveled to Lockheed Martin Space in Littleton, Colorado, where they practiced opening and closing an Orion crew module side hatch model to help demonstrate its reliability and durability during their 10-day mission around the Moon.
      During normal mission operations, the crew will not operate the hatches – the ground systems team at NASA’s Kennedy Space Center in Florida will assist the crew into Orion at the launch pad, then close the hatch behind them prior to liftoff. After splashdown in the Pacific Ocean, recovery teams will open the side hatch and help crew to exit.
      Back-up crew members Andre Douglas of NASA and Jenni Gibbons of CSA also trained on hatch operations, which help ensure the crew can safely enter and exit the spacecraft in the event of an emergency. The side hatch is normally opened using a manual gearbox system, but in an emergency, the hatch has release mechanisms containing small pyrotechnic (explosive) devices that release the latch pins on the hatch instantaneously, allowing the hatch to open quickly.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.  
      View the full article
    • By NASA
      NASA Associate Administrator Jim Free welcomed the Republic of Cyprus as the latest nation to commit to the responsible use of space for humanity on Wednesday, marking 46 signatories to date.
      “We applaud Cyprus’ commitment to the Artemis Accords, which will enhance the country’s engagement with NASA and the international community,” said Free, who participated virtually. “By joining 45 other country signatories in this effort, Cyprus will help play a role in implementing the accords and exploration that is open, responsible, transparent, and peaceful for the benefit of all.”
      Nicodemos Damianou, Cyprus’ deputy minister of research, innovation, and digital policy, signed the Artemis Accords during a ceremony in Nicosia, Cyprus. James O’Brian, assistant secretary for European and Eurasian Affairs for the U.S. Department of State, also attended the event.
      “Today marks a significant milestone for Cyprus as we officially sign the Artemis Accords,” said Damianou. “As we embark on this exciting journey, we reaffirm our commitment to a safe and responsible space exploration, as well as our strong belief in the importance of international cooperation in ensuring space is utilized to the benefit of all humanity. Cyprus, an European Union member state, is capitalizing on its geostrategic location between three continents, and aspires to play an integral role in the international space community.”
      The signing with Cyprus comes on the heels of an Artemis Accords meeting in Milan earlier this month with dozens of signatory countries, including the United States.
      In 2020, NASA, in coordination with the U.S. Department of State and seven other initial signatory nations, established the Artemis Accords, which identified an early set of principles promoting the beneficial use of space for humanity. The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space. More countries are expected to sign in the coming days and weeks ahead.
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Kathryn Hambleton / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      kathryn.a.hambleton@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Oct 23, 2024 LocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) artemis accords View the full article
    • By NASA
      NASA logo Chile will sign the Artemis Accords during a ceremony at 3 p.m. EDT on Friday, Oct. 25, at NASA’s Headquarters in Washington.
      NASA Administrator Bill Nelson will host Aisén Etcheverry, Chile’s minister of science, technology, knowledge and innovation, and Juan Gabriel Valdés, ambassador of Chile to the United States, along with other officials from Chile and the U.S. Department of State.
      This event is in-person only. U.S. media and U.S. citizens representing international media organizations interested in attending must RSVP no later than 5 p.m. on Thursday, Oct. 24, to hq-media@mail.nasa.gov. NASA’s media accreditation policy is online.
      The signing ceremony will take place at the agency’s Glennan Assembly Room inside NASA Headquarters located at 300 E St. SW Washington.
      NASA, in coordination with the U.S. Department of State and seven other initial signatory nations, established the Artemis Accords in 2020. With many countries and private companies conducting missions and operations around the Moon, the Artemis Accords provide a common set of principles to enhance the governance of the civil exploration and use of outer space.
      The Artemis Accords reinforce the commitment by signatory nations to the Outer Space Treaty, the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior for civil space exploration and use.
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Meira Bernstein / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Oct 21, 2024 LocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) artemis accords View the full article
    • By NASA
      Representatives of the Artemis Accords signatories, including NASA leadership, met Oct. 14, 2024, for a principals meeting in Milan, during the International Astronautical Congress. With 42 of 45 signatories participating in the event, established and emerging spacefaring nations from every region of the world were represented. Credit: UAE Space Agency A record number of Artemis Accords signatories, including the United States, gathered at the International Astronautical Congress (IAC), the world’s largest global space conference taking place in Milan this week, furthering discussions on the safe and responsible use of space for the benefit of all.
      During the space conference, top space agency leaders and other government representatives met Oct. 14 to continue advancing implementation of the Artemis Accords, marking the most comprehensive engagement yet among Accords signatories.
      “As we send humans further into the solar system, collaboration and shared responsibility among nations are more critical than ever,” said NASA Deputy Administrator Pam Melroy. “The Artemis Accords provide a common sense set of principles to guide our work together, and our recent efforts to further their implementation is fostering a remarkable environment of trust and cooperation where all nations can contribute to and benefit from these endeavors.”
      The high-level meeting was co-chaired by NASA, CSA (Canadian Space Agency) and Italian Space Agency. With 42 of 45 signatories participating, established and emerging spacefaring nations from every region of the world were represented to help create a foundation for future space exploration for the Artemis Generation.
      Leaders from each nation reflected on how the group can contribute to and advance existing multilateral forums, further technical discussions to inform policy deliberations, and promote and encourage the participation of emerging space nations including the adoption of the Artemis Accords by additional countries. They agreed on recommendations on non-interference, interoperability, release of scientific data, long-term sustainability guidelines, and registration to advance implementing the Artemis Accords. A method of operations was established for the ongoing work of the signatories.
      “Promoting the participation of emerging space nations and encouraging the adoption of the Artemis Accords is crucial for the entire space,” said Teodoro Valente, president of the Italian Space Agency. “This is a matter of strategic importance in order to ensure the active and meaningful engagement of emerging space nations, both those already part of the Artemis Accords, and those poised to join in the future.”
      The conversation in Milan built on previous work during a workshop in Montreal in May 2024, where participantsdelved into the topics such as non-interference and interoperability.
      “Canada is pleased to be part of a growing group of countries committed to the safety and sustainability of outer space activities,” said Lisa Campbell, CSA president. “We are strong supporters of the Artemis Accords and are pleased to have hosted the most recent workshop that advanced work on key aspects of the Artemis Accords. We look forward to continuing this important work in the coming months and years.”
      In October 2023, signatories agreed on an initial set of mission data parameters to advance transparency and non-interference in conducting space activities. The data parameters identify relevant information about planned lunar surface missions including expected launch dates, the general nature of activities, and landing locations. Recent progress also included work on a database to house them. Several space agencies, including NASA, have submitted mission data to the United Nations Office of Outer Space Affairs for dissemination.
      Potential focus areas for the next year include further advancing sustainability, including debris management for both lunar orbit and the surface of the Moon.
      In 2020, the United States and seven other nations were the first to sign the Artemis Accords, which identified a set of principles promoting the beneficial use of space for humanity. The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space.
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Amber Jacobson / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Oct 18, 2024 LocationNASA Headquarters Related Terms
      artemis accords Opportunities For International Participants to Get Involved Science of Space Exploration View the full article
    • By NASA
      NASA’s Sarah Ryan is the Raptor engine lead for NASA’s HLS (Human Landing System) Program at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “With Artemis, we’re moving beyond what NASA did with Apollo and that’s really inspiring, especially to our younger workforce. We’re trying to push farther and it’s really going to drive a lot of technology development on the way there,” Ryan said. “This is a dream come true to be working on Artemis and solving problems so humanity can get back to the Moon then on to Mars.” NASA/Ken Hall A passion for puzzles, problem-solving, and propulsion led Sarah Ryan – a native of Columbus, Ohio – to her current position as Raptor engine lead for NASA’s HLS (Human Landing System) insight team at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The SpaceX Raptor rocket engine powers the company’s Starship and Super Heavy rocket. SpaceX will land astronauts on the Moon for NASA’s Artemis III and Artemis IV missions using the Starship HLS. NASA’s Artemis campaign aims to land the first woman, first person of color, and first international partner astronaut on the Moon.
      “My team looks at how the components of the Raptor engine work together. Then, we evaluate the performance of the full system to make sure it will accomplish the NASA HLS and Artemis missions,” Ryan said. “I get to see lots of pieces and parts of the puzzle and then look at the system as a whole to make sure it meets NASA’s needs.”
      While earning a bachelor’s degree from Case Western Reserve University in Cleveland with a dual major in aerospace engineering and mechanical engineering, Ryan had an internship at NASA Marshall, working on a payload for a science mission onboard the International Space Station.
      After working for a year on satellite design, Ryan returned to NASA Marshall. She noted that the opportunity to work in Marshall’s Engine Systems branch, to be involved with pushing technology forward, and to work on Artemis, really drew her back to NASA. Ryan later earned a master’s degree in aerospace systems from the University of Alabama in Huntsville.
      When not occupied with rocket engine development, Ryan likes to work on quieter hobbies in her free time, including reading, board games, crocheting, and solving all manner of puzzles – crosswords, number games, word games, and more. Her interest for solving puzzles carries over into her work on the Raptor rocket engines for HLS.
      “My favorite tasks are the ones that most resemble a puzzle, Ryan said. “If we’re investigating an issue and have a lot of information to assess, I love putting all the pieces together and figuring out what happened, why, and the path forward. I enjoy digging into the data and solving those puzzles.”
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system

      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...