Members Can Post Anonymously On This Site
S-MODE, ASIA-AQ, and the Role of ESPO in Complex Airborne Campaigns
-
Similar Topics
-
By NASA
Many team members at NASA’s Johnson Space Center in Houston may recognize Alicia Baker as the talented flutist in the Hispanic Employee Resource Group’s Mariachi Celestial band. Or, they may have worked with Baker in her role as a spacesuit project manager, testing NASA’s prototype spacesuits and preparing Johnson’s test chambers to evaluate vendor spacesuits.
Alicia Baker in a spacesuit test chamber at Johnson Space Center.NASA/David DeHoyos They might be surprised to learn that Baker juggled these responsibilities and more while also caring for her late husband, Chris, as he fought a terminal illness for 16 years.
“It was hard taking care of a loved one with cancer and working full-time,” Baker said. “My husband was also disabled from a brain tumor surgery, so I had to help him with reading, writing, walking, and remembering, while managing the household.”
Baker worked closely with her manager to coordinate schedules and get approval to telework so that she could work around her husband’s medical appointments and procedures. She also took medical leave when her husband entered hospice care in 2020. Baker said her manager’s flexibility “saved her job” and allowed her to continue providing for her family. She was even able to advance from project engineer to test director to project manager during this time period.
Alicia Baker and her husband Chris on their wedding day. Image courtesy of Alicia Baker Baker is one of the many Johnson employees who are or have been a caregiver for a loved one. These caregivers provide help to a person in need who often has a medical condition or injury that affects their daily functioning. Their needs may be temporary or long-term, and they could be physical, medical, financial, or domestic in nature.
Recognizing the challenging and critical role caregivers play in their families, the Johnson community provides a variety of resources to support team members through the Employee Assistance Program. Additionally, Johnson’s No Boundaries Employee Resource Group (NoBo) supports caregivers through its programs and initiatives.
Baker participates in both the support group and NoBo activities and takes comfort in sharing her and her husband’s story with others. “I would do it all over again,” she said of her caregiver role.
Now she looks forward to future missions to the Moon, when NASA astronauts will conduct spacewalks on the lunar surface while wearing new spacesuits. “Then I can say I helped make that possible!” Throughout all of her experiences, Baker has learned to never give up. “If you have a dream, keep fighting for it,” she said.
View the full article
-
By NASA
As any urban dweller who has lived through a heat wave knows, a shady tree can make all the difference. But what happens when there’s no shade available?
A recent study in Nature Communications used NASA satellite data to identify a major gap in global resilience to climate change: cities in the Global South have far less green space — and therefore less cooling capacity — than cities in the Global North. The terms Global North and Global South were used in the study to distinguish developed countries (mostly in the Northern Hemisphere) from developing nations (mostly in the Southern Hemisphere).
Cities tend to be hotter than nearby rural areas because of the urban heat island effect. Heat-trapping dark surfaces such as sidewalks, buildings, and roads absorb heat from the Sun’s rays, which raises the temperature of the city. Extreme heat poses serious health threats for urban residents, including dehydration, heat stroke, and even death. Though not a cure-all, greenery provides shade and releases moisture into the air, cooling the surroundings.
“Cities can strategically prioritize developing new green spaces in areas that have less green space,” said Christian Braneon, a climate scientist at NASA’s Goddard Institute for Space Studies in New York who was not affiliated with this study. “Satellite data can be really helpful for this.”
The Operational Land Imager (OLI) on the NASA and U.S. Geological Survey’s Landsat 8 satellite captured this natural color image of Sanaa, Yemen, on June 8, 2024. Sanaa, which has a hot, dry climate and little green space, had the second-lowest cooling capacity of 500 cities studied in a paper recently published in the journal Nature Communications. Wanmei Liang, NASA Earth Observatory An international team of researchers led by Yuxiang Li, a doctoral student at Nanjing University, analyzed the 500 largest cities in the world to compare their cooling capacities. They used data from the Landsat 8 satellite, jointly managed by NASA and the U.S. Geological Survey, to determine how effective green space was at cooling each city.
First, they calculated the average land surface temperature for the hottest month of 2018 for each city, as well as the average of the hottest months from 2017 to 2019. Next, the researchers used a metric called the Normalized Difference Vegetation Index (NDVI) to map how much green space each city had. The NDVI relies on the fact that healthy vegetation absorbs red light and reflects infrared light: the ratio of these wavelengths can show the density of healthy vegetation in a given satellite image.
Researchers found that cities in the Global South have just 70% of the greenery-related cooling capacity of cities in the Global North. The green spaces in an average Global South city cool the temperature by about 4.5 F (2.5 C). In an average Global North city, that cooling capacity is 6.5 F (3.6 C). This compounds an existing problem: cities in the South tend to be at lower latitudes (that is, nearer to the Equator), which are predicted to see more heat extremes in the coming years.
“It’s already clear that Global South countries will be impacted by heat waves, rising temperatures, and climatic extremes more than their Global North counterparts,” said Chi Xu, a professor of ecology at Nanjing University and a co-author of the study. The Global South has less capacity to adapt to heat because air conditioning is less common and power outages are more frequent.
Why do cities in the Global South struggle to stay cool? Cities in the Global South tend to have less green space than cities in the Global North. This mirrors studies of the disparities within cities, sometimes referred to as the “luxury effect”: wealthier neighborhoods tend to have more green space than poorer neighborhoods. “Wealthier cities also have more urban green spaces than the poorest cities,” Chi said.
It’s unlikely that urban planners can close the gap between the study’s worst-performing city (Mogadishu, Somalia) and the best-performing one (Charlotte, North Carolina).
Mogadishu is a dense city with a dry climate that limits vegetation growth. Still, there’s a lot that each city can learn from its neighbors. Within a given region, the researchers identified the city with the greatest cooling capacity and used that as a goal. They calculated the difference between the best-performing city in the region and every city nearby to get the potential additional cooling capacity. They found that cities’ average cooling capacity could be increased substantially — to as much as 18 F (10 C) — by systematically increasing green space quantity and quality.
“How you utilize green space is really going to vary depending on the climate and the urban environment you’re focused on,” said Braneon, whose research at NASA focuses on climate change and urban planning.
Greener cities in the U.S. and Canada have lower population densities. However, fewer people per square mile isn’t necessarily good for the environment: residents in low-density cities rely more on cars, and their houses tend to be bigger and less efficient. Braneon noted that there’s a suite of solutions beyond just planting trees or designating parks: Cities can increase cooling capacity by creating water bodies, seeding green roofs, and painting roofs or pavement lighter colors to reflect more light.
With a global study like this, urban planners can compare strategies for cities within the same region or with similar densities. “For newly urbanized areas that aren’t completely built out, there’s a lot of room to still change the design,” Braneon said.
By Madeleine Gregory
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Nov 26, 2024 Editor Rob Garner Contact Rob Garner rob.garner@nasa.gov Location Goddard Space Flight Center Related Terms
Climate Change Earth Goddard Institute for Space Studies Goddard Space Flight Center Landsat Landsat 8 / LDCM (Landsat Data Continuity Mission) View the full article
-
By Space Force
Under Secretary of the Air Force Melissa Dalton visited Vandenberg Space Force Base, Nov. 14, to meet with Guardians and Airmen and gain a better understanding of the base’s diverse missions.
View the full article
-
By NASA
Linda Spuler, emergency manager at NASA’s Johnson Space Center in Houston, believes that everyone has a story. “Our stories highlight what we have in common, but they also make us each unique,” she said.
Spuler has worked at Johnson for over 32 years, spending most of her career in Center Operations. Her story has involved helping to coordinate emergency response teams at Johnson in preparation for natural disasters. “Since Johnson is situated on the coast, a good portion of my job revolves around planning for hurricanes,” she said.
Spuler has dealt with natural disasters at Johnson from Tropical Storm Allison in 2001 to Hurricane Beryl in 2024, but none had a greater personal impact than Hurricane Ike, which wrought havoc in Texas in September 2008. “Participating in the response to Hurricane Ike was a proud moment for me,” she said. “We worked from sunup to sundown restoring the center. Civil servants and contractors from various organizations came together, and for those two weeks, our differences didn’t matter.”
NASA’s Johnson Space Center Emergency Manager Linda Spuler, front, leads an emergency exercise for first responders. Image courtesy of Linda Spuler Spuler believes that NASA’s mission unites everyone – team members, astronauts, and support teams alike. “Remembering why we are all here energizes us and gets us excited about working for NASA,” she said.
Spuler’s journey at NASA began as a dream not originally her own. Her path was shaped by the aspirations of her mother, who was born on an Ojibwe (Chippewa) reservation in Ashland, Wisconsin.
“Although my grandmother lived in Chicago, she returned to the reservation to have her children. My mom is still a voting member of the Bad River Tribe,” said Spuler.
“My mom was studying aerospace engineering at the University of Chicago when she met my dad, a fun-loving electrical engineering major who traced his lineage back to Davy Crockett on his father’s side and Ireland on his mother’s,” said Spuler. “She chose to abandon aerospace to marry my dad, whose degree and love for space brought him to work at Johnson.”
Linda Spuler accepts the Thirty-Year Service Award from Johnson Director Vanessa Wyche to commemorate her service at NASA. NASA/David DeHoyos Spuler said her mother was very proud that her father worked for NASA. “She was very happy when I chose to work here, too,” she said. “She taught me the value and reward of working hard. My mom is proud of her heritage but she is cautious of sharing her story.”
Linda Spuler at an Easter egg hunt at NASA’s Johnson Space Center in 1971. Image courtesy of Linda Spuler Spuler enjoys learning about Ojibwe culture from her mother. “Every Thanksgiving, we enjoy wild rice from the Bad River sent from the “aunties” that still live on the reservation,” Spuler shared. She also represents her culture and pride through her work, honoring the legacy of those who came before her and sharing the story of her mother, her father, and now herself.
Linda Spuler receives the 2019 Furlough Heroes Awards alongside her son, Logan. NASA/James Blair “I celebrate the unique story that makes me part Ojibwe, part Polish, part Texas revolutionary, part Irish, part English, and all me,” she said.
View the full article
-
By NASA
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 5 min read
Updates on NASA Field Campaigns
Snippets from The Earth Observer’s Editor’s Corner
PACE-PAX
PACE–PAX had as its primary objective to gather data to validate measurements from NASA’s PACE mission. A secondary objective was validation of observations by the European Space Agency’s recently launched Earth Cloud, Aerosol, and Radiation Explorer (EarthCARE) mission. The operations spanned Southern and Central California and nearby coastal regions, logging 81 flight hours for the NASA ER-2, which operated out of NASA’s Armstrong Flight Research Center (AFRC) in Edwards, CA, and 60 hours for the Twin Otter aircraft, which was operated by the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) at the Naval Postgraduate School (Monterey, CA) out of Marina Municipal Airport in Marina, CA – see Photo.
Photo. The Twin Otter aircraft operated out of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) during the Plankton, Aerosol, Cloud, ocean Ecosystem–Postlaunch Airborne eXperiment (PACE–PAX) campaign. The image shows the Twin Otter aircraft missing the approach at Marina Airport to check instrument performance on the aircraft against identical instrumentation on an airport control tower. Photo credit: NASA NASA’s ER-2 aircraft flies at an altitude of approximately 20 km, well above the troposphere. PACE–PAX researchers used the unique high-altitude vantage point to make observations of the atmosphere, ocean, and land surface in a similar manner to that of PACE. In so doing, they can verify the accuracy of data gathered by the satellite in orbit. Meanwhile, the Twin Otter flew at a much lower altitude in the atmosphere (~3 km). The instrumentation onboard the Twin Otter was used to sample and measure cloud droplet size, aerosol size, and the amount of light scattered or absorbed by the particles. These aircraft observations are the same atmospheric properties that PACE observes from its broader vantage point in polar orbit. In addition to the PACE and aircraft observations, the R/V Shearwater operated 15 day trips out of Santa Barbara, CA, gathering additional surface-based observations along with other vessels and floats.
Field campaigns, such as PACE–PAX, are designed to collect measurements at different scales and conditions for comparison to satellite observations. When it comes to doing this successfully, timing is everything. PACE–PAX observations were carefully coordinated so that the two aircraft were in flight and taking observations at the same time, so observations were being obtained at the surface (e.g., on the ship) as well as the satellite passing overhead. This takes a tremendous amount of effort on the part of the organizers.
BlueFlux
BlueFlux was set up to study the wetland ecosystems of South Florida. Wetland ecosystems represent the ever-changing line between land and sea, and are exceptionally vulnerable to climate disturbances, such as sea level rise and tropical cyclones. As these threats intensify, wetland ecology – and its role as a critical sink of CO2 – faces an uncertain future.
BlueFlux observations will contribute to the development of a new, remote-sensing data product called “Daily Flux Predictions for South Florida,” which will help research teams led by Ben Poulter [GSFC] explain and quantify the changing relationship between wetlands and atmospheric greenhouse gas concentrations (GHG). The goal is to refine global GHG budget analyses and provide regional stakeholders with information to evaluate how Florida’s wetlands are responding to natural and anthropogenic pressures in real time.
The “Daily Flux Predictions for South Florida” product will use retrievals of surface spectral reflectance captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA’s Aqua and Terra satellites to estimate the rate at which various gasses are exchanged between Earth’s surface and the atmosphere. Such flux measurements in coastal wetlands are historically limited on account of the relative inaccessibility of these ecosystems. To contribute to a more robust understanding of how Florida’s coastal ecology fits into the carbon cycle, BlueFlux conducted a series of airborne fieldwork deployments out of the Miami Homestead Air Reserve Base and the Miami Executive Airport in Miami-Dade County, which are adjacent to the eastern border of the Everglades National Park. The full study region – broadly referred to as South Florida – is narrowly defined by the wetland ecosystems that extend from Lake Okeechobee and its Northern estuaries to the saltwater marshland and mangrove forests along the state’s southernmost shore.
Flux measurements were made along each flight track using a payload known as the CARbon Airborne Flux Experiment (CARAFE) flying at between about 90 m and 3000 m. The researchers configured airborne observations, along with additional ground-based flux measurements, to match the spatial and temporal resolution of spectra collected by MODIS sensors, which produce surface reflectance retrievals at a 500 m daily resolution. Mirroring the scale of MODIS observations was necessary to both train the flux product’s underlying machine-learning algorithms and validate the accuracy of predictions made using satellite data alone. Data collected during BlueFlux fieldwork campaigns is available to the general public through NASA’s Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The “Daily Flux Predictions for South Florida” data product will also be accessible through NASA’s ORNL DAAC by early 2025.
Steve Platnick
EOS Senior Project Scientist
Share
Details
Last Updated Nov 14, 2024 Related Terms
Earth Science View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.