Jump to content

NASA Selects Crew for 45-Day Simulated Mars Mission in Houston


Recommended Posts

  • Publishers
Posted
picture2.png?w=624
NASA has selected four new crew members to participate in the final simulated mission to Mars in 2024 inside the agency’s Human Exploration Research Analog. From left are Kristen Magas, Anderson Wilder, Obaid Alsuwaidi, and Tiffany Snyder.
Credit: C7M4 Crew

NASA selected a crew of four research volunteers to participate in its last simulated mission to Mars in 2024 within a habitat at the agency’s Johnson Space Center in Houston.

Obaid Alsuwaidi, Kristen Magas, Tiffany Snyder, and Anderson Wilder will step into the 650-square-foot HERA (Human Exploration Research Analog) facility on Friday, Nov. 1. Once inside, the team will live and work like astronauts for 45 days. The crew will exit the facility on Monday, Dec. 16, after simulating their return to Earth. Jordan Hundley and Robert Wilson also were named as alternate crew members.

Scientists use HERA studies to examine how crew members adapt to isolation, confinement, and remote conditions before NASA sends astronauts on deep space missions to the Moon, Mars, and beyond. The studies provide data about human health and performance in an enclosed environment over time with crews facing different challenges and tasks.

The four volunteers will carry out scientific research and operational tasks throughout their simulated mission, including raising shrimp, growing vegetables, and “walking” on the surface of Mars using virtual reality. They will also experience communication delays lasting up to five minutes as they “near” Mars, allowing researchers to see how crews may respond to the type of delays astronauts will encounter in deep space. Astronauts traveling to the Red Planet may encounter one-way communication delays lasting as long as 20 minutes.

As with the previous HERA missions, crew members will conduct 18 human health studies during the mission through NASA’s Human Research Program. Collectively, the work helps scientists understand how a spaceflight-like environment contributes to the physiological, behavioral, and psychological health of crew members. Insights gleaned from the studies will allow researchers to develop and test strategies aimed at helping astronauts overcome obstacles on deep space missions.

Primary Crew

Obaid Alsuwaidi

obaid.pngObaid Alsuwaidi serves as captain engineer for the United Arab Emirates’ (UAE) Ministry of Defense. In this role, he provides guidance in civil and marine engineering and addresses challenges facing the organization. Previously, Alsuwaidi worked as a project manager for the defense ministry, helping to streamline productivity, establish high standards of professionalism, and build a team of experts to serve the UAE’s needs.

Alsuwaidi earned a bachelor’s degree in Engineering from Western Sydney University in Australia, followed by a master’s degree in Civil and Environmental Engineering from George Washington University in Washington.

In his free time, Alsuwaidi enjoys horseback riding, swimming, and running.

Kristen Magas

herac7m4-magas.pngKristen Magas is an educator and engineer, currently teaching at Tri-County Regional Vocational Technical High School in Franklin, Massachusetts. She also mentors students involved in a NASA design and prototyping program, helping them develop and fabricate products to improve life in space on both International Space Station and Artemis missions. Magas was a finalist for the 2025 Massachusetts State Teacher of the Year.

Magas received bachelor’s and master’s degrees in Civil and Environmental Engineering from Cornell University in Ithaca, New York. She also holds a master’s degree in Vocational Education from Westfield State University in Massachusetts. She has worked as a community college professor as well as a design engineer in municipal water and wastewater treatment.

In her spare time, Magas enjoys coaching robotics and track and field, hiking, biking, and staying connected with her community. She has two children and resides in North Attleboro, Massachusetts with her husband of 25 years.

Tiffany Snyder 

snyder-1.pngTiffany Snyder is a supervisor for the Cybersecurity Mission Integration Office at NASA, helping to ensure agency missions are shielded against cybersecurity threats. She has more than 20 years of information technology and cybersecurity experience, working with the Air National Guard and as a special agent with the Defense Counterintelligence Security Agency. She joined NASA in 2018 as an IT specialist, and later served as the deputy chief information security officer at NASA’s Kennedy Space Center in Florida, providing cybersecurity oversight.

Snyder holds a bachelor’s degree in Earth Science from the State University of New York at Buffalo and a master’s degree in Digital Forensics from the University of Central Florida in Orlando.

In her spare time, she enjoys playing with her dogs — Artemis and Apollo, gardening, running, and visiting the beach with her family.

Anderson Wilder

headshot-wilder.pngAnderson Wilder is a Florida Institute of Technology graduate student working on his doctorate in Psychology. His research focuses on team resiliency and human-machine interactions. He also works in the campus’s neuroscience lab, investigating how spaceflight contributes to neurobehavioral changes in astronauts.

Wilder previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah. There, he performed studies related to crew social dynamics, plant growth, and geology.

Wilder received his bachelor’s degrees in Linguistics and in Psychology from Ohio State University in Columbus. He also holds master’s degrees in Space Studies from International Space University in Strasbourg, France, and in Aviation Human Factors from the Florida Institute of Technology. He is completing another master’s degree in Cognitive Experimental Psychology at Cleveland State University in Ohio.

Outside of school, Wilder works as a parabolic flight coach, teaching people how to fly in reduced gravity environments. He also enjoys chess, reading, video games, skydiving, and scuba diving. On a recent dive, he explored a submerged section of the Great Wall of China.

Alternate Crew

Jordan Hundley

headshot-hundley.pngJordan Hundley is a senior consultant at a professional services firm, offering federal agencies technical and programmatic support. Prior to his current position, he focused on U.S. Department of Defense clients, performing model-based system engineering and serving as a subject matter expert for related operations.

Hundley was commissioned into the U.S. Air Force through the Reserve Officers’ Training Corps program at the University of Central Florida in Orlando. While on active duty, he served as an intercontinental ballistic missile operations officer. He later joined the U.S. Air Force Reserve. Currently, he is a space operations officer with experience in space battle management and electromagnetic warfare.

Hundley earned a master’s degree in Engineering Management from Embry-Riddle Aeronautical University in Daytona Beach, Florida. He is currently pursuing a second master’s degree in Systems Engineering at the university.

Hundley holds a private pilot license and is a certified rescue diver. In his spare time, he enjoys hiking and camping, researching theology, and learning musical instruments.

Robert Wilson

wilson-1.pngRobert Wilson is a senior researcher and project manager at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. He leads work enhancing human-machine collaborations, developing human prediction models, and integrating that technology into virtual reality and robotic systems designed to operate in isolated, constrained, and extreme environments. His human-machine teaming expertise also extends into responsible artificial intelligence development. He recently participated in a United Nations Roundtable discussion about artificial intelligence in security and defense.

Wilson received his bachelor’s and master’s degrees in Biomedical Engineering from Purdue University in 2013 and 2015, respectively. He earned his doctorate in Mechanical Engineering from the University of Colorado Boulder in 2020.

Outside of work, Wilson is an avid outdoors enthusiast. He enjoys scuba diving, winter camping, backcountry skiing, and hiking through the woods or mountains throughout the year. At home, he also likes to tinker in computer networking and self-hosted systems.

____

NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy and mission-ready as human space exploration expands to the Moon, Mars, and beyond.

For more information about human research at NASA, visit:

https://www.nasa.gov/hrp

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Marshall will hold a candle-lighting ceremony and wreath placement at 9:30 a.m. CST. The ceremony will include remarks from Larry Leopard, associate director, and Bill Hill, director of Marshall’s Office of Safety and Mission Assurance. NASA/ Krisdon Manecke NASA’s Marshall Space Flight Center in Huntsville, Alabama, invites media to attend its observance of the agency’s Day of Remembrance at 9:30 a.m. CST Thursday, Jan. 23, in the lobby of Building 4221.
      Day of Remembrance honors the members of the NASA family who lost their lives while furthering the cause of exploration and discovery. 
      The event will include brief remarks from NASA Marshall leaders, followed by a candle lighting and moment of silence for the crews of Apollo 1 and space shuttles Challenger and Columbia. Speakers will include:
      Larry Leopard, associate director, technical. Bill Hill, director, Office of Safety and Mission Assurance. Media interested in attending the event must confirm by 12 p.m. Wednesday, Jan. 22, with Molly Porter at: molly.a.porter@nasa.gov.
      The agency will also pay tribute to its fallen astronauts with special online content, updated on NASA’s Day of Remembrance, at: 
      https://www.nasa.gov/dor/
      Molly Porter
      Marshall Space Flight Center, Huntsville, Ala.
      256-424-5158
      molly.a.porter@nasa.gov
      Share
      Details
      Last Updated Jan 21, 2025 EditorBeth RidgewayContactMolly Portermolly.a.porter@nasa.govLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
      Article 5 days ago 4 min read NASA Instrument on Firefly’s Blue Ghost Lander to Study Lunar Interior
      Article 2 weeks ago 3 min read NASA to Test Solution for Radiation-Tolerant Computing in Space
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      On Jan. 19, 1965, Gemini 2 successfully completed the second of two uncrewed test flights of the spacecraft and its Titan II booster, clearing the way for the first crewed mission. The 18-minute suborbital mission achieved the primary goals of flight qualifying the Gemini spacecraft, especially its heat shield during a stressful reentry. Recovery forces retrieved the capsule following its splashdown, allowing engineers to evaluate how its systems fared during the flight. The success of Gemini 2 enabled the first crewed mission to fly two months later, beginning a series of 10 flights over the following 20 months. The astronauts who flew these missions demonstrated the rendezvous and docking techniques necessary to implement the Lunar Orbit Rendezvous method NASA chose for the Moon landing mission. They also proved that astronauts could work outside their spacecraft during spacewalks and that spacecraft and astronauts could function for at least eight days, the minimum time for a roundtrip lunar mission. The Gemini program proved critical to fulfill President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. 
      Cutaway diagram of the Gemini spacecraft. Workers at Launch Pad 19 lift Gemini 2 to mate it with its Titan II rocket. At Pad 19, engineers verify the flight simulators inside Gemini 2. Following the success of Gemini 1 in April 1964, NASA had hoped to fly the second mission before the end of the year and the first crewed mission by January 1965. The two stages of the Titan II rocket arrived at Cape Kennedy from the Martin Marietta factory in Baltimore on July 11, and workers erected it on Launch Pad 19 five days later. A lightning strike at the pad on Aug. 17 invalidated all previous testing and required replacement of some pad equipment. A series of three hurricanes in August and September forced workers to partially or totally unstack the vehicle before stacking it for the final time on Sept. 14. The Gemini 2 spacecraft arrived at Cape Kennedy from its builder, the McDonnell Company in St. Louis, on Sept. 21, and workers hoisted it to the top of the Titan II on Oct. 18. Technical issues delayed the spacecraft’s physical mating to the rocket until Nov. 5. These accumulated delays pushed the launch date back to Dec. 9. 

      The launch abort on Dec. 9, 1964. Liftoff of Gemini 2 from Launch Pad 19 on Jan. 19, 1965. Engineers in the blockhouse monitor the progress of the Titan II during the ascent. Fueling of the rocket began late on Dec. 8, and following three brief holds in the countdown, the Titan’s two first stage engines ignited at 11:41 a.m. EST on Dec. 9. and promptly shut down one second later. Engineers later determined that a cracked valve resulted in loss of hydraulic pressure, causing the malfunction detection system to switch to its backup mode, forcing a shutdown of the engines. Repairs meant a delay into the new year. On Jan. 19, 1965, following a mostly smooth countdown, Gemini 2 lifted off from Pad 19 at 9:04 a.m. EST. 

      The Mission Control Center (MCC) at NASA’s Kennedy Space Center in Florida. In the MCC, astronauts Eugene Cernan, left, Walter Schirra, Gordon Cooper, Donald “Deke” Slayton, and Virgil “Gus” Grissom monitor the Gemini 2 flight. In the Gemini Mission Control Center at NASA’s Kennedy Space Center in Florida, Flight Director Christopher C. Kraft led a team of flight controllers that monitored all aspects of the flight. At the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, a team of controllers led by Flight Director John Hodge passively monitored the flight from the newly built Mission Control Center. They would act as observers for this flight and Gemini 3, the first crewed mission, before taking over full control with Gemini IV, and control all subsequent American human spaceflights. The Titan rocket’s two stages placed Gemini 2 into a suborbital trajectory, reaching a maximum altitude of 98.9 miles, with the vehicle attaining a maximum velocity of 16,709 miles per hour. Within a minute after separating from the Titan’s second stage, Gemini 2 executed a maneuver to orient its heat shield in the direction of flight to prepare for reentry. Flight simulators installed where the astronauts normally would sit controlled the maneuvers. About seven minutes after liftoff, Gemini 2 jettisoned its equipment section, followed by firing of the retrorockets, and then separation of the retrorocket section, exposing the spacecraft’s heat shield. 

      View from a camera mounted on a cockpit window during Gemini 2’s reentry. View from the cockpit window during Gemini 2’s descent on its parachute. Gemini 2 then began its reentry, the heat shield protecting the spacecraft from the 2,000-degree heat generated by friction with the Earth’s upper atmosphere. A pilot parachute pulled away the rendezvous and recovery section. At 10,000 feet, the main parachute deployed, and Gemini 2 descended to a splashdown 2,127 miles from its launch pad, after a flight of 18 minutes 16 seconds. The splashdown took place in the Atlantic Ocean about 800 miles east of San Juan, Puerto Rico, and 25 miles from the prime recovery ship, the U.S.S. Lake Champlain (CVS-39). 

      A U.S. Navy helicopter hovers over the Gemini 2 capsule following its splashdown as a diver jumps into the water. Sailors hoist Gemini 2 aboard the U.S.S. Lake Champlain. U.S. Navy helicopters delivered divers to the splashdown area, who installed a flotation collar around the spacecraft. The Lake Champlain pulled alongside, and sailors hoisted the capsule onto the carrier, securing it on deck one hour forty minutes after liftoff. The spacecraft appeared to be in good condition and arrived back at Cape Kennedy on Jan. 22 for a thorough inspection. As an added bonus, sailors recovered the rendezvous and recovery section. Astronaut Virgil “Gus” Grissom, whom along with John Young NASA had selected to fly the first crewed Gemini mission, said after the splashdown, “We now see the road clear to our flight, and we’re looking forward to it.” Flight Director Kraft called it “very successful.” Gemini Program Manager Charles Matthews predicted the first crewed mission could occur within three months. Gemini 3 actually launched on March 23. 
      Enjoy this NASA video of the Gemini 2 mission. 
      Postscript 
      The Gemini-B capsule and a Manned Orbiting Laboratory (MOL) mockup atop a Titan-IIIC rocket in 1966. The flown Gemini-B capsule on display at the Cape Canaveral Space Force Museum in Florida. Former MOL and NASA astronaut Robert Crippen stands beside the only flown Gemini-B capsule – note the hatch in the heat shield at top. Gemini 2 not only cleared the way for the first crewed Gemini mission and the rest of the program, it also took on a second life as a test vehicle for the U.S. Air Force’s Manned Orbiting Laboratory (MOL). The Air Force modified the spacecraft, including cutting a hatch through its heat shield, renamed it Gemini-B, and launched it on Nov. 3, 1966, atop a Titan IIIC rocket. The test flight successfully demonstrated the hatch in the heat shield design during the capsule’s reentry after a 33-minute suborbital flight. Recovery forces retrieved the Gemini-B capsule in the South Atlantic Ocean and returned it to the Air Force for postflight inspection. This marked the only repeat flight of an American spacecraft intended for human spaceflight until the advent of the space shuttle. Visitors can view Gemini 2/Gemini-B on display at the Cape Canaveral Space Force Museum.  
      View the full article
    • By NASA
      NASA’s Jet Propulsion Laboratory used radar data taken by ESA’s Sentinel-1A satellite before and after the 2015 eruption of the Calbuco volcano in Chile to create this inter-ferogram showing land deformation. The color bands west of the volcano indicate land sinking. NISAR will produce similar images.ESA/NASA/JPL-Caltech A SAR image — like ones NISAR will produce — shows land cover on Mount Okmok on Alaska’s Umnak Island . Created with data taken in August 2011 by NASA’s UAVSAR instrument, it is an example of polarimetry, which measures return waves’ orientation relative to that of transmitted signals.NASA/JPL-Caltech Data from NASA’s Magellan spacecraft, which launched in 1989, was used to create this image of Crater Isabella, a 108-mile-wide (175-kilometer-wide) impact crater on Venus’ surface. NISAR will use the same basic SAR principles to measure properties and characteristics of Earth’s solid surfaces.NASA/JPL-Caltech Set to launch within a few months, NISAR will use a technique called synthetic aperture radar to produce incredibly detailed maps of surface change on our planet.
      When NASA and the Indian Space Research Organization’s (ISRO) new Earth satellite NISAR (NASA-ISRO Synthetic Aperture Radar) launches in coming months, it will capture images of Earth’s surface so detailed they will show how much small plots of land and ice are moving, down to fractions of an inch. Imaging nearly all of Earth’s solid surfaces twice every 12 days, it will see the flex of Earth’s crust before and after natural disasters such as earthquakes; it will monitor the motion of glaciers and ice sheets; and it will track ecosystem changes, including forest growth and deforestation.  
      The mission’s extraordinary capabilities come from the technique noted in its name: synthetic aperture radar, or SAR. Pioneered by NASA for use in space, SAR combines multiple measurements, taken as a radar flies overhead, to sharpen the scene below. It works like conventional radar, which uses microwaves to detect distant surfaces and objects, but steps up the data processing to reveal properties and characteristics at high resolution.
      To get such detail without SAR, radar satellites would need antennas too enormous to launch, much less operate. At 39 feet (12 meters) wide when deployed, NISAR’s radar antenna reflector is as wide as a city bus is long. Yet it would have to be 12 miles (19 kilometers) in diameter for the mission’s L-band instrument, using traditional radar techniques, to image pixels of Earth down to 30 feet (10 meters) across.
      Synthetic aperture radar “allows us to refine things very accurately,” said Charles Elachi, who led NASA spaceborne SAR missions before serving as director of NASA’s Jet Propulsion Laboratory in Southern California from 2001 to 2016. “The NISAR mission will open a whole new realm to learn about our planet as a dynamic system.”
      Data from NASA’s Magellan spacecraft, which launched in 1989, was used to create this image of Crater Isabella, a 108-mile-wide (175-kilometer-wide) impact crater on Venus’ surface. NISAR will use the same basic SAR principles to measure properties and characteristics of Earth’s solid surfaces.NASA/JPL-Caltech How SAR Works
      Elachi arrived at JPL in 1971 after graduating from Caltech, joining a group of engineers developing a radar to study Venus’ surface. Then, as now, radar’s allure was simple: It could collect measurements day and night and see through clouds. The team’s work led to the Magellan mission to Venus in 1989 and several NASA space shuttle radar missions.
      An orbiting radar operates on the same principles as one tracking planes at an airport. The spaceborne antenna emits microwave pulses toward Earth. When the pulses hit something — a volcanic cone, for example — they scatter. The antenna receives those signals that echo back to the instrument, which measures their strength, change in frequency, how long they took to return, and if they bounced off of multiple surfaces, such as buildings.
      This information can help detect the presence of an object or surface, its distance away, and its speed, but the resolution is too low to generate a clear picture. First conceived at Goodyear Aircraft Corp. in 1952, SAR addresses that issue.
      “It’s a technique to create high-resolution images from a low-resolution system,” said Paul Rosen, NISAR’s project scientist at JPL.
      As the radar travels, its antenna continuously transmits microwaves and receives echoes from the surface. Because the instrument is moving relative to Earth, there are slight changes in frequency in the return signals. Called the Doppler shift, it’s the same effect that causes a siren’s pitch to rise as a fire engine approaches then fall as it departs.
      Computer processing of those signals is like a camera lens redirecting and focusing light to produce a sharp photograph. With SAR, the spacecraft’s path forms the “lens,” and the processing adjusts for the Doppler shifts, allowing the echoes to be aggregated into a single, focused image.
      Using SAR
      One type of SAR-based visualization is an interferogram, a composite of two images taken at separate times that reveals the differences by measuring the change in the delay of echoes. Though they may look like modern art to the untrained eye, the multicolor concentric bands of interferograms show how far land surfaces have moved: The closer the bands, the greater the motion. Seismologists use these visualizations to measure land deformation from earthquakes.
      Another type of SAR analysis, called polarimetry, measures the vertical or horizontal orientation of return waves relative to that of transmitted signals. Waves bouncing off linear structures like buildings tend to return in the same orientation, while those bouncing off irregular features, like tree canopies, return in another orientation. By mapping the differences and the strength of the return signals, researchers can identify an area’s land cover, which is useful for studying deforestation and flooding.
      Such analyses are examples of ways NISAR will help researchers better understand processes that affect billions of lives.
      “This mission packs in a wide range of science toward a common goal of studying our changing planet and the impacts of natural hazards,” said Deepak Putrevu, co-lead of the ISRO science team at the Space Applications Centre in Ahmedabad, India.
      Learn more about NISAR at:
      https://nisar.jpl.nasa.gov
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2025-006
      Share
      Details
      Last Updated Jan 21, 2025 Related Terms
      NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Earth Science Earth Science Division Jet Propulsion Laboratory Explore More
      4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards 
      Article 4 days ago 6 min read NASA International Space Apps Challenge Announces 2024 Global Winners
      Article 5 days ago 3 min read NASA Scientists Find New Human-Caused Shifts in Global Water Cycle
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Credit: NASA With Finland’s signing of the Artemis Accords on Tuesday, NASA celebrates the 53rd nation committing to the safe and responsible exploration of space that benefits humanity. The signing ceremony took place on the margins of the Aalto University’s Winter Satellite Workshop 2025 in Espoo, Finland.
      “Today, Finland is joining a community of nations that want to share scientific data freely, operate safely, and preserve the space environment for the Artemis Generation,” said NASA Associate Administrator Jim Free, who provided pre-recorded virtual remarks for the ceremony. “By signing the Artemis Accords, Finland builds on its rich history in space, excelling in science, navigation, and Earth observation. Forging strong partnerships between our nations and among the international community is critical for advancing our shared space exploration goals.”
      Wille Rydman, Finland’s minister of economic affairs, signed the Artemis Accords in front of an audience of Finnish space officials and workshop attendees.
      “Finland has been part of the space exploration community for decades with innovations and technology produced by Finnish companies and research institutions,” said Rydman. “The signing of the Artemis Accords is in line with Finland’s newly updated space strategy that highlights the importance of international cooperation and of strengthening partnerships with the Unites States and other allies. We aim for this cooperation to open great opportunities for the Finnish space sector in the new era of space exploration and in the Artemis program.”
      NASA and Finland have a long history of collaboration, and most recently, Finland is contributing to the upcoming Intuitive Machines-2 delivery to the Moon under NASA’s Artemis campaign and CLPS (Commercial Lunar Payload Services) initiative. Intuitive Machines will deliver a lunar LTE/4G communications system developed by Finnish company, Nokia. Its U.S. subsidiary, Nokia of America, was selected as part of NASA’s Tipping Point opportunity through the agency’s Space Technology Mission Directorate, to advance a lunar surface communications system that could help humans and robots explore more of the Moon than ever before.
      The Finnish Meteorological Institute also provided the pressure and humidity measurement instruments for the Environmental Monitoring Station instrument suite aboard the Curiosity Rover, operating on Mars now.
      In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, a set of principles promoting the beneficial use of space for humanity.
      The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Kathryn Hambleton / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      kathryn.a.hambleton@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Jan 21, 2025 LocationNASA Headquarters Related Terms
      artemis accords NASA Headquarters Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A test rover with shape memory alloy spring tires traverses rocky, Martian-simulated terrain.Credit: NASA The mystique of Mars has been studied for centuries. The fourth planet from the Sun is reminiscent of a rich, red desert and features a rugged surface challenging to traverse. While several robotic missions have landed on Mars, NASA has only explored 1% of its surface. Ahead of future human and robotic missions to the Red Planet, NASA recently completed rigorous rover testing on Martian-simulated terrain, featuring revolutionary shape memory alloy spring tire technology developed at the agency’s Glenn Research Center in Cleveland in partnership with Goodyear Tire & Rubber.

      Rovers — mobile robots that explore lunar or planetary surfaces — must be equipped with adequate tires for the environments they’re exploring. As Mars has an uneven, rocky surface, durable tires are essential for mobility. Shape memory alloy (SMA) spring tires help make that possible.

      Shape memory alloys are metals that can return to their original shape after being bent, stretched, heated, and cooled. NASA has used them for decades, but applying this technology to tires is a fairly new concept.
      “We at Glenn are one of the world leaders in bringing the science and understanding of how you change the alloy compositions, how you change the processing of the material, and how you model these systems in a way that we can control and stabilize the behaviors so that they can actually be utilized in real applications,” said Dr. Santo Padula II, materials research engineer at NASA Glenn.
      Researchers from NASA’s Glenn Research Center and Airbus Defence & Space pose with a test rover on Martian-simulated terrain.Credit: NASA Padula and his team have tested several applications for SMAs, but his epiphany of the possibilities for tires came about because of a chance encounter.
      While leaving a meeting, Padula encountered Colin Creager, a mechanical engineer at NASA Glenn whom he hadn’t seen in years. Creager used the opportunity to tell him about the work he was doing in the NASA Glenn Simulated Lunar Operations (SLOPE) Laboratory, which can simulate the surfaces of the Moon and Mars to help scientists test rover performance. He brought Padula to the lab, where Padula immediately took note of the spring tires. At the time, they were made of steel.
      Padula remarked, “The minute I saw the tire, I said, aren’t you having problems with those plasticizing?” Plasticizing refers to a metal undergoing deformation that isn’t reversible and can lead to damage or failure of the component.
      “Colin told me, ‘That’s the only problem we can’t solve.’” Padula continued, “I said, I have your solution. I’m developing a new alloy that will solve that. And that’s how SMA tires started.”
      From there, Padula, Creager, and their teams joined forces to improve NASA’s existing spring tires with a game-changing material: nickel-titanium SMAs. The metal can accommodate deformation despite extreme stress, permitting the tires to return to their original shape even with rigorous impact, which is not possible for spring tires made with conventional metal.

      Credit: NASA Since then, research has been abundant, and in the fall of 2024, teams from NASA Glenn traveled to Airbus Defence and Space in Stevenage, United Kingdom, to test NASA’s innovative SMA spring tires. Testing took place at the Airbus Mars Yard — an enclosed facility created to simulate the harsh conditions of Martian terrain.
      “We went out there with the team, we brought our motion tracking system and did different tests uphill and back downhill,” Creager said. “We conducted a lot of cross slope tests over rocks and sand where the focus was on understanding stability because this was something we had never tested before.”
      During the tests, researchers monitored rovers as the wheels went over rocks, paying close attention to how much the crowns of the tires shifted, any damage, and downhill sliding. The team expected sliding and shifting, but it was very minimal, and testing met all expectations. Researchers also gathered insights about the tires’ stability, maneuverability, and rock traversal capabilities.
      As NASA continues to advance systems for deep space exploration, the agency’s Extravehicular Activity and Human Surface Mobility program enlisted Padula to research additional ways to improve the properties of SMAs for future rover tires and other potential uses, including lunar environments.
      “My goal is to extend the operating temperature capability of SMAs for applications like tires, and to look at applying these materials for habitat protection,” Padula said. “We need new materials for extreme environments that can provide energy absorption for micrometeorite strikes that happen on the Moon to enable things like habitat structures for large numbers of astronauts and scientists to do work on the Moon and Mars.”
      Researchers say shape memory alloy spring tires are just the beginning.
      Explore More
      4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards 
      Article 4 days ago 3 min read NASA Scientists Find New Human-Caused Shifts in Global Water Cycle
      Article 5 days ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
      Article 7 days ago View the full article
  • Check out these Videos

×
×
  • Create New...