Members Can Post Anonymously On This Site
What is Air Quality?
-
Similar Topics
-
By Space Force
The Space Force senior leaders traveled to Europe for meetings with defense and military space leaders from Norway, Sweden, and NATO to reaffirm and strengthen space security cooperation.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
About 20,000 guests visited NASA’s tent at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024. NASA Lee esta historia en Español aquí.
In September, the three NASA centers in California came together to share aerospace innovations with thousands of guests at the Miramar Air Show in San Diego, California. Agency experts talked about the exciting work NASA does while exploring the secrets of the universe for the benefit of all.
Under a large tent near the airfield, guests perused exhibits from different centers and projects, like a model of the Innovator rover or the Alta-X drone, from Sept. 27 through 29. Agency employees from NASA’s Armstrong Flight Research Center in Edwards, California; Ames Research Center in Moffett Field, California; and Jet Propulsion Laboratory (JPL) in Southern California guided guests through tours and presentations and shared messages about NASA missions.
“The airshow is about the people just as much as it is about the aircraft and technology,” said Derek Abramson, chief engineer for the Subscale Flight Research Laboratory at NASA Armstrong. “I met many new people, worked with an amazing team, and developed a comradery with other NASA centers, talking about what we do here as a cohesive organization.”
Experts like flight controls engineer Felipe Valdez shared the NASA mission with air show guests, and explained the novelty of airborne instruments like the Alta-X drone at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA On Sept. 29, pilots from Armstrong joined the event to take photos with guests and answer questions from curious or enthusiastic patrons. One air show guest had a special moment with NASA pilot Jim Less.
“One of my favorite moments was connecting with a young man in his late teens who stopped by the exhibit tent numerous times, all in hopes of being able to meet Jim Less, our X-59 pilot,” said Kevin Rohrer, chief of Communications at NASA Armstrong. “It culminated with a great conversation with the two and Jim [Less] autographing a model of the X-59 aircraft the young man had been carrying around.”
“I look forward to this tradition continuing, if not at this venue, at some other event in California,” Rohrer continued. “We have a lot of minds hungry and passionate to learn more about all of NASA missions.”
The Miramar Air Show is an annual event that happens at the Miramar Air Base in San Diego, California.
Professionals like Leticha Hawkinson, center right, and Haig Arakelian, center left, shared learning and career opportunities for NASA enthusiasts visiting the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA Share
Details
Last Updated Oct 30, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Ames Research Center Careers Events Jet Propulsion Laboratory What We Do Explore More
3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo
Article 18 mins ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
Article 2 hours ago 10 min read Ken Iliff: Engineering 40 Years of Success
Article 21 hours ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Aircraft Flown at Armstrong
Armstrong People
Armstrong Capabilities & Facilities
View the full article
-
By NASA
A mentor of research scientist Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” Kacenelenbogen pushes beyond her comfort zone to explore the unknown.
Name: Meloë S. Kacenelenbogen
Formal Job Classification: Research scientist
Organization: Climate and Radiation Laboratory, Science Directorate (Code 613)
Dr. Meloë S. Kacenelenbogen is a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. She studies the impact of aerosols on air quality and the Earth’s climate.Photo courtesy of Meloë Kacenelenbogen What do you do and what is most interesting about your role here at Goddard?
I study the impact of aerosols — suspended particles from, for example, wildfire smoke, desert dust, urban pollution, and volcanic eruptions — on air quality and the Earth’s climate. I use space, air, and ground-based observations, as well as models.
Why did you become a scientist? What is your educational background?
I never made a deliberate choice to become a scientist. I started with very little confidence as a child and then built up my confidence by achieving things I thought I could not do. I chose the hardest fields to work on along the way. Science looked hard and so did fluid mechanics, remote sensing, and atmospheric physics. I have failed many times, but I always learn something and move on. I do get scared and maybe even paralyzed for a day or two, but I never let fear or failure immobilize me for long.
I was born in Maryland, but my family moved to France when I was young, so I am fluent in French. I have a bachelor’s and master’s degree in mechanical engineering, and physical methods in remote sensing from the Université Pierre et Marie Curie (Paris VI, Jussieu). In 2008, I got a Ph.D. in atmospheric physics for applying satellite remote sensing to air quality at the Université des Sciences et Technologies de Lille (USTL), France.
What are some of your career highlights?
After my Ph.D., I worked for the Atmospheric Lidar Group at the University of Maryland, Baltimore County (UMBC), on spaceborne and ground-based lidars. In 2009, I got a NASA Post-doctoral Program (NPP) fellowship at the agency’s Ames Research Center in California’s Silicon Valley, where I worked for 13 years on space-based, aircraft-based, and ground-based atmospheric aerosol vertical distribution and aerosol typing.
In 2022, I came to work at the Climate and Radiation Lab at Goddard.
What is most interesting about aerosols?
Aerosols are very topical because they have a huge impact on the air we breathe and our Earth’s climate. The smaller the aerosol, the deeper it can get into our lungs. Among other sources, aerosols can come from cars, factories, or wildfires. We all know that wildfires are becoming bigger and more frequent. They are expected to happen even more frequently in the future due to climate change. Both when I was living in California and here in Maryland, I have experienced first-hand choking from the wildfire smoke. I will always remember how apocalyptic it felt back in the summer of 2020 in California when wildfire smoke was paired with COVID confinement, and the sky turned Mars-like orange.
Please tell us about your involvement with the Atmosphere Observing System (AOS)?
I am incredibly lucky to be able to contribute to the next generation of NASA’s satellites. I am working on AOS, which will observe aerosols, clouds, convention, and precipitation in the Earth’s atmosphere. I am part of the team that is helping design several instruments and algorithms.
My role is to connect this spaceborne observing system to all our other space, ground, and air-based measurements at the time of launch. We are making a mesh of observations to address the science questions, run the algorithms, and validate the spaceborne measurements. I am constantly pushed to expand my horizon and my own knowledge.
Why do you enjoy always challenging yourself intellectually?
I started that way. I had no confidence, so I felt that the only way I could build my confidence was to try doing things that scared me. I may sometimes be a little scared, but I am never bored.
What did you learn from your mentors?
A few years ago, a mentor shared a quote from André Gide with me that encapsulates what we are talking about: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” In other words, it is OK, maybe preferable, to be out of my comfort zone to explore the unknown as scary as it may be.
Along the way, it has been extremely important for me to deliberately choose mentors. To me, a good mentor has earned the respect of all who have worked with them, is uplifting, reassuring, and gives me the invaluable guidance and support that I need. I deliberately try to surround myself with the right people. I have been very, very fortunate to find incredible people to encourage me.
As a mentor, what do you advise?
I tell them to deliberately choose their mentors. I also tell them that it is OK to be uncomfortable. Being uncomfortable is the nature of our field. To do great things, we often need to be uncomfortable.
Why do you enjoy working on a team?
I love working on teams, I love to feed off the positive energy of a team whether I lead it or am part of it. In my field, teamwork with a positive energy is incredibly satisfying. Everybody feeds off everybody’s energy, we go further, are stronger, and achieve more. This may not happen often, but when it does it makes it all worth it.
What are the happiest moments in your career?
I am always happiest when the team publishes a paper and all our efforts, are encapsulated in that one well-wrapped and satisfying peer-reviewed paper that is then accessible to everyone online. Every paper we publish feels, to me, the same as a Ph.D. in terms of the work, pain, energy, and then, finally, satisfaction involved.
What do you hope to achieve in your career?
I want to have been a major contributor to the mission by the time the AOS satellites launch.
What do you do for fun?
I do mixed martial arts. I love the ocean, diving, and sailing. I also love going to art galleries, especially to see impressionist paintings to reconnect with my Parisian past.
Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.”Photo courtesy of Meloë Kacenelenbogen Who is your favorite author?
I love Zweig, Kafka, Dostoyevsky, Saint-Exupéry, and Kessel. The latter two wrote a lot about aviators in the early 1900s back in the days when it was new and very dangerous. Those pilots, like Mermoz, were my heroes growing up.
Who would you like to thank?
I would like to thank my family for being my rock.
What are your guiding principles?
To paraphrase Dostoevsky, everyone is responsible to all men for all men and for everything. I have a strong sense of purpose, pride, justice, and honor. This is how I try to live my life for better or for worse.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Explore More
6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
Article 6 days ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space
Article 2 weeks ago 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’
Article 3 weeks ago Share
Details
Last Updated Oct 22, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
People of Goddard Goddard Space Flight Center People of NASA View the full article
-
By NASA
Learn Home GLOBE Eclipse and Civil Air… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration
The Civil Air Patrol (CAP) is a volunteer organization that serves as the official civilian auxiliary of the United States Air Force. The organization has an award-winning aerospace education program that promotes Science, Technology Engineering, & Mathematics (STEM)-related careers and activities. The total solar eclipse on 8 April 2024 was a unique opportunity to design a mission for cadets, senior members, and educators to collect atmospheric data in contribution the Global Learning and Observations to Benefit the Environment (GLOBE) Program’s GLOBE Eclipse protocol, for which a temporary tool in the GLOBE Observer app made it possible for volunteer observers to document and submit air temperature and cloud data during the eclipse.
For the first time ever, the CAP had cadets and senior members participating in a mission from every wing (US state), in addition to two US territories and 2 Canadian provinces. Over 400 teams with over 3,000 cadets and over 1,000 senior members collected air temperature, clouds, wind, and precipitation for a total of 4 hours before, during, and after the eclipse. This work was led by Capt. Shannon Babb who organized the mission with the aerospace education team led from the Rocky Mountain Region.
The collaboration between GLOBE Eclipse and CAP gave cadets the opportunity to do real, hands-on Earth science and be part of a mission alongside senior members. It also brought in over 40,000 students and more than 600 educators through the Civil Air Patrol’s education sites involving K-12 formal and informal educators at schools, youth organizations, museums and libraries. This unique collaboration was so successful, the CAP wants to continue doing missions alongside citizen science programs at NASA and the GLOBE Program. A 2025 mission is being formulated, focused on contrail formation using the strengths of the CAP in aeronautics and unique cloud observations made using the GLOBE Observer app. Results and announcements of 2025 mission plans were presented at the Civil Air Patrol National Conference on 16-17 August 2024 in San Antonio, Texas, USA.
GLOBE Observer is part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
https://www.gocivilairpatrol.com/programs/aerospace-education/curriculum/2024-solar-eclipse
Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Share
Details
Last Updated Oct 07, 2024 Editor NASA Science Editorial Team Related Terms
2024 Solar Eclipse Earth Science Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Science Activation Explore More
5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute
Article
3 days ago
2 min read Culturally Inclusive Planetary Engagement in Colorado
Article
4 days ago
40 min read GPM Celebrates Ten Years of Observing Precipitation for Science and Society
Article
4 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
10 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Whole Air Sampling (WAS) group, from the 2024 Student Airborne Research Program (SARP) West Coast cohort, poses in front of the natural sciences building at UC Irvine, during their final presentations on August 13, 2024. NASA Ames/Milan Loiacono Faculty Advisor: Dr. Donald Blake, University of California, Irvine
Graduate Mentor: Katherine Paredero, Georgia Institute of Technology
Katherine Paredero, Graduate Mentor
Katherine Paredero, graduate student mentor for the 2024 SARP West Whole Air Sampling (WAS) group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
Mikaela Vaughn
Urban Planning Initiative: Investigation of Isoprene Emissions by Tree Species in the LA Basin
Mikaela Vaughn, Virginia Commonwealth University
Elevated ozone concentrations have been a concern in Southern California for decades. The interaction between volatile organic compounds (VOC) and nitrous oxides (𝑁𝑂!) in the presence of sunlight leads to enhanced formation of tropospheric ozone (𝑂”) and secondary organic aerosols (SOA). This can lead to increased health hazards, exposing humans to aerosols that can enter and be absorbed by the lungs, as well as a warming effect caused by ozone’s role as a greenhouse gas in the lower levels of the atmosphere. This study will focus on a VOC that is of particular interest, isoprene, which has an atmospheric lifetime of one hour, making it highly reactive in the presence of the hydroxyl radical (OH) and resulting in rapid ozone formation. Isoprene is a biogenic volatile organic compound (BVOC) emitted by vegetation as a byproduct of photosynthesis. This BVOC has been overlooked but should be investigated further because of its potential to form large sums of ozone. In this study the reactivity of isoprene with OH dominated ozone formation as compared to other VOCs. Ambient isoprene concentrations were measured aboard NASA’s airborne science laboratory (King Air B200) along with whole air sampling canisters. Additionally, isoprene emissions of varying tree species, with one to three samples per type, were compared to propose certain trees to plant in urban areas. Results indicated that Northern Red Oaks and the Palms family emitted the most isoprene out of the nineteen species documented. The species with the lowest observed isoprene emissions was the Palo Verde and the Joshua trees. The difference in isoprene emissions between the Northern Red Oak and Joshua trees is approximately by a factor of 45. These observations show the significance of considering isoprene emissions when selecting tree species to plant in the LA Basin to combat tropospheric ozone formation.
Joshua Lozano
VOC Composition and Ozone Formation Potential Observed Over Long Beach, California
Joshua Lozano, Sonoma State University
Volatile organic compounds (VOCs), when released into the atmosphere, undergo chemical reactions in the presence of sunlight that can generate tropospheric ozone, which can have various health effects. We can gauge this ozone formation by multiplying the observed mixing ratios of VOCs by their respective rate constants (with respect to OH radicals). The OH radical reacts very quickly in the atmosphere and accounts for a large sum of ozone formation from VOCs as a result, giving us an idea of the ozone formation potential (OFP) for each VOC. In this study, we investigate observed mixing ratios of VOCs in order to estimate their contribution to OFP over Long Beach, California. The observed species of VOCs with the highest mixing ratios differs from the observed species with the highest OFP, which highlights that higher mixing ratios of certain VOCs in the atmosphere do not necessarily equate to a higher contribution to ozone formation. This underscores the importance of understanding mixing ratios of VOC species and their reaction rates with OH to gauge impacts on ozone formation. In the summer there were significantly lower VOC concentrations compared to the winter, which was expected because of differences in boundary layer height within the seasons. Additionally, a decrease in average mixing ratios was observed between the summer of 2014 and the summer of 2022. A similar trend was observed in OFP, but by a much smaller factor. This may indicate that even though overall VOC emissions are decreasing in Long Beach, the species that dominate in recent years have a higher OFP. This research provides a more comprehensive view of how VOCs contribute to air quality issues across different seasons and over time, stressing the need for targeted strategies to mitigate ozone pollution based on current and accurate VOC composition and reactivity.
Sean Breslin
Investigating Enhanced Methane and Ethane Emissions over the Long Beach Airport
Sean Breslin, University of Delaware
As climate change continues to worsen, the investigation and tracking of greenhouse gas emissions has become increasingly important. Methane, the second most impactful greenhouse gas, has accounted for over 20% of planetary warming since preindustrial times. Methane emissions primarily originate from biogenic and thermogenic sources, such as dairy farms and natural gas extraction. Ethane, an abundant hydrocarbon emitted from biomass burning and natural gas, contributes to the formation of tropospheric ozone. The data for this project was collected in December 2021 and June 2022 aboard the DC-8 aircraft, where whole air samples were taken during low approaches to find potential sources of methane and ethane emissions. Analysis of these samples using gas chromatography revealed a noticeable increase in methane and ethane concentrations over Long Beach Airport, an area surrounded by numerous plugged oil and gas wells extracting crude oil and natural gas. In this study, we observe that methane and ethane concentrations were lower in the summer and higher in the winter, which can be primarily attributed to seasonal variations in the Atmospheric Boundary Layer height. Our results show that in both summer and winter campaigns, the ratio of these two gases over the airport was approximately 0.03, indicating that for every 100 methane molecules, there are 3 ethane molecules. This work identifies methane and ethane hotspots and provides a critical analysis on potential fugitive emission sources in the Long Beach area. These results emphasize a need to perform in depth analyses on potential point sources of greenhouse gas emissions in the Long Beach area.
Katherine Skeen
Investigating Elevated Levels of Toluene during Winter in the Imperial Valley
Katherine Skeen, University of North Carolina at Charlotte
The Imperial County in Southern California experiences pollutants that do not meet the National Ambient Air Quality Standards, and as a result, residents are suffering from adverse health effects. Volatile organic compounds (VOCs) are compounds with a high vapor pressure at room temperature. They are readily emitted into the atmosphere and form ground level ozone. Toluene is a VOC and exposure poses significant health risks, including neurological and respiratory effects. This study aims to use airborne data to investigate areas with high toluene concentrations and investigate potential source. Flights over the Imperial Valley were conducted in the B200 King Air. Whole air canisters were used to collect ambient air samples from outside the plane. These Whole Air Canisters were put through the UCI Rowland Blake Lab’s gas chromatograph mass spectrometer, which identifies different gasses and quantifies their concentrations. Elevated values of toluene were found in the winter as compared to the summer in the Imperial Valley, with the town of Brawley having the most elevated amounts in the air. Excel and QGIS were utilized to analyze data trends. Additionally, a backward trajectory calculated using the NOAA HYSPLIT model revealed the general air flow on days exhibiting high toluene concentrations. Here we suggest Long Beach may be a source of enhanced toluene levels in Brawley. Both areas exhibited enhanced levels of toluene with slightly lower concentrations observed in Brawley. We additionally observed other VOCs commonly emitted in urban areas, and saw a similar decrease in gasses from Long Beach to Brawley. This trend may indicate transport of toluene from Long Beach to Brawley. Further research could be done to investigate the potential for other regions that may contribute to high toluene concentrations in Brawley. My study contributes valuable insights to the poor air quality in the Imperial Valley, providing a foundation for future studies on how residents are specifically being affected.
Ella Erskine
Characterizing Volatile Organic Compound (VOC) Emissions from Surface Expressions of the Salton Sea Geothermal System (SSGS)
Ella Erskine, Tufts University
At the southeastern end of the Salton Sea, surface expressions of an active geothermal system are emitting an assemblage of potentially toxic and tropospheric ozone-forming gasses. Gas measurements were taken from ~1 to 8 ft tall mud cones, called gryphons, in the Davis-Schrimpf seep field (~50,000 ft2). The gaseous compounds emitted from the gryphons were collected using whole air sampling canisters. The canisters were then sent to the Rowland-Blake laboratory for analysis using gas chromatography techniques. Samples from June of 2022, 2023, and 2024 were utilized for a time-series analysis of VOC distribution. Originally, an emission makeup similar to petroleum was expected, as it has previously been found in some of the seeps. It is thought that hydrothermal fluid can rapidly mature organic matter into hydrothermal petroleum, so it is logical that the emission makeup could be similar. However, unexpectedly high levels of the VOC benzene were recorded, unlike concentrations generally observed in crude oil emissions. This may indicate a difference between the two sources in regard to their formation process or parent material composition. A possible cause of the elevated benzene could be its relatively high aqueous solubility compared to other hydrocarbons, which could allow it to be more readily incorporated into the hydrothermal fluid. Since the gryphons attract almost daily visitors, it is important to quantify their human health effects. Benzene harms the bone marrow, which can result in anemia. It is also a carcinogen. Additionally, benzene can react with the OH radical to form ozone, an additional health hazard. Future studies should revisit the Davis-Schrimpf field to continue the time series analysis and collect samples of the water seeps. Additionally, drone and ground studies should be conducted in the geothermal power plant adjacent to the gryphons to determine if benzene is being emitted from drilling activities.
Amelia Brown
Airborne and Ground-Based Analysis of Los Angeles County Landfill Gas Emissions
Amelia Brown, Hamilton College
California has the highest number of landfills of any individual US state. These landfills are concentrated in densely populated areas of California, especially within the Los Angeles metropolitan area. Landfills produce three main byproducts: heat, leachate, and landfill gas (LFG). LFG is primarily composed of methane (CH₄) and carbon dioxide (CO₂), with small concentrations of volatile organic compounds (VOCs) and other trace gases. The CH4 and CO2 components of LFG are well documented, but the VOCs and trace gases in LFG remain underexplored. This study investigates the emission of trace gases from four landfills in Los Angeles County, with a particular focus on substances known to have high Ozone Depletion Potentials (ODPs) and Global Warming Potentials (GWPs). The four landfills sampled were Chiquita Canyon Landfill, Lopez Canyon Landfill, Sunshine Canyon Landfill, and Toyon Canyon Landfill. Airborne samples were taken above the four landfills and ground samples were taken at Lopez Canyon as this was the only site accessible by our research team. The substances of interest were chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), and halons. Airborne CH4 and CO2 measurements over the four landfills were obtained using the Picarro instrument onboard NASA’s B-200 aircraft. Ground samples were collected using whole air sampling canisters and were analyzed to determine the concentrations of these gases. The analytical approach for the ground samples combined Gas Chromatography-Mass Spectrometry (GCMS) with Flame Ionization Detection (FID) and Mass Selective Detection (MSD), providing a comprehensive profile of the emitted compounds. Findings reveal elevated levels of substances with high ODP and GWP, which were banned under the Montreal Protocol of 1987 and its subsequent amendments due to their contributions to stratospheric ozone depletion and climate change. These results underscore the importance of monitoring and mitigating landfill gas emissions, particularly for those containing potent greenhouse gases and ozone-depleting substances.
Click here watch the Atmospheric Aerosols Group presentations.
Click here watch the Terrestrial Ecology Group presentations.
Click here watch the Ocean Group presentations.
Return to 2024 SARP West Closeout Share
Details
Last Updated Sep 25, 2024 Related Terms
General View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.