Jump to content

NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 


Recommended Posts

  • Publishers
Posted
4 Min Read

NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 

Alt Text: An artistic rendering. We see a line art representation of a satellite relay communicating with Earth over a deep dark green starry background. Three light green commercial satellites are seen surrounding the top half of the Earth, alongside one light green TDRS satellite. A thin bright green beam of light is shown connecting each satellite to Earth, as a way to represent the flow of data. The surface of the Earth is covered in many small dots connected by lines to represent communication nodes across near-Earth orbit and on Earth.
An artist's concept of commercial and NASA space relays.
Credits: NASA/Morgan Johnson

NASA is one step closer on its transition to using commercially owned and operated satellite communications services to provide future near-Earth space missions with increased service coverage, availability, and accelerated science and data delivery.     

As of Friday, Nov. 8, the agency’s legacy TDRS (Tracking and Data Relay Satellite) system, as part of the Near Space Network, will support only existing missions while new missions will be supported by future commercial services.    

“There have been tremendous advancements in commercial innovation since NASA launched its first TDRS satellite more than 40 years ago,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “TDRS will continue to provide critical support for at least the next decade, but now is the time to embrace commercial services that could enhance science objectives, expand experimentation, and ultimately provide greater opportunities for discovery.”    

TDRS will continue to provide critical support for at least the next decade, but now is the time to embrace commercial services."

Kevin Coggins

Kevin Coggins

Deputy Associate Administrator for NASA’s SCaN

Just as NASA has adopted commercial crew, commercial landers, and commercial transport services, the Near Space Network, managed by NASA’s SCaN, will leverage private industry’s vast investment in the Earth-based satellite communications market, which includes communications on airplanes, ships, satellite dish television, and more. Now, industry is developing a new space-based market for these services, where NASA plans to become one of many customers, bolstering the domestic space industry.    

NASA’s Communications Services Project is working with industry through funded Space Act Agreements to develop and demonstrate commercial satellite communications services that meet the agency’s mission needs, and the needs of other potential users.   

In 2022, NASA provided $278.5 million in funding to six domestic partners so they could develop and demonstrate space relay communication capabilities.  

csp.webp?w=1001
An artist’s concept of commercial relay satellites.
NASA/Morgan Johnson

A successful space-based commercial service demonstration would encompass end-to-end testing with a user spacecraft for one or more of the following use cases: launch support, launch and early operations phase, low and high data rate routine missions, terrestrial support, and contingency services. Once a demonstration has been completed, it is expected that the commercial company would be able to offer their services to government and commercial users.    

NASA also is formulating non-reimbursable Space Act Agreements with members of industry to exchange capability information as a means of growing the domestic satellite communications market. The Communications Services Project currently is partnered with Kepler Communications US Inc. through a non-reimbursable Space Act Agreement.    

As the agency and the aerospace community expand their exploration efforts and increase mission complexity, the ability to communicate science, tracking, and telemetry data to and from space quickly and securely will become more critical than ever before. The goal is to validate and deliver space-based commercial communications services to the Near Space Network by 2031, to support future NASA missions.   

NASA’s Tracking and Data Relay System  

While TDRS will not be accepting new missions, it won’t be retiring immediately. Current TDRS users, like the International Space Station, Hubble Space Telescope, and many other Earth- and universe-observing missions, will still rely on TDRS until the mid-2030s. Each TDRS spacecraft’s retirement will be driven by individual health factors, as the seven active TDRS satellites are expected to decline at variable rates.     

An artist's concept of the International Space Station using NASA’s Tracking and Data Relay Satellite (TDRS) fleet to transmit data to Earth.
NASA

The TDRS fleet began in 1983 and consists of three generations of satellites, launching over the course of 40 years. Each successive generation of TDRS improved upon the previous model, with additional radio frequency band support and increased automation.    

The first TDRS was designed for a mission life of 10 years, but lasted 26 years before it was decommissioned in 2009. The last in the third generation – TDRS-13 –was launched Aug. 18, 2017.   

The TDRS constellation has been a workhorse for the agency, enabling significant data transfer and discoveries.”   

DAve Israel

DAve Israel

Near Space Network Chief Architect

“Each astronaut conversation from the International Space Station, every picture you’ve seen from Hubble Space Telescope, Nobel Prize-winning science data from the COBE satellite, and much more has flowed through TDRS,” said Dave Israel, Near Space Network chief architect. “The TDRS constellation has been a workhorse for the agency, enabling significant data transfer and discoveries.”   

Countdown Underway for TDRS-M
NASA’s Tracking and Data Relay Satellite 13 (TDRS-13) atop an Atlas V rocket at NASA’s Kennedy Space Center in Florida before launch.
NASA/Tony Gray and Sandra Joseph

The Near Space Network and the Communications Services Project are funded by NASA’s SCaN (Space Communications and Navigation) program office at NASA Headquarters in Washington. The network is operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Communications Services Project is managed out of NASA’s Glenn Research Center in Cleveland. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Jared Isaacman Senate Nomination Hearing for NASA Administrator
    • By NASA
      Credit: NASA NASA acting Administrator Janet Petro and acting Associate Administrator Vanessa Wyche will lead the agency’s delegation at the 40th Space Symposium, Monday, April 7 through Thursday, April 10, in Colorado Springs, Colorado.
      Petro will join Space Foundation Chief Executive Officer Heather Pringle for a fireside chat to discuss NASA’s current priorities and partnerships at 12:15 p.m. EDT on Tuesday, April 8.
      Additional NASA participation in the conference includes a one-on-one discussion with Nicola Fox, associate administrator, Science Mission Directorate, and a lunar science and exploration panel featuring Lori Glaze, acting associate administrator, Exploration Systems Development Mission Directorate.
      A full agenda for this year’s Space Symposium is available online.
      Conference attendees will have the opportunity to learn more about NASA’s missions and projects on a variety of topics during brief talks with subject matter experts in the agency’s exhibit space.
      NASA will provide photos and updates about its participation in the Space Symposium from its @NASAExhibit account on X.
      For more information about NASA, visit:
      https://www.nasa.gov
      -end-
      Amber Jacobson
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov
      Share
      Details
      Last Updated Apr 04, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Leadership Exploration Systems Development Mission Directorate Science Mission Directorate View the full article
    • By NASA
      NASA/Josh Valcarcel NASA astronaut Jonny Kim poses for a portrait while wearing a spacesuit on July 17, 2024. In his first mission, Kim will serve as a flight engineer during Expedition 72/73 on the International Space Station. He will launch aboard the Soyuz MS-27 spacecraft on Tuesday, April 8.
      Chosen by NASA in 2017, Kim is a decorated naval officer and medical doctor. He completed two years of training as an Astronaut Candidate; training included technical and operational instruction in International Space Station systems, Extravehicular Activities Operations, T-38 flight training, robotics, physiological training, expeditionary training, field geology, water and wilderness survival training, and Russian language proficiency training. In 2020, Kim began his support of International Space Station operations as a Capsule Communicator (CapCom) in Mission Control Center Houston and the Artemis program under the astronaut Exploration branch. He served as the International Space Station’s Increment Lead for Expedition 65 in 2021. He has continued to support mission and crew operations in various roles within the astronaut office including serving as the Operations Officer, T-38 Liaison to the Aircraft Operations Division and the interim ISS CapCom Chief Engineer.
      Image credit: NASA/Josh Valcarcel
      View the full article
    • By NASA
      NASA has selected 12 student teams to develop solutions for storing and transferring the super-cold liquid propellants needed for future long-term exploration beyond Earth orbit.
      The agency’s 2025 Human Lander Challenge is designed to inspire and engage the next generation of engineers and scientists as NASA and its partners prepare to send astronauts to the Moon through the Artemis campaign in preparation for future missions to Mars. The commercial human landing systems will serve as the primary mode of transportation that will safely take astronauts and, later, large cargo from lunar orbit to the surface of the Moon and back.
      For its second year, the competition invites university students and their faculty advisors to develop innovative, “cooler” solutions for in-space cryogenic, or super cold, liquid propellant storage and transfer systems. These cryogenic fluids, like liquid hydrogen or liquid oxygen, must stay extremely cold to remain in a liquid state, and the ability to effectively store and transfer them in space will be increasingly vital for future long-duration missions. Current technology allows cryogenic liquids to be stored for a relatively short amount of time, but future missions will require these systems to function effectively over several hours, weeks, and even months.
      The 12 selected finalists have been awarded a $9,250 development stipend to further develop their concepts in preparation for the next stage of the competition.
      The 2025 Human Lander Challenge finalist teams are:
      California State Polytechnic University, Pomona, “THERMOSPRING: Thermal Exchange Reduction Mechanism using Optimized SPRING” Colorado School of Mines, “MAST: Modular Adaptive Support Technology” Embry-Riddle Aeronautical University, “Electrical Capacitance to High-resolution Observation (ECHO)” Jacksonville University, “Cryogenic Complex: Cryogenic Tanks and Storage Systems – on the Moon and Cislunar Orbit” Jacksonville University, “Cryogenic Fuel Storage and Transfer: The Human Interface – Monitoring and Mitigating Risks” Massachusetts Institute of Technology, “THERMOS: Translunar Heat Rejection and Mixing for Orbital Sustainability” Old Dominion University, “Structural Tensegrity for Optimized Retention in Microgravity (STORM)” Texas A&M University, “Next-generation Cryogenic Transfer and Autonomous Refueling (NeCTAR)” The College of New Jersey, “Cryogenic Orbital Siphoning System (CROSS)” The Ohio State University, “Autonomous Magnetized Cryo-Couplers with Active Alignment Control for Propellant Transfer (AMCC-AAC) University of Illinois, Urbana-Champaign, “Efficient Cryogenic Low Invasive Propellant Supply Exchange (ECLIPSE)” Washington State University, “CRYPRESS Coupler for Liquid Hydrogen Transfer” Finalist teams will now work to submit a technical paper further detailing their concepts. They will present their work to a panel of NASA and industry judges at the 2025 Human Lander Competition Forum in Huntsville, Alabama, near NASA’s Marshall Space Flight Center, in June 2025. The top three placing teams will share a total prize purse of $18,000.
      “By engaging college students in solving critical challenges in cryogenic fluid technologies and systems-level solutions, NASA fosters a collaborative environment where academic research meets practical application,” said Tiffany Russell Lockett, office manager for the Human Landing System Mission Systems Management Office at NASA Marshall. “This partnership not only accelerates cryogenics technology development but also prepares the Artemis Generation – the next generation of engineers and scientists – to drive future breakthroughs in spaceflight.”
      NASA’s Human Lander Challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
      For more information on NASA’s 2025 Human Lander Challenge, including team progress, visit the challenge website.
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Drones were a key part of testing new technology in support of a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies. From left are Tim Wallace and Michael Filicchia of the Desert Research Institute in Nevada; Derek Abramson, Justin Hall, and Alexander Jaffe of NASA’s Armstrong Flight Research Center in Edwards California; and Alana Dachtler of International Met Systems of Kentwood, Michigan.NASA/Jackie Shuman Advancements in NASA’s airborne technology have made it possible to gather localized wind data and assess its impacts on smoke and fire behavior. This information could improve wildland fire decision making and enable operational agencies to better allocate firefighters and resources. A small team from NASA’s Armstrong Flight Research Center in Edwards, California, is demonstrating how some of these technologies work.
      Two instruments from NASA’s Langley Research Center in Hampton, Virginia – a sensor gathering 3D wind data and a radiosonde that measures temperature, barometric pressure, and humidity data – were installed on NASA Armstrong’s Alta X drone for a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies.
      “The objectives for the Alta X portion of the multi-agency prescribed burn include a technical demonstration for wildland fire practitioners, and data collection at various altitudes for the Alabama Forestry Commission operations,” said Jennifer Fowler, FireSense project manager. “Information gathered at the different altitudes is essential to monitor the variables for a prescribed burn.”
      Those variables include the mixing height, which is the extent or depth to which smoke will be dispersed, a metric Fowler said is difficult to predict. Humidity must also be above 30% for a prescribed burn. The technology to collect these measurements locally is not readily available in wildland fire operations, making the Alta X and its instruments key in the demonstration of prescribed burn technology.
      A drone from NASA’s Armstrong Flight Research Center, Edwards, California, flies with a sensor to gather 3D wind data and a radiosonde that measures temperature, barometric pressure, and humidity data from NASA’s Langley Research Center in Hampton, Virginia. The drone and instruments supported a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies.International Met Systems/Alana Dachtler In addition to the Alta X flights beginning March 25, NASA Armstrong’s B200 King Air will fly over actively burning fires at an altitude of about 6,500 feet. Sensors onboard other aircraft supporting the mission will fly at lower altitudes during the fire, and at higher altitudes before and after the fire for required data collection. The multi-agency mission will provide data to confirm and adjust the prescribed burn forecast model.
      Small, uncrewed aircraft system pilots from NASA Armstrong completed final preparations to travel to Alabama and set up for the research flights. The team – including Derek Abramson, chief engineer for the subscale flight research laboratory; Justin Hall, NASA Armstrong chief pilot of small, uncrewed aircraft systems; and Alexander Jaffe, a drone pilot – will set up, fly, observe airborne operations, all while keeping additional aircraft batteries charged. The launch and recovery of the Alta X is manual, the mission profile is flown autonomously to guarantee the same conditions for data collection.
      “The flight profile is vertical – straight up and straight back down from the surface to about 3,000 feet altitude,” Abramson said. “We will characterize the mixing height and changes in moisture, mapping out how they both change throughout the day in connection with the burn.”
      In August 2024, a team of NASA researchers used the NASA Langley Alta X and weather instruments in Missoula, Montana, for a FireSense project drone technology demonstration. These instruments were used to generate localized forecasting that provides precise and sustainable meteorological data to predict fire behavior and smoke impacts.
      Justin Link, left, pilot for small uncrewed aircraft systems, and Justin Hall, chief pilot for small uncrewed aircraft systems, install weather instruments on an Alta X drone at NASAs Armstrong Flight Research Center in Edwards, California. Members of the center’s Dale Reed Subscale Flight Research Laboratory used the Alta X to support the agency’s FireSense project in March 2025 for a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama.NASA/Steve Freeman Share
      Details
      Last Updated Apr 03, 2025 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science B200 Drones & You Langley Research Center Science Mission Directorate Explore More
      5 min read NASA Langley’s Legacy of Landing
      Article 7 hours ago 4 min read NASA Makes Progress on Advanced Drone Safety Management System
      Article 23 hours ago 2 min read What Are the Dangers of Going to Space? We Asked a NASA Expert: Episode 55
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...