Members Can Post Anonymously On This Site
EarthCARE synergy reveals power of clouds and aerosols
-
Similar Topics
-
By European Space Agency
Launched just two months ago and still in the process of being commissioned for service, the Copernicus Sentinel-1C satellite is, remarkably, already showing how its radar data can be used to map the shape of Earth’s land surface with extreme precision.
These first cross-satellite ‘interferometry’ results assure its ability to monitor subsidence, uplift, glacier flow, and disasters such as landslides and earthquakes.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrated the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.Credit: Lockheed Martin/Gary Tice NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests.
In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. The engine, a modified F414-GE-100 that powers the aircraft’s flight and integrated subsystems, performed to expectations during three increasingly complicated tests that ran from October through January at contractor Lockheed Martin’s Skunk Works facility in Palmdale, California.
“We have successfully progressed through our engine ground tests as we planned,” said Raymond Castner, X-59 propulsion lead at NASA’s Glenn Research Center in Cleveland. “We had no major showstoppers. We were getting smooth and steady airflow as predicted from wind tunnel testing. We didn’t have any structural or excessive vibration issues. And parts of the engine and aircraft that needed cooling were getting it.”
The tests began with seeing how the aircraft’s hydraulics, electrical, and environmental control systems performed when the engine was powered up but idling. The team then performed throttle checks, bringing the aircraft up to full power and firing its afterburner – an engine component that generates additional thrust – to maximum.
In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. Testing included electrical, hydraulics, and environmental control systems.
Credit: NASA/Lillianne Hammel A third test, throttle snaps, involved moving the throttle swiftly back and forth to validate that the engine responds instantly. The engine produces as much as 22,000 pounds of thrust to achieve a desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet.
The X-59’s engine, similar to those aboard the U.S. Navy’s F-18 Super Hornet, is mounted on top of the aircraft to reduce the level of noise reaching the ground. Many features of the X-59, including its 38-foot-long nose, are designed to lower the noise of a sonic boom to that of a mere “thump,” similar to the sound of a car door slamming nearby.
Next steps before first flight will include evaluating the X-59 for potential electromagnetic interference effects, as well as “aluminum bird” testing, during which data will be fed to the aircraft under both normal and failure conditions. A series of taxi tests and other preparations will also take place before the first flight.
The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter.
Explore More
3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
Article 6 hours ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
Article 6 days ago 9 min read Combustor Facilities
Article 1 week ago
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA’s Curiosity Mars rover captured these drifting noctilucent, or twilight, clouds in a 16-minute recording on Jan. 17. (This looping clip has been speeded up about 480 times.) The white plumes falling out of the clouds are carbon dioxide ice that would evaporate closer to the Martian surface.NASA/JPL-Caltech/MSSS/SSI While the Martian clouds may look like the kind seen in Earth’s skies, they include frozen carbon dioxide, or dry ice.
Red-and-green-tinted clouds drift through the Martian sky in a new set of images captured by NASA’s Curiosity rover using its Mastcam — its main set of “eyes.” Taken over 16 minutes on Jan. 17 (the 4,426th Martian day, or sol, of Curiosity’s mission), the images show the latest observations of what are called noctilucent (Latin for “night shining”), or twilight clouds, tinged with color by scattering light from the setting Sun.
Sometimes these clouds even create a rainbow of colors, producing iridescent, or “mother-of-pearl” clouds. Too faint to be seen in daylight, they’re only visible when the clouds are especially high and evening has fallen.
Martian clouds are made of either water ice or, at higher altitudes and lower temperatures, carbon dioxide ice. (Mars’ atmosphere is more than 95% carbon dioxide.) The latter are the only kind of clouds observed at Mars producing iridescence, and they can be seen near the top of the new images at an altitude of around 37 to 50 miles (60 to 80 kilometers). They’re also visible as white plumes falling through the atmosphere, traveling as low as 31 miles (50 kilometers) above the surface before evaporating because of rising temperatures. Appearing briefly at the bottom of the images are water-ice clouds traveling in the opposite direction roughly 31 miles (50 kilometers) above the rover.
Dawn of Twilight Clouds
Twilight clouds were first seen on Mars by NASA’s Pathfinder mission in 1997; Curiosity didn’t spot them until 2019, when it acquired its first-ever images of iridescence in the clouds. This is the fourth Mars year the rover has observed the phenomenon, which occurs during early fall in the southern hemisphere.
Mark Lemmon, an atmospheric scientist with the Space Science Institute in Boulder, Colorado, led a paper summarizing Curiosity’s first two seasons of twilight cloud observations, which published late last year in Geophysical Research Letters. “I’ll always remember the first time I saw those iridescent clouds and was sure at first it was some color artifact,” he said. “Now it’s become so predictable that we can plan our shots in advance; the clouds show up at exactly the same time of year.”
Each sighting is an opportunity to learn more about the particle size and growth rate in Martian clouds. That, in turn, provides more information about the planet’s atmosphere.
Cloud Mystery
One big mystery is why twilight clouds made of carbon dioxide ice haven’t been spotted in other locations on Mars. Curiosity, which landed in 2012, is on Mount Sharp in Gale Crater, just south of the Martian equator. Pathfinder landed in Ares Vallis, north of the equator. NASA’s Perseverance rover, located in the northern hemisphere’s Jezero Crater, hasn’t seen any carbon dioxide ice twilight clouds since its 2021 landing. Lemmon and others suspect that certain regions of Mars may be predisposed to forming them.
A possible source of the clouds could be gravity waves, he said, which can cool the atmosphere: “Carbon dioxide was not expected to be condensing into ice here, so something is cooling it to the point that it could happen. But Martian gravity waves are not fully understood and we’re not entirely sure what is causing twilight clouds to form in one place but not another.”
Mastcam’s Partial View
The new twilight clouds appear framed in a partially open circle. That’s because they were taken using one of Mastcam’s two color cameras: the left 34 mm focal length Mastcam, which has a filter wheel that is stuck between positions. Curiosity’s team at NASA’s Jet Propulsion Laboratory in Southern California remains able to use both this camera and the higher-resolution right 100 mm focal length camera for color imaging.
The rover recently wrapped an investigation of a place called Gediz Vallis channel and is on its way to a new location that includes boxwork — fractures formed by groundwater that look like giant spiderwebs when viewed from space.
More recently, Curiosity visited an impact crater nicknamed “Rustic Canyon,” capturing it in images and studying the composition of rocks around it. The crater, 67 feet (20 meters) in diameter, is shallow and has lost much of its rim to erosion, indicating that it likely formed many millions of years ago. One reason Curiosity’s science team studies craters is because the cratering process can unearth long-buried materials that may have better preserved organic molecules than rocks exposed to radiation at the surface. These molecules provide a window into the ancient Martian environment and how it could have supported microbial life billions of years ago, if any ever formed on the Red Planet.
More About Curiosity
Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington. Malin Space Science Systems in San Diego built and operates Mastcam.
For more about Curiosity, visit:
science.nasa.gov/mission/msl-curiosity
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-017
Share
Details
Last Updated Feb 11, 2025 Related Terms
Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Radioisotope Power Systems (RPS) Explore More
5 min read NASA-Led Study Pinpoints Areas Sinking, Rising Along California Coast
Article 1 day ago 5 min read Euclid Discovers Einstein Ring in Our Cosmic Backyard
Article 1 day ago 3 min read NASA Explores Earth Science with New Navigational System
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA’s UAVSAR airborne radar instrument captured data in fall 2024 showing the mo-tion of landslides on the Palos Verdes Peninsula following record-breaking rainfall in Southern California in 2023 and another heavy-precipitation winter in 2024. Darker red indicates faster motion.NASA Earth Observatory Analysis of data from NASA radar aboard an airplane shows that the decades-old active landslide area on the Palos Verdes Peninsula has expanded.
Researchers at NASA’s Jet Propulsion Laboratory in Southern California used data from an airborne radar to measure the movement of the slow-moving landslides on the Palos Verdes Peninsula in Los Angeles County. The analysis determined that, during a four-week period in the fall of 2024, land in the residential area slid toward the ocean by as much as 4 inches (10 centimeters) per week.
Portions of the peninsula, which juts into the Pacific Ocean just south of the city of Los Angeles, are part of an ancient complex of landslides and has been moving for at least the past six decades, affecting hundreds of buildings in local communities. The motion accelerated, and the active area expanded following record-breaking rainfall in Southern California in 2023 and heavy precipitation in early 2024.
To create this visualization, the Advanced Rapid Imaging and Analysis (ARIA) team used data from four flights of NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) that took place between Sept. 18 and Oct. 17. The UAVSAR instrument was mounted to a Gulfstream III jet flown out of NASA’s Armstrong Flight Research Center in Edwards, California, and the four flights were planned to estimate the speed and direction of the landslides in three dimensions.
In the image above, colors indicate how fast parts of the landslide complex were moving in late September and October, with the darkest reds indicating the highest speeds. The arrows represent the direction of horizontal motion. The white solid lines are the boundaries of the active landslide area as defined in 2007 by the California Geological Survey.
“In effect, we’re seeing that the footprint of land experiencing significant impacts has expanded, and the speed is more than enough to put human life and infrastructure at risk,” said Alexander Handwerger, the JPL landslide scientist who performed the analysis.
The insights from the UAVSAR flights were part of a package of analyses by the ARIA team that also used data from ESA’s (the European Space Agency’s) Copernicus Sentinel-1A/B satellites. The analyses were provided to California officials to support the state’s response to the landslides and made available to the public at NASA’s Disaster Mapping Portal.
Handwerger is also the principal investigator for NASA’s upcoming Landslide Climate Change Experiment, which will use airborne radar to study how extreme wet or dry precipitation patterns influence landslides. The investigation will include flights over coastal slopes spanning the California coastline.
More About ARIA, UAVSAR
The ARIA mission is a collaboration between JPL and Caltech, which manages JPL for NASA, to leverage radar and optical remote-sensing, GPS, and seismic observations for science as well as to aid in disaster response. The project investigates the processes and impacts of earthquakes, volcanoes, landslides, fires, subsurface fluid movement, and other natural hazards.
UAVSAR has flown thousands of radar missions around the world since 2007, studying phenomena such as glaciers and ice sheets, vegetation in ecosystems, and natural hazards like earthquakes, volcanoes, and landslides.
News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
2025-012
Share
Details
Last Updated Jan 31, 2025 Related Terms
Earth Science Airborne Science Armstrong Flight Research Center Earth Earth Science Division Explore More
3 min read NASA Tests Air Traffic Surveillance Technology Using Its Pilatus PC-12 Aircraft
Article 1 week ago 5 min read How New NASA, India Earth Satellite NISAR Will See Earth
Article 1 week ago 6 min read NASA International Space Apps Challenge Announces 2024 Global Winners
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
In this video frame, Jason Dworkin holds up a vial that contains part of the sample from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission in 2023. Dworkin is the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.Credit: NASA/James Tralie Studies of rock and dust from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security–Regolith Explorer) spacecraft have revealed molecules that, on our planet, are key to life, as well as a history of saltwater that could have served as the “broth” for these compounds to interact and combine.
The findings do not show evidence for life itself, but they do suggest the conditions necessary for the emergence of life were widespread across the early solar system, increasing the odds life could have formed on other planets and moons.
“NASA’s OSIRIS-REx mission already is rewriting the textbook on what we understand about the beginnings of our solar system,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Asteroids provide a time capsule into our home planet’s history, and Bennu’s samples are pivotal in our understanding of what ingredients in our solar system existed before life started on Earth.”
In research papers published Wednesday in the journals Nature and Nature Astronomy, scientists from NASA and other institutions shared results of the first in-depth analyses of the minerals and molecules in the Bennu samples, which OSIRIS-REx delivered to Earth in 2023.
Detailed in the Nature Astronomy paper, among the most compelling detections were amino acids – 14 of the 20 that life on Earth uses to make proteins – and all five nucleobases that life on Earth uses to store and transmit genetic instructions in more complex terrestrial biomolecules, such as DNA and RNA, including how to arrange amino acids into proteins.
Scientists also described exceptionally high abundances of ammonia in the Bennu samples. Ammonia is important to biology because it can react with formaldehyde, which also was detected in the samples, to form complex molecules, such as amino acids – given the right conditions. When amino acids link up into long chains, they make proteins, which go on to power nearly every biological function.
These building blocks for life detected in the Bennu samples have been found before in extraterrestrial rocks. However, identifying them in a pristine sample collected in space supports the idea that objects that formed far from the Sun could have been an important source of the raw precursor ingredients for life throughout the solar system.
“The clues we’re looking for are so minuscule and so easily destroyed or altered from exposure to Earth’s environment,” said Danny Glavin, a senior sample scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-lead author of the Nature Astronomy paper. “That’s why some of these new discoveries would not be possible without a sample-return mission, meticulous contamination-control measures, and careful curation and storage of this precious material from Bennu.”
While Glavin’s team analyzed the Bennu samples for hints of life-related compounds, their colleagues, led by Tim McCoy, curator of meteorites at the Smithsonian’s National Museum of Natural History in Washington, and Sara Russell, cosmic mineralogist at the Natural History Museum in London, looked for clues to the environment these molecules would have formed. Reporting in the journal Nature, scientists further describe evidence of an ancient environment well-suited to kickstart the chemistry of life.
Ranging from calcite to halite and sylvite, scientists identified traces of 11 minerals in the Bennu sample that form as water containing dissolved salts evaporates over long periods of time, leaving behind the salts as solid crystals.
Similar brines have been detected or suggested across the solar system, including at the dwarf planet Ceres and Saturn’s moon Enceladus.
Although scientists have previously detected several evaporites in meteorites that fall to Earth’s surface, they have never seen a complete set that preserves an evaporation process that could have lasted thousands of years or more. Some minerals found in Bennu, such as trona, were discovered for the first time in extraterrestrial samples.
“These papers really go hand in hand in trying to explain how life’s ingredients actually came together to make what we see on this aqueously altered asteroid,” said McCoy.
For all the answers the Bennu sample has provided, several questions remain. Many amino acids can be created in two mirror-image versions, like a pair of left and right hands. Life on Earth almost exclusively produces the left-handed variety, but the Bennu samples contain an equal mixture of both. This means that on early Earth, amino acids may have started out in an equal mixture, as well. The reason life “turned left” instead of right remains a mystery.
“OSIRIS-REx has been a highly successful mission,” said Jason Dworkin, OSIRIS-REx project scientist at NASA Goddard and co-lead author on the Nature Astronomy paper. “Data from OSIRIS-REx adds major brushstrokes to a picture of a solar system teeming with the potential for life. Why we, so far, only see life on Earth and not elsewhere, that’s the truly tantalizing question.”
NASA Goddard provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. NASA Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
For more information on the OSIRIS-REx mission, visit:
https://www.nasa.gov/osiris-rex
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Rani Gran
Goddard Space Flight Center, Greenbelt, Maryland
301-286-2483
rani.c.gran@nasa.gov
Share
Details
Last Updated Jan 29, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Asteroids Bennu Goddard Space Flight Center Science Mission Directorate
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.