Members Can Post Anonymously On This Site
NASA Glenn’s Photographers Capture Harvest Moon
-
Similar Topics
-
By NASA
2024 Year in Review – Highlights from NASA in Silicon Valley
by Tiffany Blake
As NASA’s Ames Research Center in California’s Silicon Valley enters its 85th year since its founding, join us as we take a look back at some of our highlights of science, engineering, research, and innovation from 2024.
Ames Arc Jets Play Key Role in Artemis I Orion Spacecraft Heat Shield Findings
A block of Avcoat undergoes testing inside an arc jet test chamber at NASA Ames. The test article, configured with both permeable (upper) and non-permeable (lower) Avcoat sections for comparison, helped to confirm understanding of the root cause of the loss of charred Avcoat material that engineers saw on the Orion spacecraft after the Artemis I test flight beyond the Moon. photo credit: NASA Researchers at Ames were part of the team tasked to better understand and identify the root cause of the unexpected char loss across the Artemis I Orion spacecraft’s heat shield. Using Avcoat material response data from Artemis I, the investigation team was able to replicate the Artemis I entry trajectory environment — a key part of understanding the cause of the issue — inside the arc jet facilities at NASA Ames.
Starling Swarm Completes Primary Mission
The four CubeSat spacecraft that make up the Starling swarm have demonstrated success in autonomous operations, completing all key mission objectives. Image credit: NASA After ten months in orbit, the Starling spacecraft swarm successfully demonstrated its primary mission’s key objectives, representing significant achievements in the capability of swarm configurations in low Earth orbit, including distributing and sharing important information and autonomous decision making.
Another Step Forward for BioNutrients
Research scientists Sandra Vu, left, Natalie Ball, center, and Hiromi Kagawa, right, process BioNutrients production packs.Image credit: NASA NASA’s BioNutrients entered its fifth year in its mission to investigate how microorganisms can produce on-demand nutrients for astronauts during long-duration space missions. Keeping astronauts healthy is critical and as the project comes to a close, researchers have processed production packs on Earth on the same day astronauts processed production packs in space on the International Space Station to demonstrate that NASA can produce nutrients after at least five years in space, providing confidence it will be capable of supporting crewed missions to Mars.
Hyperwall Upgrade Helps Scientists Interpret Big Data
The newly upgraded hyperwall visualization system provides four times the resolution of the previous system. Image credit: NASA/Brandon Torres Navarrete Ames upgraded its powerful hyperwall system, a 300-square foot wall of LCD screens with over a billion pixels to display supercomputer-scale visualizations of the very large datasets produced by NASA supercomputers and instruments. The hyperwall is just one way researchers can utilize NASA’s high-end computing technology to better understand their data and advance the agency’s missions and research.
Ames Contributions to NASA Artificial Intelligence Efforts
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.Image credit: NASA/Bill Ingalls Ames contributes to the agency’s artificial intelligence work through ongoing research and development, agencywide collaboration, and communications efforts. This year, NASA announced David Salvagnini as its inaugural chief artificial intelligence officer and held the first agencywide town hall on artificial intelligence sharing how the agency is safely using and developing artificial intelligence to advance missions and research.
Advanced Composite Solar Sail System Successfully Launches, Deploys Sail
Illustration: NASA NASA’s Advanced Composite Solar Sail System successfully launched from Māhia, New Zealand, in April, and successfully deployed its sail in August to begin mission operations. The small satellite represents a new future in solar sailing, using lightweight composite booms to support a reflective polymer sail that uses the pressure of sunlight as propulsion.
Understanding Our Planet
Samuel Suleiman, an instructor on NASA’s OCEANOS student training program, gathers loose corals to place around an endangered coral species to help attract fish and other wildlife, giving the endangered coral a better chance of survivalphoto credit: NASA/Milan Loiacono In 2024, Ames researchers studied Earth’s oceans and waterways from multiple angles – from supporting NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem, or PACE, mission to bringing students in Puerto Rico experiences in oceanography and the preservation of coral reefs. Working with multiple partners, our scientists and engineers helped inform ecosystem management by joining satellite measurements of Earth with animal tracking data. In collaboration with the U.S. Geological Survey, a NASA team continued testing a specialized instrument package to stay in-the-know about changes in river flow rates.
Revealing the Mysteries of Asteroids in Our Solar System
Image credit: NASA Ames researchers used a series of supercomputer simulations to reveal a potential new explanation for how the moons of Mars may have formed: The first step, the findings say, may have involved the destruction of an asteroid.
Using NASA’s powerful James Webb Space Telescope, another Ames scientist helped reveal the smallest asteroids ever found in the main asteroid belt.
Ames Helps Emerging Space Companies ‘Take the Heat’
A heat shield made by NASA is visible on the blunt, upward-facing side of a space capsule after its landing in the Utah desert.Image credit: Varda Space Industries/John Kraus A heat shield material invented and made at Ames helped to safely return a spacecraft containing the first product processed on an autonomous, free-flying, in-space manufacturing platform. February’s re-entry of the spacecraft from Varda Space Industries of El Segundo, California, in partnership with Rocket Lab USA of Long Beach, California, marked the first time a NASA-manufactured thermal protection material, called C-PICA (Conformal Phenolic Impregnated Carbon Ablator), ever returned from space.
Team Continues to Move Forward with Mission to Learn More about Our Star
This illustration lays a depiction of the sun’s magnetic fields over an image captured by NASA’s Solar Dynamics Observatory on March 12, 2016.Image credit: NASA/SDO/AIA/LMSAL HelioSwarm’s swarm of nine spacecraft will provide deeper insights into our universe and offer critical information to help protect astronauts, satellites, and communications signals such as GPS. The mission team continues to work toward launching in 2029.
CAPSTONE Continues to Chart a New Path Around the Moon
CAPSTONE revealed in lunar Sunrise: CAPSTONE will fly in cislunar space – the orbital space near and around the Moon. The mission will demonstrate an innovative spacecraft-to-spacecraft navigation solution at the Moon from a near rectilinear halo orbit slated for Artemis’ Gateway.Illustration credit: NASA Ames/Daniel Rutter The microwave sized CubeSat, CAPSTONE, continues to fly in a cis-lunar near rectilinear halo orbit after launching in 2022. Flying in this unique orbit continues to pave the way for future spacecraft and Gateway, a Moon-orbiting outpost that is part of NASA’s Artemis campaign, as the team continues to collect data.
NASA Moves Drone Package Delivery Industry Closer to Reality
A drone is shown flying during a test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada in 2016. During the test, five drones simultaneously crossed paths, separated by different altitudes. Two drones flew beyond visual line of sight and three flew within line-of-sight of their operators. More UTM research followed, and it continues today. Image credit: NASA Ames/Dominic Hart NASA’s uncrewed aircraft system traffic management concepts paved the way for newly-approved package delivery drone flights in the Dallas area.
NASA’s uncrewed aircraft system traffic management concepts paved the way for newly-approved package delivery drone flights in the Dallas area.
NASA Technologies Streamline Air Traffic Management Systems
This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.Illustration credit: NASA Managing our busy airspace is a complex and important issue, ensuring reliable and efficient movement of commercial and public air traffic as well as autonomous vehicles. NASA, in partnership with AeroVironment and Aerostar, demonstrated a first-of-its-kind air traffic management concept that could pave the way for aircraft to safely operate at higher altitudes. The agency also saw continued fuel savings and reduction in commercial flight delays at Dallas Fort-Worth Airport, thanks to a NASA-developed tool that allows flight coordinators to identify more efficient, alternative takeoff routes.
Small Spacecraft Gathers Big Solar Storm Data from Deep Space
Illustration of NASA’s BioSentinel spacecraft as it enters a heliocentric orbit.Illustration credit: NASA Ames/Daniel Rutter BioSentinel – a small satellite about the size of a cereal box – is currently more than 30 million miles from Earth, orbiting our Sun. After launching aboard NASA’s Artemis I more than two years ago, BioSentinel continues to collect valuable information for scientists trying to understand how solar radiation storms move through space and where their effects – and potential impacts on life beyond Earth – are most intense. In May 2024, the satellite was exposed to a coronal mass ejection without the protection of our planet’s magnetic field and gathered measurements of hazardous solar particles in deep space during a solar storm.
NASA, FAA Partner to Develop New Wildland Fire Technologies
Artist’s rendering of remotely piloted aircraft providing fire suppression, monitoring and communications capabilities during a wildland fire. Illustration credit: NASA NASA researchers continued to develop and test airspace management technologies to enable remotely-piloted aircraft to fight and monitor wildland fires 24 hours a day.
The Advanced Capabilities for Emergency Response Operations (ACERO) project seeks to use drones and advanced aviation technologies to improve wildland fire coordination and operations.
NASA and Forest Service Use Balloon to Help Firefighters Communicate
The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Image credit: Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar The Strategic Tactical Radio and Tactical Overwatch (STRATO) technology is a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires. Providing cellular communication from above can improve firefighter safety and firefighting efficiency.
A Fully Reimagined Visitor Center
The NASA Ames Visitor Center includes exhibits and activities, sharing the work of NASA in Silicon Valley with the public.Image credit: NASA Ames/Don RIchey The NASA Ames Visitor Center at Chabot Space & Science Center in Oakland, California includes a fully reimagined 360-degree experience, featuring new exhibits, models, and more. An interactive exhibit puts visitors in the shoes of a NASA Ames scientist, designing and testing rovers, planes, and robots for space exploration.
Ames Collaborations in the Community
Former NASA astronauts Yvonne Cagle and Kenneth Cockrell pose with Eli Toribio and Rhydian Daniels at the University of California, San Francisco Bakar Cancer Hospital. Patients gathered to meet the astronauts and learn more about human spaceflight and NASA’s cancer research effortsImage credit: NASA Ames/Brandon Torres Navarrete NASA astronauts, scientists, and researchers, and leadership from the University of California, San Francisco (UCSF) met with cancer patients and gathered in a discussion about potential research opportunities and collaborations as part of President Biden and First Lady Jill Biden’s Cancer Moonshot initiative on Oct. 4. During the visit with patients, NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell answered questions about spaceflight and life in space.
Ames and the University of California, Berkeley, expanded their partnership, organizing workshops to exchange on their areas of technical expertise, including in Advanced Air Mobility, and to develop ideas for the Berkeley Space Center, an innovation hub proposed for development at Ames’ NASA Research Park. Under a new agreement, NASA also will host supercomputing resources for UC Berkeley, supporting the development of novel computing algorithms and software for a wide variety of scientific and technology areas.
NASA’s Ames Research Center Celebrates 85 Years of Innovation
by Rachel Hoover
Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.”
The NACA Ames laboratory in 1944.Image credit: NASA Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research:
“My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.Image credit: NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
“Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars.
“As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.”
When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
Ames Aeronautical Laboratory.Image credit: NACA Today Marks the Retirement of the Astrogram Newsletter
by Astrid Albaugh
For 66 years, the Astrogram has told the story of NASA’s Ames Research Center. Over those six-plus decades, the newsletter has documented hundreds of missions led by Ames, the progression of Hangar One’s reclamation, space shuttle launches with Ames’ payloads aboard them, countless VIP visits, and everything in between.
Ames published the first edition of the Astrogram in October 1958, coinciding with the transition of the center from its original incarnation as the National Advisory Committee for Aeronautics Ames Aeronautical Laboratory to a National Aeronautics and Space Administration (NASA) research center.
The newsletter has evolved over time, alongside the center. From October 1958 through January 2016, the Astrogram was published in print, before a digital edition was developed. In January 2016, the Astrogram transitioned to a digital-only format. Below are examples of some of the Astrogram issues from over the years. More are forthcoming from 1998 and prior once they are retrieved from the archives.
October 2014 Astrogram September 2010 Astrogram I have served as the editor of the Astrogram since February 1998. Over the past quarter century, it has been an interesting, and sometimes quite challenging, task for me to capture the breadth and depth of Ames’s story and ensure that we always published the newsletter on time. I still remember trekking over to the center’s imaging office to review the physical negatives and images that the Ames photographers had taken of events onsite and select the most compelling photos. I used a very early version of visual design software to craft the layout. When the paper was completed, I’d file it onto a CD and then hand it to the courier who would drive from the San Francisco printshop to pick it up from me. Once and awhile, someone would request to have an additional feature added, requiring multiple trips up the 101 and back. Sometimes I’d come in on the weekends to work on the paper, due to late submissions, much to the chagrin of my kids.
July 2007 Astrogram It has been a pleasure serving as the editor over the past quarter century, almost as many years as my kids are old. A person once asked me if I had changed my name to Astrid since it’s so like the word Astrogram. Any relationship between the newsletter and my name is simply serendipity. I have enjoyed being behind the scenes, mostly working diligently at my computer. Many at Ames know my name because of the newsletter but may have never met me in person. It’s been amusing sometimes when I encounter someone who can’t put a finger as to why they knew my name but didn’t recognize me standing in front of them. Their usual response when they realized why they know me was, “Ah, Astrid of the Astrogram.”
March 20, 1998 Astrogram Just as NASA innovates, the content of the Astrogram has to innovate as well. Many of the stories that you used to read in the Astrogram, you can now find on our NASA Ames web page here. If you would like to access past, archived issues of the Astrogram, going back to 1958, please consult the Ames Research Center Archives. I will continue to help tell Ames’s story, just using new platforms.
Whether this is your first issue or you have been an Astrogram supporter for decades, thank you for reading!
– Astrid of the Astrogram officially signing off
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is helping the Artemis Generation learn how to power space dreams with an interactive exhibit at INFINITY Science Center.
The engine test simulator exhibit at the official visitor center of NASA Stennis provides the chance to experience the thrill of being a NASA test engineer by guiding an RS-25 engine through a simulated hot fire test.
“It is an exhilarating opportunity to feel what it is like to be a NASA engineer, responsible for making sure the engine is safely tested for launch,” said Chris Barnett-Woods, a NASA engineer that helped develop the software for the exhibit.
Sitting at a console mirroring the actual NASA Stennis Test Control Center, users are immersed in the complex process of engine testing. The exhibit uses cutting-edge software and visual displays to teach participants how to manage liquid oxygen and liquid hydrogen propellants, and other essential elements during a hot fire.
A pair of young visitors to INFINITY Science Center carry out the steps of a simulated RS-25 engine hot fire on Dec. 19. The updated engine test simulator exhibit provided by NASA’s Stennis Space Center takes users through the hot fire process just as real engineers do at NASA Stennis.NASA/Danny Nowlin INFINITY Science Center, the official visitor center for NASA’s Stennis Space Center, has unveiled a new interactive simulator exhibit that allows visitors to become the test conductor for an RS-25 engine hot fire. NASA/Danny Nowlin Users follow step-by-step instructions that include pressing buttons, managing propellant tanks, and even closing the flare stack, just as real engineers do at NASA Stennis. Once the test is complete, they are congratulated for successfully conducting their own rocket engine hot fire.
The interactive exhibit is not just about pushing buttons. It is packed with interesting facts about the RS-25 engine, which helps power NASA’s Artemis missions as the agency explores secrets of the universe for the benefit of all. Visitors also can view real hot fires conducted at NASA Stennis from multiple angles, deepening their understanding of rocket propulsion testing and NASA’s journey back to the Moon and beyond.
NASA is currently preparing for the Artemis II mission, the first crewed flight test of the agency’s powerful SLS (Space Launch System) rocket and the Orion spacecraft around the Moon.
The first four Artemis missions are using modified space shuttle main engines tested at NASA Stennis. The center also achieved a testing milestone last April for engines to power future Artemis missions. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power NASA’s SLS rocket, producing more than 8.8 million pounds of total combined thrust at liftoff.
The revitalized exhibit, previously used when the visitor center was located onsite, represents a collaborative effort. It started as an intern project in the summer of 2023 before evolving into a full-scale experience. Engineers built on the initial concept, integrating carpentry, audio, and video to create the seamless experience to educate and inspire.
The best part might be that visitors to INFINITY Science Center can repeat the simulation as many times as they like, gaining confidence and learning more with each attempt.
“This exhibit was a favorite in the past, and with its new upgrades, the engine test simulator is poised to capture the imaginations of the Artemis Generation at INFINITY Science Center,” said NASA Public Affairs Specialist Samone Wilson. “This is one exhibit you will not want to miss.” INFINITY Science Center is located at 1 Discovery Circle, Pearlington, Mississippi. For hours of operation and admission information, please visit www.visitinfinity.com.
Share
Details
Last Updated Dec 20, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
“Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
Learn more about. CLPS and Artemis at:
https://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
Article 10 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The six SCALPSS cameras mounted around the base of Blue Ghost will collect imagery during and after descent and touchdown. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images to produce a 3D view of the surface. Image courtesy of Firefly. Say cheese again, Moon. We’re coming in for another close-up.
For the second time in less than a year, a NASA technology designed to collect data on the interaction between a Moon lander’s rocket plume and the lunar surface is set to make the long journey to Earth’s nearest celestial neighbor for the benefit of humanity.
Developed at NASA’s Langley Research Center in Hampton, Virginia, Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS) is an array of cameras placed around the base of a lunar lander to collect imagery during and after descent and touchdown. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images from the version of SCALPSS on Firefly’s Blue Ghost — SCALPSS 1.1 — to produce a 3D view of the surface. An earlier version, SCALPSS 1.0, was on Intuitive Machines’ Odysseus spacecraft that landed on the Moon last February. Due to mission contingencies that arose during the landing, SCALPSS 1.0 was unable to collect imagery of the plume-surface interaction. The team was, however, able to operate the payload in transit and on the lunar surface following landing, which gives them confidence in the hardware for 1.1.
The SCALPSS 1.1 payload has two additional cameras — six total, compared to the four on SCALPSS 1.0 — and will begin taking images at a higher altitude, prior to the expected onset of plume-surface interaction, to provide a more accurate before-and-after comparison.
These images of the Moon’s surface won’t just be a technological novelty. As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to be able to accurately predict the effects of landings.
How much will the surface change? As a lander comes down, what happens to the lunar soil, or regolith, it ejects? With limited data collected during descent and landing to date, SCALPSS will be the first dedicated instrument to measure the effects of plume-surface interaction on the Moon in real time and help to answer these questions.
“If we’re placing things – landers, habitats, etc. – near each other, we could be sand blasting what’s next to us, so that’s going to drive requirements on protecting those other assets on the surface, which could add mass, and that mass ripples through the architecture,” said Michelle Munk, principal investigator for SCALPSS and acting chief architect for NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “It’s all part of an integrated engineering problem.”
Under the Artemis campaign, the agency’s current lunar exploration approach, NASA is collaborating with commercial and international partners to establish the first long-term presence on the Moon. On this CLPS (Commercial Lunar Payload Services) initiative delivery carrying over 200 pounds of NASA science experiments and technology demonstrations, SCALPSS 1.1 will begin capturing imagery from before the time the lander’s plume begins interacting with the surface until after the landing is complete.
The final images will be gathered on a small onboard data storage unit before being sent to the lander for downlink back to Earth. The team will likely need at least a couple of months to
process the images, verify the data, and generate the 3D digital elevation maps of the surface. The expected lander-induced erosion they reveal probably won’t be very deep — not this time, anyway.
One of the SCALPSS cameras is visible here mounted to the Blue Ghost lander.Image courtesy of Firefly. “Even if you look at the old Apollo images — and the Apollo crewed landers were larger than these new robotic landers — you have to look really closely to see where the erosion took place,” said Rob Maddock, SCALPSS project manager at Langley. “We’re anticipating something on the order of centimeters deep — maybe an inch. It really depends on the landing site and how deep the regolith is and where the bedrock is.”
But this is a chance for researchers to see how well SCALPSS will work as the U.S. advances human landing systems as part of NASA’s plans to explore more of the lunar surface.
“Those are going to be much larger than even Apollo. Those are large engines, and they could conceivably dig some good-sized holes,” said Maddock. “So that’s what we’re doing. We’re collecting data we can use to validate the models that are predicting what will happen.”
The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development Program.
NASA is working with several American companies to deliver science and technology to the lunar surface under the CLPS initiative. Through this opportunity, various companies from a select group of vendors bid on delivering payloads for NASA including everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.
Share
Details
Last Updated Dec 19, 2024 EditorAngelique HerringLocationNASA Langley Research Center Related Terms
General Explore More
4 min read Statistical Analysis Using Random Forest Algorithm Provides Key Insights into Parachute Energy Modulator System
Article 6 hours ago 1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award
Article 8 hours ago 2 min read An Evening With the Stars: 10 Years and Counting
Article 8 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
As 1969, an historic year that saw not just one but two successful human lunar landings, drew to a close, NASA continued preparations for its planned third Moon landing mission, Apollo 13, then scheduled for launch on March 12, 1970. The Apollo 13 prime crew of Commander James A. Lovell, Command Module Pilot (CMP) Thomas K. “Ken” Mattingly, and Lunar Module Pilot (LMP) Fred W. Haise, and their backups John W. Young, John L. “Jack” Swigert, and Charles M. Duke, continued intensive training for the mission. NASA announced the selection of the Fra Mauro region of the Moon as the prime landing site for Apollo 13, favored by geologists because it forms an extensive geologic unit around Mare Imbrium, the largest lava plain on the Moon. The Apollo 13 Saturn V rolled out to its launch pad.
Apollo 11
The Apollo 11 astronauts meet Canadian Prime Minister Pierre Trudeau, left, on Parliament Hill in Ottawa. Image courtesy of The Canadian Press. The Apollo 11 astronauts meet with Québec premier ministre Jean Lesage in Montréal. Image courtesy of Archives de la Ville de Montreal. Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrinhad returned from their Giantstep Presidential goodwill tour on Nov. 5, 1969. Due to scheduling conflicts, a visit to Canada could not be included in the same time frame as the rest of the tour, so the astronauts made a special trip to Ottawa and Montreal on Dec. 2 and 3, meeting with local officials.
Apollo 11 astronaut Neil A. Armstrong, left, and comedian Bob Hope perform for the troops in Korat, Thailand. Armstrong, in blue flight suit, shakes hands with servicemen in Long Binh, South Vietnam. Armstrong, left, and Hope entertain the crowd in Cu Chi, South Vietnam. Armstrong joined famed comedian Bob Hope’s USO Christmas tour in December 1969. He participated in several shows at venues in South Vietnam, Thailand, and Guam, kidding around with Hope and answering questions from the assembled service members. He received standing ovations and spent much time shaking hands with the troops. The USO troupe also visited the hospital ship U.S.S. Sanctuary (AH-17) stationed in the South China Sea.
Apollo 12
For the first time in nearly four weeks, on Dec. 10, Apollo 12 astronauts Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean stepped out into sunshine and breathed unfiltered air. Since their launch on Nov. 14, 1969, the trio had traveled inside their spacecraft for 10 days on their mission to the Moon and back, wore respirators during their recovery in the Pacific Ocean, stayed in the Mobile Quarantine Facility during the trip from the prime recovery ship U.S.S. Hornet back to Houston, and lived in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Like the Apollo 11 crew before them, Conrad, Gordon, and Bean exhibited no symptoms of any infections with lunar microorganisms and managers declared them fit to be released from quarantine. MSC Director Robert L. Gilruth, other managers, and a crowd of well-wishers greeted Conrad, Gordon, and Bean.
Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Charles “Pete” Conrad as he emerges from his postflight quarantine. Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Richard F. Gordon as he emerges from his postflight quarantine. Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Alan L. Bean as he emerges from his postflight quarantine. Addressing the crowd gathered outside the LRL, Conrad commented that “the LRL was really quite pleasant,” but all three were glad to be breathing non man-made air! While the men went home to their families for a short rest, work inside the LRL continued. Scientists began examining the first of the 75 pounds of rocks returned by the astronauts as well as the camera and other hardware they removed from Surveyor 3 for effects of 31 months exposed to the harsh lunar environment. Preliminary analysis of the TV camera that failed early during their first spacewalk on the lunar surface indicated that the failure was due to partial burnout of the Videocon tube, likely caused by the crew accidentally pointing the camera toward the Sun. Other scientists busied themselves with analyzing the data returning from the Apollo Lunar Surface Experiment Package (ALSEP) instruments Conrad and Bean deployed on the lunar surface. Mission planners examining the photographs taken from lunar orbit of the Fra Mauro area were confident that the next mission, Apollo 13, would be able to make a safe landing in that geologically interesting site, the first attempt to land in the lunar highlands.
After taking their first steps in the sunshine, Apollo 12 astronauts Charles “Pete” Conrad, left, Alan L. Bean, and Richard F. Gordon address a large group of well-wishers outside the Lunar Receiving Laboratory. Bean, left, Gordon, and Conrad during their postflight press conference. Two days after leaving the LRL, Conrad, Gordon, and Bean held their postflight press conference in the MSC auditorium. Addressing the assembled reporters, the astronauts first introduced their wives as their “number one support team,” then provided a film and photo summary of their mission, and answered numerous questions. Among other things, the astronauts praised the spacesuits they wore during the Moon walks, indicating they worked very well and, looking ahead, saw no impediments to longer excursions on future missions. Their only concern centered around the ever-present lunar dust that clung to their suits, raising that as a potential issue for future lunar explorers.
Director of NASA’s Kennedy Space Center in Florida Kurt H. Debus, right, presents Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean with photos of their launch. White House of the Apollo 12 astronauts and their wives with President Richard M. Nixon, First Lady Pat Nixon, and their daughter Tricia Nixon. Conrad, Gordon, and Bean returned to NASA’s Kennedy Space Center (KSC) in Florida on Dec. 17, where their mission began more than a month earlier and nearly ended prematurely when lightning twice struck their Saturn V rocket. KSC Director Kurt H. Debus presented each astronaut with a framed photograph of their launch in front of 8,000 workers assembled in the Vehicle Assembly Building (VAB). Of their nearly ill-fated liftoff Conrad expressed his signature confidence, “Had we to do it again, I would launch exactly under the same conditions.” Guenter Wendt and his pad closeout team had collected a piece of grounding rod from the umbilical tower, cut it into three short pieces, mounted them with the inscription “In fond memory of the electrifying launch of Apollo 12,” and presented them to the astronauts. Three days later, President Richard M. Nixon and First Lady Pat Nixon welcomed Conrad, Gordon, and Bean and their wives Jane, Barbara, and Sue, respectively, to a dinner at the White House. After dinner, they watched a film about the Apollo 12 mission as well as the recently released motion picture Marooned about three astronauts stranded in space. President Nixon requested that the astronauts pay a visit to former President Lyndon B. Johnson, who for many years championed America’s space program, and brief him on their mission, which they did in January 1970.
The Alan Bean Day parade in Fort Worth. Apollo 12 astronaut Bean and his family deluged by shredded office paper during the parade in his honor in Fort Worth. Image credits: courtesy Fort Worth Star Telegram. On Dec. 22, the city of Fort Worth, Texas, honored native son Bean, with Conrad, Gordon, and their families joining him for the Alan Bean Day festivities. An estimated 150,000 people lined the streets of the city to welcome Bean and his crewmates, dumping a blizzard of ticker tape and shredded office paper on the astronauts and their families during the parade. City workers cleared an estimated 60 tons of paper from the streets after the event.
Apollo 13
The planned Apollo 13 landing site in the Fra Mauro region, in relation to the Apollo 11 and 12 landing sites. Workers place the Spacecraft Lunar Module Adapter over the Apollo 13 Lunar Module. On Dec. 10, 1969, NASA announced the selection of the Fra Mauro region of the Moon as the prime landing site for Apollo 13, located about 110 miles east of the Apollo 12 touchdown point. Geologists favored the Fra Mauro area for exploration because it forms an extensive geologic unit around Mare Imbrium, the largest lava plain on the Moon. Unlike the Apollo 11 and 12 sites located in the flat lunar maria, Fra Mauro rests in the relatively more rugged lunar highlands. The precision landing by the Apollo 12 crew and their extensive orbital photography of the Fra Mauro region gave NASA confidence to attempt a landing at Fra Mauro. Workers in KSC’s VAB had stacked the three stages of Apollo 13’s Saturn V in June and July 1969. On Dec. 10, they topped the rocket with the Apollo 13 spacecraft, comprising the Command and Service Modules (CSM) and the Lunar Module (LM) inside the Spacecraft LM Adapter. Five days later, the Saturn V exited the VAB and made the 3.5-mile journey out to Launch Pad 39A to begin a series of tests to prepare it for the launch of the planned 10-day lunar mission. During their 33.5 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the ALSEP, a suite of five investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. Mattingly planned to remain in the CSM, conducting geologic observations from lunar orbit including photographing potential future landing sites.
Apollo 13 astronaut James A. Lovell trains on the deployment of the S-band antenna. Apollo 13 astronaut Fred W. Haise examines one of the lunar surface instruments. During the first of the two spacewalks, Apollo 13 Moon walkers Lovell and Haise planned to deploy the five ALSEP experiments, comprising:
Charged Particle Lunar Environment Experiment (CPLEE) – flying for the first time, this experiment sought to measure the particle energies of protons and electrons reaching the lunar surface from the Sun. Lunar Atmosphere Detector (LAD) – this experiment used a Cold Cathode Ion Gauge (CCIG) to measure the pressure of the tenuous lunar atmosphere. Lunar Heat Flow Experiment (LHE) – designed to measure the steady-state heat flow from the Moon’s interior. Passive Seismic Experiment (PSE) – similar to the device left on the Moon during Apollo 12, consisted of a sensitive seismometer to record Moon quakes and other seismic activity. Lunar Dust Detector (LDD) – measured the amount of dust deposited on the lunar surface. A Central Station provided command and communications to the ALSEP experiments, while a Radioisotope Thermoelectric Generator using heat from the radioactive decay of a Plutonium-238 sample provided uninterrupted power. Additionally, the astronauts planned to deploy and retrieve the Solar Wind Collector experiment to collect particles of the solar wind, as did the Apollo 11 and 12 crews before them. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts Lovell, Haise, Young, and Duke participated in a geology training field trip between Dec. 17 and 20 on the Big Island of Hawaii. Geologist Patrick D. Crosland of the National Park Service in Hawaii provided the astronauts with a tour of recent volcanic eruption sites in the Kilauea area, with the thought that the Fra Mauro formation might be of volcanic origin. During several traverses in the Kilauea Volcano area, NASA geologists John W. Dietrich, Uel S. Clanton, and Gary E. Lofgren and US Geological Survey geologists Gordon A. “Gordie” Swann, M.H. “Tim” Hait, and Leon T. “Lee” Silver accompanied the astronauts. The training sessions honed the astronauts’ geology skills and refined procedures for collecting rock samples and for documentary photography.
Apollo 14
The Apollo 14 Command and Service Modules shortly after arriving in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida. The Apollo 14 Lunar Module ascent stage shortly after arriving in the MSOB. S69-62154 001 Preparations for the fourth Moon landing mission, Apollo 14, continued as well. At the time tentatively planned for launch in July 1970, mission planners considered the Littrow area on the eastern edge of the Mare Serenitatis, characterized by dark material possibly of volcanic origin, as a potential landing site. Apollo 14 astronauts Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had already begun training for their mission. At KSC’s Manned Spacecraft Operations Building (MSOB), the Apollo 14 CSM arrived from its manufacturer North American Rockwell in Downey, California, as did the two stages of the LM from the Grumman Aerospace and Engineering Company in Bethpage, New York, in November 1969. Engineers began tests of the spacecraft shortly after their arrival. The three stages of the Apollo 14 Saturn V were scheduled to arrive at KSC in January 1970.
To be continued …
News from around the world in December 1969:
December 2 – Boeing’s new 747 Jumbo Jet makes its first passenger flight, from Seattle to New York.
December 3 – George M. Low sworn in as NASA deputy administrator.
December 4 – A Boy Named Charlie Brown, the first feature film based on the Peanuts comic strip, is released to theaters for the first time.
December 7 – The animated Christmas special Frosty the Snowman, makes its television debut.
December 14 – The Jackson 5 make their first appearance on The Ed Sullivan Show.
December 18 – The sixth James Bond film, On Her Majesty’s Secret Service, held its world premiere in London, with George Lazenby as Agent 007.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.