Jump to content

Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Science in Space: October 2024

Cultures around the world celebrate Halloween on Oct 31. In many places, in addition to people wearing costumes and eating candy, this day is associated with spooky decorating using fake blood, skeletons, flies, and spiders, some of them glow-in-the-dark.

Crew members on the International Space Station have been known to indulge in a bit of dressing up and candy consumption to mark the day, and the research they conduct year-round occasionally involves these iconic Halloween themes. No tricks, just treats.

Four astronauts are lined up and looking at the camera. They are wearing bright red and green shirts, fake mustaches, and caps like video game and cartoon characters.
JAXA astronaut Koichi Wakata and NASA astronauts Frank Rubio, Nicole Mann, and Josh Cassada dressed up for Halloween 2022.
NASA

A current investigation, Megakaryocytes Flying-One or MeF1, investigates how components of real blood known as megakaryocytes and platelets develop and function during spaceflight. Megakaryocytes are large cells found in bone marrow and platelets are pieces of these cells. Both play important roles in blood clotting and immune response. Results could improve understanding of changes in inflammation, immune responses, and clot formation in spaceflight and on the ground.

Creepy crawlies

Fake spiders and flies are popular Halloween decorations (and fodder for fun pranks). Several investigations on the space station have used real ones.

Fruit Fly Lab-02 used fruit flies, Drosophila melanogaster, to examine the cellular and genetic mechanisms that affect heart health during spaceflight. The flies experienced several effects on cardiac function, including changes in muscle fibers, that could be a fundamental response of heart muscles to microgravity.

MVP Fly-01 looked at how spaceflight affects immune function and resulting changes to the nervous system of the same type of flies, along with the value of artificial gravity as a countermeasure. Researchers found that artificial gravity provided some protection to physical changes to the central nervous system from spaceflight. Spiders, Fruit Flies and Directional Plant Growth (CSI-05) compared the weaving characteristics of golden orb-web spiders on the space station and the ground. Under natural conditions, the spiders build asymmetric webs with the hub near the upper edge, where they wait for prey. In microgravity, most but not all webs were quite symmetric, although webs built when the lights were on were more asymmetric and the spiders waited facing away from the lights. This could mean that in the absence of gravity, the spiders orient to the direction of light.

A long-legged golden spider the size of a person’s palm is visible in the middle of a web with uneven and asymmetrical lines.
A golden-orb weaver and its web on the space station.
NASA

Bad to the bones

Everyone needs healthy bones and skeletons, and not just on Halloween. But spaceflight and aging on Earth can cause loss of bone mass. Space station research has looked at the mechanisms behind this loss as well as countermeasures such as exercise and nutrition.

Bisphosphonates as a Countermeasure to Bone Loss examined whether a medication that blocks the breakdown of bone, in conjunction with the routine in-flight exercise program, protected crew members from bone mineral density loss during spaceflight. The research found that it did reduce loss, which in turn reduced the occurrence of kidney stones in crew members.

Assessment of the Effect of Space Flight on Bone (TBone) studied how spaceflight affects bone quality using a high-resolution bone scan technique. Researchers found incomplete recovery of bone strength and density in the tibia (a bone in the lower leg), comparable to a decade or more of terrestrial age-related bone loss. The work also highlighted the relationship between length of a mission and bone loss and suggested that pre-flight markers could identify crew members at greatest risk.

In a merging of blood and bones, CSA’s Marrow looked at whether microgravity has a negative effect on bone marrow and the blood cells it produces. Decreased production of red blood cells can lead to a condition called space anemia. Findings related to the expression of genes involved in red blood cell formation and those related to bone marrow adipose or fat tissue, which stores energy and plays a role in immune function, could contribute to development of countermeasures. Marrow results also suggested that the destruction of red blood cells (known as hemolysis) is a primary effect of spaceflight and contributes to anemia. Bad news for vampires.

ESA astronaut Thomas Pesquet
ESA astronaut Thomas Pesquet storing Marrow samples in MELFI.
NASA

It glows in the dark

Fluorescence – a cool effect at a ghoulish party – also is a common tool in scientific research, enabling researchers to see physical and genetic changes. The space station has special microscopes for observing glow-in-the-dark samples.

For Medaka Osteoclast 2, an investigation from JAXA (Japan Aerospace Exploration Agency), researchers genetically modified translucent Medaka fish with fluorescent proteins to help them observe cellular and genetic changes the fish experience during spaceflight. One analysis revealed a decrease in the mineral density of bones in the throat and provided insights into the mechanisms behind these changes.

A translucent fish fills this image against a black background. Green fluorescence highlights the bones in its head and tail and its spine.
A translucent Medaka fish with fluorescent proteins showing its bone structure.
Philipp Keller, Stelzer Group, EMBL

Biorock, an investigation from ESA (European Space Agency), examined how microgravity affects the interaction between rocks and microbes and found little effect on microbial growth. This result suggests that microbial-supported bioproduction and life support systems can perform in reduced gravity such as that on Mars, which would be a perfect place for an epic Halloween celebration.

A yellow and green biofilm of microbes grows over and into the pocked surface of a basalt slide.
Preflight fluorescence microscopy image of a biofilm for the Biorock experiment.
NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Victor Glover tests collection methods for ISS External Microorganisms in the Neutral Buoyancy Lab at Johnson Space Center.NASA Astronauts are scheduled to venture outside the International Space Station to collect microbiological samples during crew spacewalks for the ISS External Microorganisms experiment. This investigation focuses on sampling at sites near life support system vents to examine whether the spacecraft releases microorganisms, how many, and how far they may travel.
      This experiment could help researchers understand whether and how these microorganisms survive and reproduce in the harsh space environment and how they may perform at planetary destinations such as the Moon and Mars. Extremophiles, or microorganisms that can survive harsh environments, are also of interest to industries on Earth such as pharmaceuticals and agriculture.
      Spacecrafts and spacesuits are thoroughly sterilized before missions; however, humans carry their own microbiomes and continuously regenerate microbial communities. It’s important to understand and address how well current designs and processes prevent or limit the spread of human contamination.  The data could help determine whether changes are needed to crewed spacecraft, including spacesuits, that are used to explore destinations where life may exist now or in the past.
      Learn more about how researchers monitor microbes on the space station.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      International Space Station News
      Space Station Research Reference Materials
      Station Benefits for Humanity
      View the full article
    • By NASA
      Insights into metal alloy solidification

      Researchers report details of phase and structure in the solidification of metal alloys on the International Space Station, including formation of microstructures. Because these microstructures determine a material’s mechanical properties, this work could support improvements in techniques for producing coatings and additive manufacturing or 3D printing processes.

      METCOMP, an ESA (European Space Agency) investigation, studied solidification in microgravity using transparent organic mixtures as stand-ins for metal alloys. Conducting the research in microgravity removed the influence of convection and other effects of gravity. Results help scientists better understand and validate models of solidification mechanisms, enabling better forecasting of microstructures and improving manufacturing processes.
      Image from the METCOMP investigation of how a metal alloy could look like as it solidifies. E-USOC Measuring the height of upper-atmospheric electrical discharges

      Researchers determined the height of a blue discharge from a thundercloud using ground-based electric field measurements and space-based optical measurements from Atmosphere-Space Interactions Monitor (ASIM). This finding helps scientists better understand how these high-altitude lightning-related events affect atmospheric chemistry and could help improve atmospheric models and climate and weather predictions.

      ESA’s ASIM is an Earth observation facility that studies severe thunderstorms and upper-atmospheric lighting events and their role in the Earth’s atmosphere and climate. Upper-atmospheric lightning, also known as transient luminous events, occurs well above the altitudes of normal lightning and storm clouds. The data collected by ASIM could support research on the statistical properties of many upper atmosphere lightning events, such as comparison of peak intensities of blue and red pulses with reports from lightning detection networks.
      An artist’s impression of a blue jet as observed from the International Space Station.Mount Visual/University of Bergen/DTU Modeling a complex neutron star

      Scientists report that they can use modeling of neutron star PSRJ1231−1411’s X-ray pulses to infer its mass and radius and narrow the possible behaviors of the dense matter at its core. This finding provides a better understanding of the composition and structure of these celestial objects, improving models that help answer questions about conditions in the universe.

      The Neutron star Interior Composition Explorer provides high-precision measurements of pulses of X-ray radiation from neutron stars. This particular neutron star presented challenges in finding a fit between models and data, possibly due to fundamental issues with its pulse profile. The authors recommend a program of simulations using synthetic data to determine whether there are fundamental issues with this type of pulse profile that could prevent efforts to obtain tighter and more robust constraints.
      Concentrators on the Neutron star Interior Composition Explorer instrument.NASAView the full article
    • By European Space Agency
      Image: Seed-sized space chip View the full article
    • By Space Force
      Space Launch Delta 45 supported the maiden flight for Blue Origin’s New Glenn from Space Launch Complex 36 at Cape Canaveral Space Force Station.

      View the full article
    • By NASA
      Measurements from space support wildfire risk predictions

      Researchers demonstrated that data from the International Space Station’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instrument played a significant role in the ability of machine learning algorithms to predict wildfire susceptibility. This result could help support development of effective strategies for predicting, preventing, monitoring, and managing wildfires.

      As the frequency and severity of wildfires increases worldwide, experts need reliable models of fire susceptibility to protect public safety and support natural resource planning and risk management. ECOSTRESS measures evapotranspiration, water use efficiency, and other plant-water dynamics on Earth. Researchers report that its water use efficiency data consistently emerged as the leading factor in predicting wildfires, with evaporative stress and topographic slope data also significant.
      This ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station evapotranspiration image of California’s Central Valley in May 2022 shows high water use (blue) and dry conditions (brown). NASA Combining instruments provides better emissions data

      Scientists found that averaging data from the International Space Station’s OCO‐3 and EMIT external instruments can accurately measure the rate of carbon dioxide emissions from power plants. This work could improve emissions monitoring and help communities respond to climate change.

      Carbon dioxide emissions from fossil fuel combustion make up nearly a third of human-caused emissions and are a major contributor to climate change. In many places, though, scientists do not know exactly how much carbon dioxide these sources emit. The Orbiting Carbon Observatory-3 or OCO-3 can quantify emissions over large areas and Earth Surface Mineral Dust Source Investigation data can help determine emissions from individual facilities. The researchers suggest future work continue to investigate the effect of wind conditions on measurements.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The The Orbiting Carbon Observatory-3 data showing carbon dioxide concentrations in Los Angeles. NASA Thunderstorm phenomena observed from space

      Observations by the International Space Station’s Atmosphere-Space Interactions Monitor (ASIM) instrument during a tropical cyclone in 2019 provide insight into the formation and nature of blue corona discharges often observed at the tops of thunderclouds. A better understanding of such processes in Earth’s upper atmosphere could improve atmospheric models and weather and climate predictions.

      Scientists do not fully understand the conditions that lead to formation of blue corona discharges, bursts of electrical streamers, which are precursors to lightning. Observations from the ground are affected by scattering and absorption in the clouds. ASIM, a facility from ESA (European Space Agency), provides a unique opportunity for observing these high-atmosphere events from space.
      View of Atmosphere-Space Interactions Monitor, the white and blue box on the end of the International Space Station’s Columbus External Payload Facility. NASAView the full article
  • Check out these Videos

×
×
  • Create New...