Jump to content

Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch


NASA

Recommended Posts

  • Publishers

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The yellowish-blue planet Saturn with its Titan moon in the foreground.
A natural color view from Cassini of Saturn with its Titan moon in the foreground in August 2012. Titan’s diameter is 50% larger than Earth’s moon.
Credit: NASA

NASA’s ambitious Cassini mission to Saturn in the late 1990s was one of the agency’s greatest accomplishments, providing unprecedented revelations about the esoteric outer planet and its moons. The complex undertaking was also a tremendous, yet bittersweet, achievement for the Lewis Research Center (today, NASA’s Glenn Research Center in Cleveland), which oversaw the rockets that propelled Cassini to Saturn. Cassini brought a close to over 35 years of Lewis’ management of NASA’s launch vehicles.

Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch

1. NASA Lewis Launched the Largest and Most Complex Deep-Space Mission to Date

In the early 1980s, NASA began planning the first-ever in-depth study of the planet Saturn. The mission would use the Cassini orbiter designed by NASA’s Jet Propulsion Laboratory in Southern California and the European Space Agency’s Huygens lander. It was one of the heaviest and most complex interplanetary spacecraft ever assembled. Cassini’s plutonium power system and intricate flight path further complicated the mission.

NASA Lewis was responsible for managing the launches of government missions involving the Centaur upper stage and the Atlas and Titan boosters. Cassini’s 6-ton payload forced Lewis to use the U.S. Air Force’s three-stage Titan IV, the most powerful vehicle available, and pair it with the most advanced version of the Centaur, referred to as G-prime.

A very tall brown and silver spacecraft shroud stands inside a large grey chamber and towers over a person, seen at its bottom right.
The Titan IV shroud in the Space Power Facility in October 1990. It was only the second test since the world-class facility had been brought back online after over a decade in standby conditions.
Credit: NASA/Quentin Schwinn

2. Lewis Performed Hardware Testing for the Cassini Launch

One of NASA Lewis’ primary launch responsibilities was integrating the payload and upper stages with the booster. This involved balancing weight requirements, providing adequate insulation for Centaur’s cryogenic propellants, determining correct firing times for the stages, and ensuring that that the large shroud, which encapsulated both the upper stage and payload, jettisoned cleanly after launch.

By the time of Cassini, the center had been testing shrouds (including the Titan III fairing) in simulated space conditions for over 25 years. NASA’s Space Power Facility possesses the world’s largest vacuum chamber and was large enough to accommodate the Titan IV’s 86-foot-tall, 16-foot-diameter fairing. In the fall of 1990, the shroud was installed in the chamber, loaded with weights that simulated the payload, and subjected to atmospheric pressures found at an altitude of 72 miles.

The system was successfully separated in less than half a second. Using simulated Cassini and Centaur vehicles, NASA engineers also redesigned a thicker thermal blanket that would protect Cassini’s power system from acoustic vibrations during liftoff.

An overhead view of a large group of people wearing professional clothing who stand outside in front of a large, silver rocket model.
Members of NASA Lewis’ Launch Vehicle Directorate pose with a Centaur model in May 1979 to mark the 50th successful launch of the Atlas/Centaur.
Credit: NASA/Martin Brown

3. Lewis Personnel Assisted with the Launch

In late August 1997, a group of NASA Lewis engineers traveled to NASA’s Kennedy Space Center in Florida to make final preparations for the Cassini launch, working with Air Force range safety personnel at Patrick Air Force Base to ensure a safe launch under all circumstances.

After an aborted launch two days earlier, the vehicle was readied for another attempt in the evening of October 14. Lewis personnel took stations in the Launch Vehicle Data Center inside Hangar AE to monitor the launch vehicle’s temperature, pressure, speed, trajectory, and vibration during the launch. The weather was mild, and the countdown proceeded into the morning hours of October 15 without any major issues.

At 4:43 a.m. EDT, Titan’s first stage and the two massive solid rocket motors roared to life, and the vehicle rose into the dark skies over Florida. The Lewis launch team monitored the flight as the vehicle exited Earth’s atmosphere, Titan burned through its stages, and Centaur sent Cassini out of Earth orbit and on its 2-billion-mile journey to Saturn. After a successful spacecraft separation, Lewis’ responsibilities were complete. The launch had gone exceedingly well

An illustration of a shiny silver spacecraft in space orbiting a reddish-brown moon. The planet Saturn can be seen to the right of the spacecraft and moon, and another small silver lander can be seen descending to the moon’s surface.
This illustration depicts the Cassini orbiter with the Huygens lander descending to the Titan moon (left) and Saturn in the background.
Credit: NASA

4. Cassini-Huygens Brought a Close to Decades of Lewis Launch Operations

Cassini-Huygens was NASA Lewis’ 119th and final launch, and it brought to a close the center’s decades of launch operations. The center had been responsible for NASA’s upper-stage vehicles since the fall of 1962. The primary stages were the Agena, which had 28 successful launches, and Centaur, which has an even more impressive track record and remains in service today.

While Lewis continued to handle vehicle integration and other technical issues for launches of NASA payloads, in the 1980s, NASA began transferring launch responsibilities to commercial entities. In the mid-1990s, NASA underwent a major realignment that consolidated all launch vehicle responsibilities at NASA Kennedy.

So it was with mixed emotions that around 20 Lewis employees and retirees gathered at the Cleveland center in the early morning hours of Oct. 15, 1997, to watch the Cassini launch. The group held its cheers for 40 minutes after liftoff until Lewis’ responsibilities concluded for the last time with the safe separation of Cassini from Centaur. “In many ways, this is the end of an era, across the agency and, in particular, here at Lewis,” noted one engineer from the Launch Vehicle and Transportation Office.

Surrounded by darkness, a large rocket blasts off from a launchpad as orange-white smoke billows out from underneath it.
The Titan IV/Centaur lifts off from Launch Complex 40 at Cape Canaveral on Oct. 15, 1997. NASA Lewis engineers were monitoring the launch from Hangar AE, roughly 3.5 miles to the south.
Credit: NASA

5. Cassini Made Groundbreaking Discoveries That Inform Today’s NASA Missions

Cassini’s seven-year voyage to Saturn included flybys of Venus (twice), Earth, and Jupiter so that the planets’ gravitational forces could accelerate the spacecraft. Cassini entered Saturn’s orbit in June 2004 and began relaying data and nearly half a million images back to Earth. Huygens separated from the spacecraft and descended to the surface of the Saturn’s largest moon, Titan, in January 2005. It was the first time a vehicle ever landed on a celestial body in the outer solar system.

Cassini went on to make plunges into the planet’s upper atmosphere and through Saturn’s rings.  Scientific information on the mysterious planet, its moons, and rings led to the publication of nearly 4,000 technical papers. After over 13 years and nearly 300 orbits, on Sept. 15, 2017, NASA intentionally sent Cassini plummeting into the atmosphere where it burned up, ending its remarkable mission.

NASA engineers used their experiences from the Cassini mission to help design the Europa Clipper, which is intended to perform flybys of Jupiter’s moon Europa. Europa Clipper launched on Oct. 14.

Keep Exploring

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      NASA’s Jamie Richey shares opportunities for the public to engage with NASA during the Cleveland Ingenuity Fest 2024: Take Flight. Credit: NASA/Debbie Welch  NASA’s Glenn Research Center participated in the Cleveland Ingenuity Fest 2024: Take Flight on Sept. 27-29. Ingenuity Fest, held at the 300,000-square-foot Hamilton Collaborative, features artwork, musicians, dancers, poets, and performances of all types. It also highlights maker and innovator exhibits, fine art, and more. 
      NASA Glenn’s staff shared opportunities for the community to engage directly with NASA through prize challenges, crowdsourcing, and citizen science. Through these platforms, the public can make an impact on NASA’s mission by providing innovative solutions to address the agency’s needs.  
      NASA Graphics and Visualization Lab’s Nikhita Kalluri shows visitors NASA’s advanced visualization technology during the Cleveland Ingenuity Fest 2024: Take Flight. Credit: NASA/Debbie Welch  Guests learned about the agency’s mission to send the first woman and first person of color to the Moon through the Artemis program, experienced virtual reality visualizations showing NASA’s work with radioisotope power systems, and learned about the effects of drag on an aircraft using a mini wind tunnel. The Graphics and Visualization Lab showcased NASA’s advanced visualization technology to provide innovative solutions for the agency and the scientific community.  
      Return to Newsletter Explore More
      1 min read Dr. Rickey Shyne Named Crain’s Notable Black Leader 
      Article 14 mins ago 2 min read Ohio State Marching Band Performs Tribute to NASA 
      Article 14 mins ago 1 min read NASA Glenn Connects with Morehead State University  
      Article 15 mins ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Harvest Moon refers to the nearest full Moon to the autumnal equinox. The Moon appeared full for about three days last month from the evening of Monday, Sept. 16, through Thursday morning, Sept. 19. The brightest Moon was on Sept. 17. 
      NASA’s Glenn Research Center photographers captured images of this supermoon as it shone across Cleveland. Here’s how they described it: 
      “Complex.” Sara Lowthian-Hanna captured this composite image of the Moon above a Guardians of Traffic statue near downtown Cleveland. The Sept. 17 Harvest Moon had a lot going on: it was full, a supermoon, and experienced a partial lunar eclipse (when the Earth’s shadow falls upon the Moon’s surface). Credit: NASA/Sara Lowthian-Hanna  “Shy.” Quentin Schwinn patiently waited for the Moon to peek out from behind clouds above the hangar at NASA’s Glenn Research Center. He took this shot just as a plane whizzed in front of the face of the Moon. Credit: NASA/Quentin Schwinn  “Epic.” Jef Janis captured this shot of the Moon above the colorfully illuminated Rock & Roll Hall of Fame in downtown Cleveland. Credit: NASA/Jef Janis  “Dramatic.” Jordan Salkin took this up-close image of wispy aircraft contrails crossing the face of the Moon. Credit: NASA/Jordan Salkin  Return to Newsletter Explore More
      1 min read Dr. Rickey Shyne Named Crain’s Notable Black Leader 
      Article 14 mins ago 2 min read Ohio State Marching Band Performs Tribute to NASA 
      Article 14 mins ago 1 min read NASA Glenn Connects with Morehead State University  
      Article 15 mins ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artemis II crew members (left to right) Reid Wiseman, Christina Koch, and Jeremy Hansen share information about themselves and their mission during a town hall at NASA’s Glenn Research Center in Cleveland. Credit: NASA/Sara Lowthian-Hanna  Three of the four astronauts who will venture around the Moon on Artemis II, the first crewed flight paving the way for future lunar surface missions, visited NASA’s Glenn Research Center in Cleveland, Sept. 10-11. NASA Glenn is an integral part of the development of the Orion spacecraft and a leader in propulsion, power, and communications research. 
      Commander Reid Wiseman  and Mission Specialists  Christina Koch and Jeremy Hansen (Canadian Space Agency) discussed their upcoming mission and hosted a question-and-answer session during town hall events at Lewis Field in Cleveland and NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Victor Glover, who was unable to attend, is the pilot and fourth crew member. Both events included tours and recognition of employees who have contributed to the success of Artemis missions.  
      Artemis II crew members Reid Wiseman, Christina Koch, and Jeremy Hansen (left to right, wearing blue flight suits) and other NASA personnel look down into the stainless-steel vacuum chamber in the In-Space Propulsion Facility at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. This is the world’s only facility capable of testing full-scale upper stage launch vehicles and rocket engines under simulated high-altitude conditions.Credit: NASA/Sara Lowthian-Hanna  The Artemis II crew will lift off on an approximately 10-day mission from Launch Complex 39B at NASA’s Kennedy Space Center in Florida, blazing beyond Earth’s grasp atop the agency’s mega Moon rocket. The crew will check out Orion’s systems and perform a targeting demonstration test relatively close to Earth before venturing around the Moon.  
      Back to Newsletter Explore More
      1 min read Dr. Rickey Shyne Named Crain’s Notable Black Leader 
      Article 14 mins ago 2 min read Ohio State Marching Band Performs Tribute to NASA 
      Article 14 mins ago 1 min read NASA Glenn Connects with Morehead State University  
      Article 15 mins ago View the full article
    • By NASA
      6 min read
      NASA, NOAA: Sun Reaches Maximum Phase in 11-Year Solar Cycle
      In a teleconference with reporters on Tuesday, representatives from NASA, the National Oceanic and Atmospheric Administration (NOAA), and the international Solar Cycle Prediction Panel announced that the Sun has reached its solar maximum period, which could continue for the next year.
      The solar cycle is a natural cycle the Sun goes through as it transitions between low and high magnetic activity. Roughly every 11 years, at the height of the solar cycle, the Sun’s magnetic poles flip — on Earth, that’d be like the North and South poles swapping places every decade — and the Sun transitions from being calm to an active and stormy state.
      Visible light images from NASA’s Solar Dynamics Observatory highlight the appearance of the Sun at solar minimum (left, Dec. 2019) versus solar maximum (right, May 2024). During solar minimum, the Sun is often spotless. Sunspots are associated with solar activity and are used to track solar cycle progress. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NASA/SDO Images from NASA’s Solar Dynamics Observatory highlight the appearance of the Sun at solar minimum (left, December 2019) versus solar maximum (right, May 2024). These images are in the 171-angstrom wavelength of extreme ultraviolet light, which reveals the active regions on the Sun that are more common during solar maximum. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NASA/SDO




      NASA and NOAA track sunspots to determine and predict the progress of the solar cycle — and ultimately, solar activity. Sunspots are cooler regions on the Sun caused by a concentration of magnetic field lines. Sunspots are the visible component of active regions, areas of intense and complex magnetic fields on the Sun that are the source of solar eruptions.
      “During solar maximum, the number of sunspots, and therefore, the amount of solar activity, increases,” said Jamie Favors, director, Space Weather Program at NASA Headquarters in Washington. “This increase in activity provides an exciting opportunity to learn about our closest star — but also causes real effects at Earth and throughout our solar system.”
      The solar cycle is the natural cycle of the Sun as it transitions between low and high activity. During the most active part of the cycle, known as solar maximum, the Sun can unleash immense explosions of light, energy, and solar radiation — all of which create conditions known as space weather. Space weather can affect satellites and astronauts in space, as well as communications systems — such as radio and GPS — and power grids on Earth.
      Credits: Beth Anthony/NASA Solar activity strongly influences conditions in space known as space weather. This can affect satellites and astronauts in space, as well as communications and navigation systems — such as radio and GPS — and power grids on Earth. When the Sun is most active, space weather events become more frequent. Solar activity has led to increased aurora visibility and impacts on satellites and infrastructure in recent months.
      During May 2024, a barrage of large solar flares and coronal mass ejections (CMEs) launched clouds of charged particles and magnetic fields toward Earth, creating the strongest geomagnetic storm at Earth in two decades — and possibly among the strongest displays of auroras on record in the past 500 years.
      May 3–May 9, 2024, NASA’s Solar Dynamics Observatory observed 82 notable solar flares. The flares came mainly from two active regions on the Sun called AR 13663 and AR 13664. This video highlights all flares classified at M5 or higher with nine categorized as X-class solar flares.
      Credit: NASA “This announcement doesn’t mean that this is the peak of solar activity we’ll see this solar cycle,” said Elsayed Talaat, director of space weather operations at NOAA. “While the Sun has reached the solar maximum period, the month that solar activity peaks on the Sun will not be identified for months or years.”
      Scientists will not be able to determine the exact peak of this solar maximum period for many months because it’s only identifiable after they’ve tracked a consistent decline in solar activity after that peak. However, scientists have identified that the last two years on the Sun have been part of this active phase of the solar cycle, due to the consistently high number of sunspots during this period. Scientists anticipate that the maximum phase will last another year or so before the Sun enters the declining phase, which leads back to solar minimum. Since 1989, the Solar Cycle Prediction Panel — an international panel of experts sponsored by NASA and NOAA — has worked together to make their prediction for the next solar cycle.
      Solar cycles have been tracked by astronomers since Galileo first observed sunspots in the 1600s. Each solar cycle is different — some cycles peak for larger and shorter amounts of time, and others have smaller peaks that last longer.
      Sunspot number over the previous 24 solar cycles. Scientists use sunspots to track solar cycle progress; the dark spots are associated with solar activity, often as the origins for giant explosions — such as solar flares or coronal mass ejections — which can spew light, energy, and solar material out into space. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NOAA’s Space Weather Prediction Center “Solar Cycle 25 sunspot activity has slightly exceeded expectations,” said Lisa Upton, co-chair of the Solar Cycle Prediction Panel and lead scientist at Southwest Research Institute in San Antonio, Texas. “However, despite seeing a few large storms, they aren’t larger than what we might expect during the maximum phase of the cycle.”
      The most powerful flare of the solar cycle so far was an X9.0 on Oct. 3 (X-class denotes the most intense flares, while the number provides more information about its strength).
      NOAA anticipates additional solar and geomagnetic storms during the current solar maximum period, leading to opportunities to spot auroras over the next several months, as well as potential technology impacts. Additionally, though less frequent, scientists often see fairly significant storms during the declining phase of the solar cycle.
      The Solar Cycle 25 forecast, as produced by the Solar Cycle 25 Prediction Panel. Sunspot number is an indicator of solar cycle strength — the higher the sunspot number, the stronger the cycle. For these images and more relating to solar maximum, visit https://svs.gsfc.nasa.gov/14683.
      NOAA’s Space Weather Prediction Center NASA and NOAA are preparing for the future of space weather research and prediction. In December 2024, NASA’s Parker Solar Probe mission will make its closest-ever approach to the Sun, beating its own record of closest human-made object to the Sun. This will be the first of three planned approaches for Parker at this distance, helping researchers to understand space weather right at the source.
      NASA is launching several missions over the next year that will help us better understand space weather and its impacts across the solar system.
      Space weather predictions are critical for supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation. 
      NASA works as a research arm of the nation’s space weather effort. To see how space weather can affect Earth, please visit NOAA’s Space Weather Prediction Center, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts.
      By Abbey Interrante
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Sarah Frazier, NASA’s Goddard Space Flight Center, Greenbelt, Md.
      sarah.frazier@nasa.gov
      About the Author
      Abbey Interrante

      Share








      Details
      Last Updated Oct 15, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Solar Science Sunspots The Sun The Sun & Solar Physics Explore More
      3 min read Eclipse Megamovie Coding Competition


      Article


      5 hours ago
      2 min read ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
      The Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass…


      Article


      4 days ago
      2 min read Hubble Spots a Grand Spiral of Starbursts


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Sunspots



      Solar Storms and Flares


      Solar storms and flares are eruptions from the Sun that can affect us here on Earth.


      Sun



      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This mosaic from ESA’s Euclid space telescope contains 260 observations in visible and infrared light. It covers 132 square degrees, or more than 500 times the area of the full Moon, and is 208 gigapixels. This is 1% of the wide survey that Euclid will capture during its six-year mission.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This section of the Euclid mosaic is zoomed in 36 times, revealing the core of galaxy cluster Abell 3381, 470 million light-years from Earth. The image, made using both visible and infrared light, shows galaxies of different shapes and sizes, including elliptical, spiral, and dwarf galaxies.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This image shows an area of the Euclid mosaic zoomed in 150 times. The combination of visible and infrared light reveals galaxies that are interacting with each other in cluster Abell 3381, 470 million light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO The location and actual size of the newly released Euclid mosaic is highlighted in yellow on a map of the entire sky captured by ESA’s Planck mission and a star map from ESA’s Gaia mission. ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA and the Planck Collaboration. CC BY-SA 3.0 IGO With contributions from NASA, the mission will map a third of the sky in order to study a cosmic mystery called dark energy.
      ESA (the European Space Agency) has released a new, 208-gigapixel mosaic of images taken by Euclid, a mission with NASA contributions that launched in 2023 to study why the universe is expanding at an accelerating rate. Astronomers use the term “dark energy” in reference to the unknown cause of this accelerated expansion.
      The new images were released at the International Astronautical Congress in Milan on Oct. 15.
      The mosaic contains 260 observations in visible and infrared light made between March 25 and April 8 of this year. In just two weeks, Euclid covered 132 square degrees of the southern sky — more than 500 times the area of the sky covered by a full Moon.
      The mosaic accounts for 1% of the wide survey Euclid will conduct over six years. During this survey, the telescope observes the shapes, distances, and motions of billions of galaxies out to a distance of more than 10 billion light-years. By doing this, it will create the largest 3D cosmic map ever made.
      https://www.youtube.com/watch?v=86ZCsUfgLRQ Dive into a snippet of the great cosmic atlas being produced by the ESA Euclid mission. This video zooms in on a 208-gigapixel mosaic containing about 14 million galaxies and covering a portion of the southern sky more than 500 times the area of the full Moon as seen from Earth. Credit: ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi; ESA/Gaia/DPAC; ESA/Planck Collaboration This first piece of the map already contains around 100 million stars and galaxies. Some 14 million of these galaxies could be used by Euclid to study the hidden influence of dark energy on the universe.
      “We have already seen beautiful, high-resolution images of individual objects and groups of objects from Euclid. This new image finally gives us a taste of the enormity of the area of sky Euclid will cover, which will enable us to take detailed measurements of billions of galaxies,” said Jason Rhodes, an observational cosmologist at NASA’s Jet Propulsion Laboratory in Southern California who is the U.S. science lead for Euclid and principal investigator for NASA’s Euclid dark energy science team.
      Galaxies Galore
      Even though this patch of space shows only 1% of Euclid’s total survey area, the spacecraft’s sensitive cameras captured an incredible number of objects in great detail. Enlarging the image by a factor of 600 reveals the intricate structure of a spiral galaxy in galaxy cluster Abell 3381, 470 million light-years away.
      This section of the Euclid mosaic is zoomed in 600 times. A single spiral galaxy is visible in great detail within cluster Abell 3381, 470 million light-years away from us. Data from both the visible and infrared light instruments on Euclid are included. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO “What really strikes me about these new images is the tremendous range in physical scale,” said JPL’s Mike Seiffert, project scientist for the NASA contribution to Euclid. “The images capture detail from clusters of stars near an individual galaxy to some of the largest structures in the universe. We are beginning to see the first hints of what the full Euclid data will look like when it reaches the completion of the prime survey.”
      Visble as well are clouds of gas and dust located between the stars in our own galaxy. Sometimes called “galactic cirrus” because they look like cirrus clouds at Earth, these clouds can be observed by Euclid’s visible-light camera because they reflect visible light from the Milky Way.
      The mosaic released today is taste of what’s to come from Euclid. The mission plans to release 53 square degrees of the Euclid survey, including a preview of the Euclid Deep Field areas, in March 2025 and to release its first year of cosmology data in 2026.
      NASA’s forthcoming Nancy Grace Roman mission will also study dark energy — in ways that are complementary to Euclid. Mission planners will use Euclid’s findings to inform Roman’s dark energy work. Scheduled to launch by May 2027, Roman will study a smaller section of sky than Euclid but will provide higher-resolution images of millions of galaxies and peer deeper into the universe’s past, providing complementary information. In addition, Roman will survey nearby galaxies, find and investigate planets throughout our galaxy, study objects on the outskirts of our solar system, and more.
      More About Euclid
      Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
      Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, will archive the science data and support U.S.-based science investigations. JPL is a division of Caltech.
      For more information about Euclid go to:
      https://www.nasa.gov/mission_pages/euclid/main/index.html
      For more information about Roman, go to:
      https://roman.gsfc.nasa.gov
      News Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      ESA Media Relations
      media@esa.int
      2024-141
      Share
      Details
      Last Updated Oct 15, 2024 Related Terms
      Euclid Astrophysics Dark Energy Dark Matter Galaxies Jet Propulsion Laboratory The Universe Explore More
      8 min read Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC
      The study of X-ray emission from astronomical objects reveals secrets about the Universe at the…
      Article 2 hours ago 5 min read Journey to a Water World: NASA’s Europa Clipper Is Ready to Launch
      Article 2 days ago 6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...