Members Can Post Anonymously On This Site
Eclipse Megamovie Coding Competition
-
Similar Topics
-
By NASA
NASA Goddard MODIS Rapid Response Team During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA’s Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse’s shadow over the clouds in the Arctic Ocean.
Terra launched 25 years ago on Dec. 18, 1999. Approximately the size of a small school bus, the Terra satellite carries five instruments that take coincident measurements of the Earth system: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth’s Radiant Energy System (CERES), Multi-angle Imaging Spectroradiometer (MISR), Measurements of Pollution in the Troposphere (MOPITT), and Moderate Resolution Imaging Spectroradiometer (MODIS).
On Nov. 28, 2024, one of Terra’s power-transmitting shunt units failed. A response team reviewed Terra’s status and discussed potential impacts and options. Consequently, the team placed ASTER into Safe Mode. As a result, ASTER data are not currently being collected. All other instruments continue uninterrupted.
Image Credit: NASA Goddard MODIS Rapid Response Team
View the full article
-
By NASA
5 Min Read Scientists Share Early Results from NASA’s Solar Eclipse Experiments
On April 8, 2024, a total solar eclipse swept across a narrow portion of the North American continent from Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada. This photo was taken from Dallas, Texas. Credits:
NASA/Keegan Barber On April 8, 2024, a total solar eclipse swept across North America, from the western shores of Mexico, through the United States, and into northeastern Canada. For the eclipse, NASA helped fund numerous research projects and called upon citizen scientists in support of NASA’s goal to understand how our home planet is affected by the Sun – including, for example, how our star interacts with Earth’s atmosphere and affects radio communications.
At a press briefing on Tuesday, Dec. 10, scientists attending the annual meeting of the American Geophysical Union in Washington, D.C., reported some early results from a few of these eclipse experiments.
“Scientists and tens of thousands of volunteer observers were stationed throughout the Moon’s shadow,” said Kelly Korreck, eclipse program manager at NASA Headquarters in Washington. “Their efforts were a crucial part of the Heliophysics Big Year – helping us to learn more about the Sun and how it affects Earth’s atmosphere when our star’s light temporarily disappears from view.”
Changes in the Corona
On April 8, the Citizen CATE 2024 (Continental-America Telescopic Eclipse) project stationed 35 observing teams from local communities from Texas to Maine to capture images of the Sun’s outer atmosphere, or corona, during totality. Their goal is to see how the corona changed as totality swept across the continent.
On Dec. 10, Sarah Kovac, the CATE project manager at the Southwest Research Institute in Boulder, Colorado, reported that, while a few teams were stymied by clouds, most observed totality successfully — collecting over 47,000 images in all.
These images were taken in polarized light, or light oriented in different directions, to help scientists better understand the processes that shape the corona.
This preliminary movie from the Citizen CATE 2024 project stitches together polarized images of the solar corona taken from different sites during the total solar eclipse on April 8, 2024. SwRI/Citizen CATE 2024/Dan Seaton/Derek Lamb Kovac shared the first cut of a movie created from these images. The project is still stitching together all the images into the final, hour-long movie, for release at a later time.
“The beauty of CATE 2024 is that we blend cutting-edge professional science with community participants from all walks of life,” Kovac said. “The dedication of every participant made this project possible.”
Meanwhile, 50,000 feet above the ground, two NASA WB-57 aircraft chased the eclipse shadow as it raced across the continent, observing above the clouds and extending their time in totality to approximately 6 minutes and 20 seconds.
On board were cameras and spectrometers (instruments that analyze different wavelengths of light) built by multiple research teams to study the corona.
This image of the total solar eclipse is a combination of 30 50-millisecond exposures taken with a camera mounted on one of NASA’s WB-57 aircraft on April 8, 2024. It was captured in a wavelength of light emitted by ionized iron atoms called Fe XIV. This emission highlights electrified gas, called plasma, at a specific temperature (around 3.2 million degrees Fahrenheit) that often reveals arch-like structures in the corona. B. Justen, O. Mayer, M. Justen, S. Habbal, and M. Druckmuller On Dec. 10, Shadia Habbal of the University of Hawaii, who led one of the teams, reported that their instruments collected valuable data, despite one challenge. Cameras they had mounted on the aircraft’s wings experienced unexpected vibrations, which caused some of the images to be slightly blurred.
However, all the cameras captured detailed images of the corona, and the spectrometers, which were located in the nose of the aircraft, were not affected. The results were so successful, scientists are already planning to fly similar experiments on the aircraft again.
“The WB-57 is a remarkable platform for eclipse observations that we will try to capitalize on for future eclipses,” Habbal said.
Affecting the Atmosphere
On April 8, amateur or “ham” radio operators sent and received signals to one another before, during, and after the eclipse as part of the Ham Radio Science Citizen Investigation (HamSCI) Festivals of Eclipse Ionospheric Science. More than 6,350 amateur radio operators generated over 52 million data points to observe how the sudden loss of sunlight during totality affects their radio signals and the ionosphere, an electrified region of Earth’s upper atmosphere.
Students from Case Western Reserve University operate radios during the 2024 total solar eclipse. HamSCI/Case Western Reserve University Radio communications inside and outside the path of totality improved at some frequencies (from 1-7 MHz), showing there was a reduction in ionospheric absorption. At higher frequencies (10 MHz and above), communications worsened.
Results using another technique, which bounced high-frequency radio waves (3-30 MHz) off the ionosphere, suggests that the ionosphere ascended in altitude during the eclipse and then descended to its normal height afterward.
“The project brings ham radio operators into the science community,” said Nathaniel Frissell, a professor at the University of Scranton in Pennsylvania and lead of HamSCI. “Their dedication to their craft made this research possible.”
Also looking at the atmosphere, the Nationwide Eclipse Ballooning Project organized student groups across the U.S. to launch balloons into the shadow of the Moon as it crossed the country in April 2024 and during a solar eclipse in October 2023. Teams flew weather sensors and other instruments to study the atmospheric response to the cold, dark shadow.
The eclipse’s shadow was captured from a camera aboard Virginia Tech’s balloon as part of the Nationwide Eclipse Ballooning Project on April 8, 2024. Nationwide Eclipse Ballooning Project/Virginia Tech This research, conducted by over 800 students, confirmed that eclipses can generate ripples in Earth’s atmosphere called atmospheric gravity waves. Just as waves form in a lake when water is disturbed, these waves also form in the atmosphere when air is disturbed. This project, led by Angela Des Jardins of Montana State University in Bozeman, also confirmed the presence of these waves during previous solar eclipses. Scientists think the trigger for these waves is a “hiccup” in the tropopause, a layer in Earth’s atmosphere, similar to an atmospheric effect that is observed during sunset.
“Half of the teams had little to no experience ballooning before the project,” said Jie Gong, a team science expert and atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But their hard work and research was vital in this finding.”
By Abbey Interrante and Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Dec 10, 2024 Related Terms
2024 Solar Eclipse Citizen Science Goddard Space Flight Center Heliophysics Solar Eclipses The Sun Uncategorized Explore More
8 min read NASA’s Hubble Celebrates Decade of Tracking Outer Planets
Article
21 hours ago
3 min read Annual Science Conference to Highlight NASA Research
Article
4 days ago
2 min read Hubble Spots a Spiral in the Celestial River
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Members belonging to one of three teams from Oakwood School aim their devices — armed with chocolate-coated-peanut candies — at a target during JPL’s annual Invention Challenge on Dec. 6.NASA/JPL-Caltech Teams competed with homemade devices to try to launch 50 peanut candies in 60 seconds into a target container.NASA/JPL-Caltech More points were awarded for successfully landing the candy into the highest, smallest level of the triangular Plexiglas target — not an easy task.NASA/JPL-Caltech Treats went flying through the air by the dozens at the annual Invention Challenge at NASA’s Jet Propulsion Laboratory.
The 25th Invention Challenge at NASA’s Jet Propulsion Laboratory in Southern California, which welcomed more than 200 students to compete using home-built devices, was pretty sweet this year. Literally.
That’s because the challenge at the Friday, Dec. 6, competition was to construct an automated machine that would launch, within 60 seconds, 50 chocolate-coated-peanut candies over a barrier and into a triangular Plexiglas container 16 feet (5 meters) away. The mood was tense as teachers, parents, and JPL employees watched the “Peanut Candy Toss Contest” from the sidelines, some of them eating the ammunition.
Students on 21 teams from Los Angeles and Orange county middle and high schools turned to catapults, slingshots, flywheels, springs, and massive rubber bands. There was lots of PVC piping. A giant device shaped like a blue bunny shot candy out of its nose with the help of an air compressor, while other entries relied on leaf blowers and vacuums.
A team from Santa Monica High School won the 2024 Invention Challenge at JPL on Dec. 6 with a device was based on a crossbow.NASA/JPL-Caltech Some were more successful than others. Ultimately, it was an old-school design that won first place for a team from Santa Monica High School: a modified crossbow.
“I tried to come up with something that was historically tried and true,” said Steele Winterer, a senior on the team who produced the initial design. Like his teammates, Steele is in the school’s engineering program and helped build the device during class. He described the process as “nerve-wracking,” “messy,” and “disorganized,” but everyone found their role as the design was refined.
Second and third place went to teams from Oakwood School in North Hollywood, which both took a firing-line approach, using four parallel wooden devices, with one student per device firing after each other in quick succession.
Two regional Invention Challenges held at Costa Mesa High School and Augustus Hawkins High School in South L.A. last month had winnowed the field to the 21 teams invited to the final event at JPL. At the finals, three JPL-sponsored teams from out-of-state schools and two teams that included adult engineers faced off in a parallel competition. In this second competition group, retired JPL engineer Alan DeVault took first place, followed by Boston Charter School of Science coming in second, and Centaurus High School from Colorado in third.
Competing with a wooden device at the 2024 Invention Challenge, retired JPL engineer and longtime participant Alan DeVault won first place among JPL-sponsored teams, which included professionals and out-of-state students. Challenge organizer Paul MacNeal kneels at right.NASA/JPL-Caltech Held since 1998 (with a two-year break during the COVID-19 pandemic), the contest was designed by JPL mechanical engineer Paul MacNeal to inspire students to discover a love for building things and solving problems. Student teams spend months designing, constructing, and testing their devices to try to win the new challenge that MacNeal comes up with each year.
“When student teams come to the finals, they are engaged just as engineers are engaged in the work we do here at JPL,” MacNeal said. “It’s engineering for the joy of it. It’s problem-solving but it’s also team building. And it’s unique because the rules change every year. The student teams get to see JPL engineering teams compete side by side. I started this contest to show students that engineering is fun!”
The event is supported by dozens of volunteers from JPL, which is managed by Caltech in Pasadena for NASA.
News Media Contact
Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov
2024-166
Share
Details
Last Updated Dec 06, 2024 Related Terms
Jet Propulsion Laboratory Explore More
5 min read NASA JPL Unveils the Dr. Edward Stone Exploration Trail
Article 5 hours ago 4 min read NASA’s C-20A Studies Extreme Weather Events
Article 2 days ago 5 min read NASA’s Europa Clipper: Millions of Miles Down, Instruments Deploying
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
A pair of spacecraft were launched together today from India with the potential to change the nature of future space missions. ESA’s twin Proba-3 platforms will perform precise formation flying down to a single millimetre, as if they were one single giant spacecraft. To demonstrate their degree of control, the pair will produce artificial solar eclipses in orbit, giving prolonged views of the Sun’s ghostly surrounding atmosphere, the corona.
View the full article
-
By European Space Agency
ESA’s eclipse-making precise formation-flying mission is nearly ready for liftoff! Proba-3 is scheduled for launch on a PSLV-XL rocket from Satish Dhawan Space Centre in Sriharikota, India, on Wednesday, 4 December, at 11:38 CET (10:38 GMT, 16:08 local time).
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.