Members Can Post Anonymously On This Site
OpenET: Balancing Water Supply and Demand in the West
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Data from the SWOT satellite was used to calculate average water levels for lakes and reservoirs in the Ohio River Basin from July 2023 to November 2024. Yellow indicates values greater than 1,600 feet (500 meters) above sea level; dark purple represents water levels less than 330 feet (100 meters). Data from the U.S.-European Surface Water and Ocean Topography mission gives researchers a detailed look at lakes and reservoirs in a U.S. watershed.
The Ohio River Basin stretches from Pennsylvania to Illinois and contains a system of reservoirs, lakes, and rivers that drains an area almost as large as France. Researchers with the SWOT (Surface Water and Ocean Topography) mission, a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), now have a new tool for measuring water levels not only in this area, which is home to more than 25 million people, but in other watersheds around the world as well.
Since early 2023, SWOT has been measuring the height of nearly all water on Earth’s surface — including oceans, lakes, reservoirs, and rivers — covering nearly the entire globe at least once every 21 days. The SWOT satellite also measures the horizontal extent of water in freshwater bodies. Earlier this year, the mission started making validated data publicly available.
“Having these two perspectives — water extent and levels — at the same time, along with detailed, frequent coverage over large areas, is unprecedented,” said Jida Wang, a hydrologist at the University of Illinois Urbana-Champaign and a member of the SWOT science team. “This is a groundbreaking, exciting aspect of SWOT.”
Researchers can use the mission’s data on water level and extent to calculate how the amount of water stored in a lake or reservoir changes over time. This, in turn, can give hydrologists a more precise picture of river discharge — how much water moves through a particular stretch of river.
The visualization above uses SWOT data from July 2023 to November 2024 to show the average water level above sea level in lakes and reservoirs in the Ohio River Basin, which drains into the Mississippi River. Yellow indicates values greater than 1,600 feet (500 meters), and dark purple represents water levels less than 330 feet (100 meters). Comparing how such levels change can help hydrologists measure water availability over time in a local area or across a watershed.
Complementing a Patchwork of Data
Historically, estimating freshwater availability for communities within a river basin has been challenging. Researchers gather information from gauges installed at certain lakes and reservoirs, from airborne surveys, and from other satellites that look at either water level or extent. But for ground-based and airborne instruments, the coverage can be limited in space and time. Hydrologists can piece together some of what they need from different satellites, but the data may or may not have been taken at the same time, or the researchers might still need to augment the information with measurements from ground-based sensors.
Even then, calculating freshwater availability can be complicated. Much of the work relies on computer models. “Traditional water models often don’t work very well in highly regulated basins like the Ohio because they have trouble representing the unpredictable behavior of dam operations,” said George Allen, a freshwater researcher at Virginia Tech in Blacksburg and a member of the SWOT science team.
Many river basins in the United States include dams and reservoirs managed by a patchwork of entities. While the people who manage a reservoir may know how their section of water behaves, planning for water availability down the entire length of a river can be a challenge. Since SWOT looks at both rivers and lakes, its data can help provide a more unified view.
“The data lets water managers really know what other people in these freshwater systems are doing,” said SWOT science team member Colin Gleason, a hydrologist at the University of Massachusetts Amherst.
While SWOT researchers are excited about the possibilities that the data is opening up, there is still much to be done. The satellite’s high-resolution view of water levels and extent means there is a vast ocean of data that researchers must wade through, and it will take some time to process and analyze the measurements.
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-176
Share
Details
Last Updated Dec 17, 2024 Related Terms
SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Water on Earth Explore More
5 min read NASA Mars Orbiter Spots Retired InSight Lander to Study Dust Movement
Article 1 day ago 5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
Article 5 days ago 5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets like 67P as potential sources of water for early Earth.
Researchers have found that water on Comet 67P/Churyumov–Gerasimenko has a similar molecular signature to the water in Earth’s oceans. Contradicting some recent results, this finding reopens the case that Jupiter-family comets like 67P could have helped deliver water to Earth.
Water was essential for life to form and flourish on Earth and it remains central for Earth life today. While some water likely existed in the gas and dust from which our planet materialized around 4.6 billion years ago, much of the water would have vaporized because Earth formed close to the Sun’s intense heat. How Earth ultimately became rich in liquid water has remained a source of debate for scientists.
Research has shown that some of Earth’s water originated through vapor vented from volcanoes; that vapor condensed and rained down on the oceans. But scientists have found evidence that a substantial portion of our oceans came from the ice and minerals on asteroids, and possibly comets, that crashed into Earth. A wave of comet and asteroid collisions with the solar system’s inner planets 4 billion years ago would have made this possible.
This image, taken by ESA’s Rosetta navigation camera, was taken from a about 53 miles from the center of Comet 67P/Churyumov-Gerasimenko on March 14, 2015. The image resolution is 24 feet per pixel and is cropped and processed to bring out the details of the comet’s activity. ESA/Rosetta/NAVCAM While the case connecting asteroid water to Earth’s is strong, the role of comets has puzzled scientists. Several measurements of Jupiter-family comets — which contain primitive material from the early solar system and are thought to have formed beyond the orbit of Saturn — showed a strong link between their water and Earth’s. This link was based on a key molecular signature scientists use to trace the origin of water across the solar system.
This signature is the ratio of deuterium (D) to regular hydrogen (H) in the water of any object, and it gives scientists clues about where that object formed. Deuterium is a rare, heavier type — or isotope — of hydrogen. When compared to Earth’s water, this hydrogen ratio in comets and asteroids can reveal whether there’s a connection.
Because water with deuterium is more likely to form in cold environments, there’s a higher concentration of the isotope on objects that formed far from the Sun, such as comets, than in objects that formed closer to the Sun, like asteroids.
Measurements within the last couple of decades of deuterium in the water vapor of several other Jupiter-family comets showed similar levels to Earth’s water.
“It was really starting to look like these comets played a major role in delivering water to Earth,” said Kathleen Mandt, planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Mandt led the research, published in Science Advances on Nov. 13, that revises the abundance of deuterium in 67P.
About Kathleen Mandt
But in 2014, ESA’s (European Space Agency) Rosetta mission to 67P challenged the idea that Jupiter-family comets helped fill Earth’s water reservoir. Scientists who analyzed Rosetta’s water measurements found the highest concentration of deuterium of any comet, and about three times more deuterium than there is in Earth’s oceans, which have about 1 deuterium atom for every 6,420 hydrogen atoms.
“It was a big surprise and it made us rethink everything,” Mandt said.
Mandt’s team decided to use an advanced statistical-computation technique to automate the laborious process of isolating deuterium-rich water in more than 16,000 Rosetta measurements. Rosetta made these measurements in the “coma” of gas and dust surrounding 67P. Mandt’s team, which included Rosetta scientists, was the first to analyze all of the European mission’s water measurements spanning the entire mission.
The researchers wanted to understand what physical processes caused the variability in the hydrogen isotope ratios measured at comets. Lab studies and comet observations showed that cometary dust could affect the readings of the hydrogen ratio that scientists detect in comet vapor, which could change our understanding of where comet water comes from and how it compares to Earth’s water.
What are comets made of? It’s one of the questions ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko wanted to answer. “So I was just curious if we could find evidence for that happening at 67P,” Mandt said. “And this is just one of those very rare cases where you propose a hypothesis and actually find it happening.”
Indeed, Mandt’s team found a clear connection between deuterium measurements in the coma of 67P and the amount of dust around the Rosetta spacecraft, showing that the measurements taken near the spacecraft in some parts of the coma may not be representative of the composition of a comet’s body.
As a comet moves in its orbit closer to the Sun, its surface warms up, causing gas to release from the surface, including dust with bits of water ice on it. Water with deuterium sticks to dust grains more readily than regular water does, research suggests. When the ice on these dust grains is released into the coma, this effect could make the comet appear to have more deuterium than it has.
Mandt and her team reported that by the time dust gets to the outer part of the coma, at least 75 miles from the comet body, it is dried out. With the deuterium-rich water gone, a spacecraft can accurately measure the amount of deuterium coming from the comet body.
This finding, the paper authors say, has big implications not only for understanding comets’ role in delivering Earth’s water, but also for understanding comet observations that provide insight into the formation of the early solar system.
“This means there is a great opportunity to revisit our past observations and prepare for future ones so we can better account for the dust effects,” Mandt said.
By Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Explore More
9 min read Towards Autonomous Surface Missions on Ocean Worlds
Article
31 mins ago
1 min read Coming Spring 2025: Planetary Defenders Documentary
ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…
Article
52 mins ago
5 min read What’s Up: December 2024 Skywatching Tips from NASA
Article
1 day ago
Share
Details
Last Updated Dec 03, 2024 Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location Goddard Space Flight Center Related Terms
Comets Goddard Space Flight Center Planetary Science Planetary Science Division Rosetta Science Mission Directorate The Solar System View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)
NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on Nov. 14, 2024 — sol 4363, or Martian day 4,363 of the Mars Science Laboratory mission – at 02:55:34 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 15, 2024
The Monday plan and drive had executed successfully, so the team had high hopes for APXS and MAHLI data on several enticing targets in the rover’s workspace. Alas, it was not to be: The challenging terrain had resulted in an awkwardly perched wheel at the end of the drive, so we couldn’t risk deploying the arm from this position. Maybe next drive!
We did plan a busy weekend of non-arm science activities regardless. Due to a “soliday” the weekend has two sols instead of three, but we had enough power available to fit in more than three hours of observations. The two LIBS observations in the plan will measure the composition of the flat, reddish material in the workspace that is fractured in a polygonal pattern (“Bloody Canyon”) and a nearby rock coating in which the composition is suspected to change with depth (“Burnt Camp Creek”). One idea is that the reddish material could be the early stage version of the thicker dark coatings we’ve been seeing.
A large Mastcam mosaic (“Yosemite”) was planned to capture the very interesting view to the rover’s north. Nearby and below the rover is the layer of rocks in which the “Mineral King” site was drilled on the opposite side of the channel back in March. This is a stratum of sulfate-bearing rock that appears dark-toned from orbit and we’re interested to know how consistent its features are from one side of the channel to the other. Higher up, the Yosemite mosaic also captures some deformation features that may reveal past water activity, and some terrain associated with the Gediz Vallis ridge. So there’s a lot of science packed into one mosaic!
Two long-distance RMI mosaics were planned; one is to image back into the channel, where there may be evidence of a late-stage debris flow at the base of the ridge. The second looks “forward” from the rover’s perspective instead, into the wind-shaped yardang unit above us that will hopefully be explored close-up in the rover’s future. This yardang mosaic is intended to form one part of a stereo observation.
The modern environment on Mars will also be observed with dust devil surveys on both sols, line-of-sight and tau observations to measure atmospheric opacity (often increased by dust in the atmosphere), and zenith and suprahorizon movies with Navcam to look for clouds. There will also be standard passive observations of the rover’s environment by REMS and DAN.
We’ll continue driving westward and upward, rounding the Texoli butte to keep climbing through the sulfate-bearing unit. It’s not always easy driving but there’s a lot more science to do!
Written by Lucy Lim, Participating Scientist at NASA’s Goddard Space Flight Center
Share
Details
Last Updated Nov 18, 2024 Related Terms
Blogs Explore More
2 min read Sols 4362-4363: Plates and Polygons
Article
6 days ago
3 min read Peculiar Pale Pebbles
During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…
Article
6 days ago
2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
Sols 4357–4358: Turning West
NASA’s Mars rover Curiosity acquired this image of its middle and right-rear wheels, using its Left Navigation Camera (Navcam). The difference in elevation between these two wheels at this location caused the drive planned on Monday, Nov. 4, 2024, to end early. Curiosity captured the image on Nov. 5, 2024, on sol 4355 — Martian day 4,355 of the Mars Science Laboratory mission — at 23:35:56 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Nov. 6, 2024
Sols 4357–4358: Turning West
If you’ve ever driven down a road that’s in need of repaving, you’ll know that it can be an uncomfortable experience. The same is true on Mars: even at our carefully slow driving speed, the rough, rocky terrain that we’ve found ourselves in since entering Gediz Vallis many months ago continues to present challenges for our intrepid rover.
Planning today began with the news that Curiosity only made it about halfway to its intended destination from Monday. The drive terminated early after the rover exceeded one of its “suspension limits.” This refers to our “rocker-bogie” suspension system, which allows the rover to drive over obstacles while minimizing the motion experienced by the rover body. In this case, our right middle wheel is down in a trough while the right rear wheel is perched on a rock, causing the angle of the “bogie” connecting the two wheels to exceed the maximum allowed value (Those maximums are set with a healthy amount of safety margin, so we’re not in any danger!). You can see the state of the bogie in the image above. On top of that, ending the drive early also meant that we didn’t have the images that we usually use to determine if the rover is stable enough to unstow the arm, so some creative work was necessary to determine whether or not we could. Unsurprisingly, the verdict was that we shouldn’t do so while in this awkward-looking position.
As always, the team was quick to pivot to a remote sensing plan. The focus today was on getting any last-minute remote observations of the Gediz Vallis channel. This was because we decided that, rather than continuing to drive north, we would be starting our western turn toward the exit out of Gediz Vallis.
The first sol of today’s plan contains a hefty two hours of science activities. These include LIBS observations of a bedrock target “North Dome” and a pair of ChemCam passive rasters of “Jewelry Lake” and “Merced River,” two smaller rocks near the rover, the latter of which appears to have been broken open as the rover drove over it. Mastcam will then take a documentation image of North Dome, as well as a mosaic of some more bedrock at “Earthquake Dome.” This first sol also includes a set of environmental science observations, including a lengthy 30-minute dust devil movie, just over 10 minutes of Navcam cloud movies, and some Navcam monitoring of dust and sand on the rover deck. We also sneak in a Navcam line-of-sight mosaic of the north crater rim, to measure the amount of dust in the air after our drive.
The second sol is a fairly typical post-drive sol, beginning with a standard ChemCam AEGIS activity to let the rover autonomously select a LIBS target. The rest of the science time this sol is dedicated to environmental monitoring, including a Mastcam tau observation to monitor dust, some more Navcam deck monitoring, another Navcam cloud movie, and a 360-degree Navcam dust devil survey. No arm activities means the second sol also includes a Navcam shunt prevention activity (SPENDI) to burn off some extra power while also looking for clouds and dust devils. As always, REMS, RAD, and DAN will continue their standard activities throughout this plan.
When I joined the mission back in 2020, I would occasionally look at Gediz Vallis on our HiRISE maps and imagine what the view would be like between those tall, steep channel walls. So it seems almost unbelievable that we will soon be leaving Gediz Vallis behind us as we continue our trek up Mount Sharp. It will probably still be a few more weeks before we can say that we’ve officially exited Gediz Vallis, but I don’t think anyone will be saying they were disappointed with what we accomplished during this long-anticipated phase of the mission.
Onwards and upwards!
Written by Conor Hayes, graduate student at York University
Share
Details
Last Updated Nov 08, 2024 Related Terms
Blogs Explore More
2 min read Mars 2020 Perseverance Joins NASA’s Here to Observe Program
The Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program,…
Article
2 days ago
3 min read Sols 4355-4356: Weekend Success Brings Monday Best
Article
3 days ago
3 min read Sols 4352-4354: Halloween Fright Night on Mars
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Credit: NASA In an effort to grow new commercial markets that support the future of space exploration, scientific discovery, and aeronautics research, NASA is preparing to relaunch its Mentor-Protégé Program for contractors on Friday, Nov. 1.
The program originally was launched to encourage NASA prime contractors, or mentors, to enter into agreements with eligible small businesses, or protégés. These agreements were created to enhance the protégés’ performance on NASA contracts and subcontracts, foster the establishment of long-term business relationships between small businesses and NASA prime contractors, and increase the overall number of small businesses that receive NASA contracts and subcontract awards.
“The NASA Mentor-Protégé Program is a critical enabling tool that allows experienced companies to provide business developmental assistance to emerging firms,” said Dwight Deneal, assistant administrator for NASA’s Office of Small Business Programs (OSBP). “The program enables NASA to expand its industrial base of suppliers, as prime and subcontractors, to assist in executing the mission and programs throughout the agency.”
The program’s relaunch follows an assessment of its policies and procedures by OSBP to ensure it continues to support NASA’s missions and addresses any supply chain gaps at an optimal level.
To provide more information about the program and its relaunch, OSBP will host an online lunch and learn event on Thursday, Nov. 7, at 1:00 p.m. EST. The event is open to all current and potential mentors and protégés who want to learn more about changes in the program, qualifications to participate, and how to apply.
“We are excited about rolling out the enhanced NASA Mentor-Protégé Program,” said David Brock, lead small business specialist for OSBP. “The program’s new focus will allow large businesses to mentor smaller firms in key areas that align with NASA’s mission and opportunities within the agency’s supply chain.”
One key change expands eligibility to all small businesses, in addition to minority-serving institutions, including Historically Black Colleges and Universities, and Ability One entities. This expansion enables the program to support an inclusive environment for more small businesses and underserved communities to interact with NASA and its contractors.
The program also will focus on engaging businesses within a select number of North American Industry Classifications System (NAICS) codes and specific industry sectors, such as research and development and aerospace manufacturing. These adjustments will allow the program to better support NASA’s long-term strategic goals and mission success.
The program is designed to benefit both the mentor and the protégé by fostering productive networking and contract opportunities. In a mentor-protégé agreement, mentors build relationships with small businesses, developing a subcontracting base and accruing credit toward their small business subcontracting goals. In addition, protégés receive technical and developmental assistance while also gaining sole-source contracts from mentors and additional contracting opportunities.
NASA is responsible for the administration and management of each agreement. The OSBP oversees the program and conducts semi-annual performance reviews to monitor progress and accomplishments made as a result of the mentor-protégé agreement.
To apply to be a mentor, companies must be a current NASA prime contractor with an approved small business contracting plan. Companies also must be eligible for the receipt of government contracts and be categorized under certain NAICS codes. Potential protégés must certify as a small business within NAICS size standards.
Find more information about participating in NASA’s Mentor-Protégé Program at:
https://www.nasa.gov/osbp/mentor-protege-program
Share
Details
Last Updated Oct 29, 2024 LocationNASA Headquarters Related Terms
Office of Small Business Programs (OSBP) NASA Headquarters View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.