Jump to content

Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out


NASA

Recommended Posts

  • Publishers

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Europa looms large in this reprocessed color view
The puzzling surface of Jupiter’s icy moon Europa looms large in this reprocessed color view made from images taken by NASA’s Galileo spacecraft in the late 1990s. The images were assembled into a realistic color view of the surface that approximates how Europa would appear to the human eye.
NASA/JPL-Caltech/SETI Institute

With a spacecraft launching soon, the mission will try to answer the question of whether there are ingredients suitable for life in the ocean below Europa’s icy crust.

Deep down, in an ocean beneath its ice shell, Jupiter’s moon Europa might be temperate and nutrient-rich, an ideal environment for some form of life — what scientists would call “habitable.” NASA’s Europa Clipper mission aims to find out.

NASA now is targeting launch no earlier than Monday, Oct. 14, on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Europa Clipper’s elongated, looping orbit around Jupiter will minimize the spacecraft’s exposure to intense radiation while allowing it to dive in for close passes by Europa. Using a formidable array of instruments for each of the mission’s 49 flybys, scientists will be able to “see” how thick the moon’s icy shell is and gain a deeper understanding of the vast ocean beneath. They’ll inventory material on the surface that might have come up from below, search for the fingerprints of organic compounds that form life’s building blocks, and sample any gases ejected from the moon for evidence of habitability.

Mission scientists will analyze the results, probing beneath the moon’s frozen shell for signs of a water world capable of supporting life.

This artist’s concept (not to scale) depicts what Europa’s internal structure could look like
This artist’s concept (not to scale) depicts what Europa’s internal structure could look like: an outer shell of ice, perhaps with plumes of material venting from beneath the surface; a deep, global layer of liquid water; and a rocky interior, potentially with hydrothermal vents on the seafloor.
NASA/JPL-Caltech

“It’s important to us to paint a picture of what that alien ocean is like — the kind of chemistry or even biochemistry that could be happening there,” said Morgan Cable, an astrobiologist and member of the Europa Clipper science team at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission.

Ice Investigation

Central to that work is hunting for the types of salts, ices, and organic material that make up the key ingredients of a habitable world. That’s where an imager called MISE (Mapping Imaging Spectrometer for Europa) comes in. Operating in the infrared, the spacecraft’s MISE divides reflected light into various wavelengths to identify the corresponding atoms and molecules.

The mission will also try to locate potential hot spots near Europa’s surface, where plumes could bring deep ocean material closer to the surface, using an instrument called E-THEMIS (Europa Thermal Emission Imaging System), which also operates in the infrared.

Capturing sharply detailed pictures of Europa’s surface with both a narrow and a wide-image camera is the task of the EIS (Europa Imaging System). “The EIS imagers will give us incredibly high-resolution images to understand how Europa’s surface evolved and is continuing to change,” Cable said.

Gases and Grains

NASA’s Cassini mission spotted a giant plume of water vapor erupting from multiple jets near the south pole of Saturn’s ice-covered moon Enceladus. Europa may also emit misty plumes of water, pulled from its ocean or reservoirs in its shell. Europa Clipper’s instrument called Europa-UVS (Europa Ultraviolet Spectrograph) will search for plumes and can study any material that might be venting into space.

Whether or not Europa has plumes, the spacecraft carries two instruments to analyze the small amount of gas and dust particles ejected from the moon’s surface by impacts with micrometeorites and high-energy particles: MASPEX (MAss SPectrometer for Planetary EXploration/Europa) and SUDA (SUrface Dust Analyzer) will capture the tiny pieces of material ejected from the surface, turning them into charged particles to reveal their composition.  

“The spacecraft will study gas and grains coming off Europa by sticking out its tongue and tasting those grains, breathing in those gases,” said Cable.

Inside and Out

The mission will look at Europa’s external and internal structure in various ways, too, because both have far-reaching implications for the moon’s habitability.

To gain insights into the ice shell’s thickness and the ocean’s existence, along with its depth and salinity, the mission will measure the moon’s induced magnetic field with the ECM (Europa Clipper Magnetometer) and combine that data with measurements of electrical currents from charged particles flowing around Europa — data provided by PIMS (Plasma Instrument for Magnetic Sounding).

In addition, scientists will look for details on everything from the presence of the ocean to the structure and topography of the ice using REASON (Radar for Europa Assessment and Sounding to Near-surface), which will peer up to 18 miles (29 kilometers) into the shell — itself a potentially habitable environment. Measuring the changes that Europa’s gravity causes in radio signals should help nail down ice thickness and ocean depth.

“Non-icy materials on the surface could get moved into deep interior pockets of briny water within the icy shell,” said Steve Vance, an astrobiologist and geophysicist who also is a member of the Europa Clipper science team at JPL. “Some might be large enough to be considered lakes, or at least ponds.”

Using the data gathered to inform extensive computer modeling of Europa’s interior structure also could reveal the ocean’s composition and allow estimates of its temperature profile, Vance said.

Whatever conditions are discovered, the findings will open a new chapter in the search for life beyond Earth. “It’s almost certain Europa Clipper will raise as many questions or more than it answers — a whole different class than the ones we’ve been thinking of for the last 25 years,” Vance said.

More About Europa Clipper

Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.

To learn more about the science instruments aboard Europa Clipper and the institutions provide them, visit:

https://europa.nasa.gov/spacecraft/instruments

Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.

NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.

Find more information about Europa here:

https://europa.nasa.gov

News Media Contacts

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif. 
818-393-6215 
gretchen.p.mccartney@jpl.nasa.gov 

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Written by Pat Brennan

2024-138

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for life before DNA emerged — can favor making the building blocks of proteins in either the left-hand or the right-hand orientation. Resolving this mystery could provide clues to the origin of life. The findings appear in research recently published in Nature Communications.
      Proteins are the workhorse molecules of life, used in everything from structures like hair to enzymes (catalysts that speed up or regulate chemical reactions). Just as the 26 letters of the alphabet are arranged in limitless combinations to make words, life uses 20 different amino acid building blocks in a huge variety of arrangements to make millions of different proteins. Some amino acid molecules can be built in two ways, such that mirror-image versions exist, like your hands, and life uses the left-handed variety of these amino acids. Although life based on right-handed amino acids would presumably work fine, the two mirror images are rarely mixed in biology, a characteristic of life called homochirality. It is a mystery to scientists why life chose the left-handed variety over the right-handed one.
      A diagram of left-handed and right-handed versions of the amino acid isovaline, found in the Murchison meteorite.NASA DNA (deoxyribonucleic acid) is the molecule that holds the instructions for building and running a living organism. However, DNA is complex and specialized; it “subcontracts” the work of reading the instructions to RNA (ribonucleic acid) molecules and building proteins to ribosome molecules. DNA’s specialization and complexity lead scientists to think that something simpler should have preceded it billions of years ago during the early evolution of life. A leading candidate for this is RNA, which can both store genetic information and build proteins. The hypothesis that RNA may have preceded DNA is called the “RNA world” hypothesis.
      If the RNA world proposition is correct, then perhaps something about RNA caused it to favor building left-handed proteins over right-handed ones. However, the new work did not support this idea, deepening the mystery of why life went with left-handed proteins.
      The experiment tested RNA molecules that act like enzymes to build proteins, called ribozymes. “The experiment demonstrated that ribozymes can favor either left- or right-handed amino acids, indicating that RNA worlds, in general, would not necessarily have a strong bias for the form of amino acids we observe in biology now,” said Irene Chen, of the University of California, Los Angeles (UCLA) Samueli School of Engineering, corresponding author of the Nature Communications paper.
      In the experiment, the researchers simulated what could have been early-Earth conditions of the RNA world. They incubated a solution containing ribozymes and amino acid precursors to see the relative percentages of the right-handed and left-handed amino acid, phenylalanine, that it would help produce. They tested 15 different ribozyme combinations and found that ribozymes can favor either left-handed or right-handed amino acids. This suggested that RNA did not initially have a predisposed chemical bias for one form of amino acids. This lack of preference challenges the notion that early life was predisposed to select left-handed-amino acids, which dominate in modern proteins.
      “The findings suggest that life’s eventual homochirality might not be a result of chemical determinism but could have emerged through later evolutionary pressures,” said co-author Alberto Vázquez-Salazar, a UCLA postdoctoral scholar and member of Chen’s research group.
      Earth’s prebiotic history lies beyond the oldest part of the fossil record, which has been erased by plate tectonics, the slow churning of Earth’s crust. During that time, the planet was likely bombarded by asteroids, which may have delivered some of life’s building blocks, such as amino acids. In parallel to chemical experiments, other origin-of-life researchers have been looking at molecular evidence from meteorites and asteroids.
      “Understanding the chemical properties of life helps us know what to look for in our search for life across the solar system,” said co-author Jason Dworkin, senior scientist for astrobiology at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and director of Goddard’s Astrobiology Analytical Laboratory.
      Dworkin is the project scientist on NASA’s OSIRIS-REx mission, which extracted samples from the asteroid Bennu and delivered them to Earth last year for further study.
      “We are analyzing OSIRIS-REx samples for the chirality (handedness) of individual amino acids, and in the future, samples from Mars will also be tested in laboratories for evidence of life including ribozymes and proteins,” said Dworkin.
      The research was supported by grants from NASA, the Simons Foundation Collaboration on the Origin of Life, and the National Science Foundation. Vázquez-Salazar acknowledges support through the NASA Postdoctoral Program, which is administered by Oak Ridge Associated Universities under contract with NASA.
      Share
      Details
      Last Updated Nov 21, 2024 EditorWilliam SteigerwaldContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Astrobiology Explore More
      2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
      NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
      Article 2 weeks ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
      NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
      Article 3 weeks ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
      Article 3 weeks ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A prototype of a robot designed to explore subsurface oceans of icy moons is reflected in the water’s surface during a pool test at Caltech in September. Conducted by NASA’s Jet Propulsion Laboratory, the testing showed the feasibility of a mission concept for a swarm of mini swimming robots.NASA/JPL-Caltech In a competition swimming pool, engineers tested prototypes for a futuristic mission concept: a swarm of underwater robots that could look for signs of life on ocean worlds.
      When NASA’s Europa Clipper reaches its destination in 2030, the spacecraft will prepare to aim an array of powerful science instruments toward Jupiter’s moon Europa during 49 flybys, looking for signs that the ocean beneath the moon’s icy crust could sustain life. While the spacecraft, which launched Oct. 14, carries the most advanced science hardware NASA has ever sent to the outer solar system, teams are already developing the next generation of robotic concepts that could potentially plunge into the watery depths of Europa and other ocean worlds, taking the science even further.
      This is where an ocean-exploration mission concept called SWIM comes in. Short for Sensing With Independent Micro-swimmers, the project envisions a swarm of dozens of self-propelled, cellphone-size swimming robots that, once delivered to a subsurface ocean by an ice-melting cryobot, would zoom off, looking for chemical and temperature signals that could indicate life.
      Dive into underwater robotics testing with NASA’s futuristic SWIM (Sensing With Independent Micro-swimmers) concept for a swarm of miniature robots to explore subsurface oceans on icy worlds, and see a JPL team testing a prototype at a pool at Caltech in Pasadena, California, in September 2024. NASA/JPL-Caltech “People might ask, why is NASA developing an underwater robot for space exploration? It’s because there are places we want to go in the solar system to look for life, and we think life needs water. So we need robots that can explore those environments — autonomously, hundreds of millions of miles from home,” said Ethan Schaler, principal investigator for SWIM at NASA’s Jet Propulsion Laboratory in Southern California.
      Under development at JPL, a series of prototypes for the SWIM concept recently braved the waters of a 25-yard (23-meter) competition swimming pool at Caltech in Pasadena for testing. The results were encouraging.
      SWIM Practice
      The SWIM team’s latest iteration is a 3D-printed plastic prototype that relies on low-cost, commercially made motors and electronics. Pushed along by two propellers, with four flaps for steering, the prototype demonstrated controlled maneuvering, the ability to stay on and correct its course, and a back-and-forth “lawnmower” exploration pattern. It managed all of this autonomously, without the team’s direct intervention. The robot even spelled out “J-P-L.”
      Just in case the robot needed rescuing, it was attached to a fishing line, and an engineer toting a fishing rod trotted alongside the pool during each test. Nearby, a colleague reviewed the robot’s actions and sensor data on a laptop. The team completed more than 20 rounds of testing various prototypes at the pool and in a pair of tanks at JPL.
      “It’s awesome to build a robot from scratch and see it successfully operate in a relevant environment,” Schaler said. “Underwater robots in general are very hard, and this is just the first in a series of designs we’d have to work through to prepare for a trip to an ocean world. But it’s proof that we can build these robots with the necessary capabilities and begin to understand what challenges they would face on a subsurface mission.”
      Swarm Science
      A model of the final envisioned SWIM robot, right, sits beside a capsule holding an ocean-composition sensor. The sensor was tested on an Alaskan glacier in July 2023 through a JPL-led project called ORCAA (Ocean Worlds Reconnaissance and Characterization of Astrobiological Analogs). The wedge-shaped prototype used in most of the pool tests was about 16.5 inches (42 centimeters) long, weighing 5 pounds (2.3 kilograms). As conceived for spaceflight, the robots would have dimensions about three times smaller — tiny compared to existing remotely operated and autonomous underwater scientific vehicles. The palm-size swimmers would feature miniaturized, purpose-built parts and employ a novel wireless underwater acoustic communication system for transmitting data and triangulating their positions.
      Digital versions of these little robots got their own test, not in a pool but in a computer simulation. In an environment with the same pressure and gravity they would likely encounter on Europa, a virtual swarm of 5-inch-long (12-centimeter-long) robots repeatedly went looking for potential signs of life. The computer simulations helped determine the limits of the robots’ abilities to collect science data in an unknown environment, and they led to the development of algorithms that would enable the swarm to explore more efficiently.
      The simulations also helped the team better understand how to maximize science return while accounting for tradeoffs between battery life (up to two hours), the volume of water the swimmers could explore (about 3 million cubic feet, or 86,000 cubic meters), and the number of robots in a single swarm (a dozen, sent in four to five waves).
      In addition, a team of collaborators at Georgia Tech in Atlanta fabricated and tested an ocean composition sensor that would enable each robot to simultaneously measure temperature, pressure, acidity or alkalinity, conductivity, and chemical makeup. Just a few millimeters square, the chip is the first to combine all those sensors in one tiny package.
      Of course, such an advanced concept would require several more years of work, among other things, to be ready for a possible future flight mission to an icy moon. In the meantime, Schaler imagines SWIM robots potentially being further developed to do science work right here at home: supporting oceanographic research or taking critical measurements underneath polar ice.
      More About SWIM
      Caltech manages JPL for NASA. JPL’s SWIM project was supported by Phase I and II funding from NASA’s Innovative Advanced Concepts (NIAC) program under the agency’s Space Technology Mission Directorate. The program nurtures visionary ideas for space exploration and aerospace by funding early-stage studies to evaluate technologies that could transform future NASA missions. Researchers across U.S. government, industry, and academia can submit proposals.
      How the SWIM concept was developed Learn about underwater robots for Antarctic climate science See NASA’s network of ready-to-roll mini-Moon rovers News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-162
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Europa Jet Propulsion Laboratory NASA Innovative Advanced Concepts (NIAC) Program Ocean Worlds Robotics Space Technology Mission Directorate Technology Explore More
      5 min read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      Article 1 hour ago 4 min read From Houston to the Moon: Johnson’s Thermal Vacuum Chamber Tests Lunar Solar Technology 
      Article 19 hours ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge 
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Imagine designing technology that can survive on the Moon for up to a decade, providing a continuous energy supply. NASA selected three companies to develop such systems, aimed at providing a power source at the Moon’s South Pole for Artemis missions. 

      Three companies were awarded contracts in 2022 with plans to test their self-sustaining solar arrays at the Johnson Space Center’s Space Environment Simulation Laboratory (SESL) in Houston, specifically in Chamber A in building 32. The prototypes tested to date have undergone rigorous evaluations to ensure the technology can withstand the harsh lunar environment and deploy the solar array effectively on the lunar surface. 
      The Honeybee Robotics prototype during lunar VSAT (Vertical Solar Array Technology) testing inside Chamber A at NASA’s Johnson Space Center in Houston.NASA/David DeHoyos The Astrobotic Technology prototype during lunar VSAT testing inside Chamber A at Johnson Space Center. NASA/James Blair In the summer of 2024, both Honeybee Robotics, a Blue Origin company from Altadena, California and Astrobotic Technology from Pittsburgh, Pennsylvania put their solar array concepts to the test in Chamber A. 

      Each company has engineered a unique solution to design the arrays to withstand the harsh lunar environment and extreme temperature swings. The data collected in the SESL will support refinement of requirements and the designs for future technological advancements with the goal to deploy at least one of the systems near the Moon’s South Pole. 

      The contracts for this initiative are part of NASA’s VSAT (Vertical Solar Array Technology) project, aiming to support the agency’s long-term lunar surface operations. VSAT is under the Space Technology Mission Directorate Game Changing Development program and led by the Langley Research Center in Hampton, Virginia, in collaboration with Glenn Research Center in Cleveland.  

      “We foresee the Moon as a hub for manufacturing satellites and hardware, leveraging the energy required to launch from the lunar surface,” said Jim Burgess, VSAT lead systems engineer. “This vision could revolutionize space exploration and industry.” 

      Built in 1965, the SESL initially supported the Gemini and Apollo programs but was adapted to conduct testing for other missions like the Space Shuttle Program and Mars rovers, as well as validate the design of the James Webb Space Telescope. Today, it continues to evolve to support future Artemis exploration. 

      Johnson’s Front Door initiative aims to solve the challenges of space exploration by opening opportunities to the public and bringing together bold and innovative ideas to explore new destinations. 

      “The SESL is just one of the hundreds of unique capabilities that we have here at Johnson,” said Molly Bannon, Johnson’s Innovation and Strategy specialist. “The Front Door provides a clear understanding of all our capabilities and services, the ways in which our partners can access them, and how to contact us. We know that we can go further together with all our partners across the entire space ecosystem if we bring everyone together as the hub of human spaceflight.” 

      Chamber A remains as one of the largest thermal vacuum chambers of its kind, with the unique capability to provide extreme deep space temperature conditions down to as low as 20 Kelvin. This allows engineers to gather essential data on how technologies react to the Moon’s severe conditions, particularly during the frigid lunar night where the systems may need to survive for 96 hours in darkness. 

      “Testing these prototypes will help ensure more safe and reliable space mission technologies,” said Chuck Taylor, VSAT project manager. “The goal is to create a self-sustaining system that can support lunar exploration and beyond, making our presence on the Moon not just feasible but sustainable.” 

      The power generation systems must be self-aware to manage outages and ensure survival on the lunar surface. These systems will need to communicate with habitats and rovers and provide continuous power and recharging as needed. They must also deploy on a curved surface, extend 32 feet high to reach sunlight, and retract for possible relocation.  

      “Generating power on the Moon involves numerous lessons and constant learning,” said Taylor. “While this might seem like a technical challenge, it’s an exciting frontier that combines known technologies with innovative solutions to navigate lunar conditions and build a dynamic and robust energy network on the Moon.”

      Watch the video below to explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A facility.
      View the full article
    • By SpaceX
      Making Life Multi-Planetary
    • By NASA
      In November 1969, Apollo 12 astronauts Commander Charles “Pete” Conrad, Command Module Pilot (CMP) Richard F. Gordon, and Lunar Module Pilot (LMP) Alan L. Bean completed the second crewed lunar landing mission. Conrad and Bean achieved a pinpoint landing in the Ocean of Storms within walking distance of the Surveyor 3 spacecraft that landed there in April 1967. While Gordon conducted science from lunar orbit, Conrad and Bean completed two spacewalks on the lunar surface, deploying science instruments, collecting geology samples, and inspecting Surveyor including retrieving several of it parts for study back on Earth. Preparations continued for the next two missions, Apollo 13 and 14, tentatively planned for March and July 1970, respectively.
      Apollo 12

      Left: The crew of Apollo 12 – Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean. Right: The Apollo 12 crew patch.

      Left: The Apollo 12 crew of Charles “Pete” Conrad, center, Richard F. Gordon, and Alan L. Bean, facing them, at the traditional prelaunch breakfast, with their mascot “Irving” behind Conrad. Right: Conrad leads Gordon and Bean onto the astronaut van for the ride to Launch Pad 39A.

      Left: Apollo 12, moments before liftoff into rainy skies. Middle: Liftoff of Apollo 12. Right: Lightning strikes Launch Pad 39A shortly after the Apollo 12 launch.
      Lift off came precisely at 11:22 a.m. EST on Nov. 14, 1969, with the Saturn V launching Apollo 12 into a dark and rainy sky. The flight proceeded normally for the first 36 seconds, with Conrad even commenting that, “It’s a lovely liftoff. It’s not bad at all.” Then everything went haywire. With Apollo 12 at about 6,600 feet altitude and flying through clouds, observers on the ground noted lightning striking the launch pad. Onboard the spacecraft, the astronauts saw a bright flash, followed by many of the spacecraft’s electronics going offline, causing the three power-generating fuel cells to also go offline.
      A second event 52 seconds into the flight caused the spacecraft guidance navigation system to go offline. In the Mission Control Center (MCC) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, a young engineer named John W. Aaron monitored the spacecraft’s systems through the two incidents. He correctly deduced that the spacecraft’s Signal Conditioning Equipment (SCE) must have suffered some unknown upset and went offline. The simple solution to restoring it to normal function involved moving a seldom-used switch from its Normal to its Auxiliary position. Bean recalled the switch’s location on his panel, carried out the requested action, and restored the spacecraft’s systems. Aaron’s quick action saved the launch from two lightning strikes. Once Conrad understood the cause of the excitement, he radioed to Houston, “I think we need to do a little more all-weather testing.”

      Left: View of the Earth shortly after Trans Lunar Injection, with one of the Spacecraft Lunar Module (LM) Adapter panels silhouetted against the clouds. Middle: During Transposition and Docking, the LM Intrepid still attached to the S-IVB third stage. Right: The receding Earth during the translunar coast.
      The rest of the ascent continued without incident and Apollo 12 settled into orbit around the Earth. After verifying that all systems continued functioning properly following the lightning strikes, the astronauts received the call, “The good word is you’re Go for TLI,” the Trans Lunar Injection, the second burn of the third stage engine to send them on their way to the Moon. In his characteristic fashion, Conrad replied, “Hoop-ee-doo! We’re ready! We didn’t expect anything else!” The next major event, the Transposition and Docking (T&D) maneuver, began about 25 minutes later.
      After the separation of the Command and Service Module (CSM) Yankee Clipper from the S-IVB stage, Gordon turned it around and slowly guided it to a docking with the LM Intrepid still attached to the top of the S-IVB. Conrad commented during the maneuver, “I got an awful pretty looking Intrepid sitting out the window here, gang. We’ll go get her.” After the docking, Gordon backed away from the third stage, extracting the LM in the process, and completing the T&D maneuver. For the next three days, the astronauts continued their journey toward the Moon. Along the way, they inspected Intrepid to verify it came to no harm from the lightning strikes, conducted one midcourse maneuver to ensure their accurate arrival near the Moon, and provided two TV broadcasts showing views of Earth and their spacecraft.

      Left: Image from lunar orbit of the Fra Mauro highlands, the proposed landing site for Apollo 13 (inside white circle). Middle: The Lunar Module Intrepid as seen from the Command Module Yankee Clipper shortly after undocking. Right: Yankee Clipper as seen from Intrepid.
      The Apollo 12 astronauts awoke for their fourth mission day to find themselves within the Moon’s gravitational sphere of influence. Apollo 12 sailed behind the Moon, losing contact with Earth. Thirteen minutes later, the astronauts fired the Service Propulsion System (SPS) engine for the Lunar Orbit Insertion burn, placing them into an elliptical orbit around the Moon.

      Left: Still from 16 mm film looking out Alan L. Bean’s window at about 3,500 feet during the descent, showing the location of Surveyor Crater, the Apollo 12 landing site. Right: Illustration of the Apollo 12 landing site and the two surface traverses.
      During the third lunar orbit, the crew fired the SPS engine again to circularize their orbit. The next day, Conrad and Bean donned their spacesuits and reactivated the LM for the separation and landing, extending Intrepid’s landing legs. After undocking and while behind the Moon, Conrad and Bean fired the LM’s Descent Propulsion System engine to lower Intrepid’s orbit. Exactly half a revolution later, Intrepid began the burn to drop it from orbit all the way to the landing in the Ocean of Storms. With Bean providing updates from the guidance computer, Conrad skillfully piloted Intrepid to a smooth landing just northwest of Surveyor Crater, and as they learned later, only 538 feet from Surveyor 3. Without much fanfare, Conrad and Bean completed the postlanding checklist, although Bean allowed himself a little exuberant “Good landing, Pete!  Outstanding, man!  Beautiful!” Conrad radioed to Mission Control, “Okay, we’re in hot shape, Houston. We’re in real good shape!” They had a chance to look out the windows, with Bean exclaiming, “Holy cran, it’s beautiful out here!” Conrad replied, “It sure is; it’s something else,” later adding, “Man! I can’t wait to get outside!”

      Left: Charles “Pete” Conrad on the Lunar Module ladder about to descend to the surface. Middle: Alan L. Bean takes his first steps on the Moon. Right: Conrad working on the central station of the Apollo Lunar Surface Experiment Package, with its various instruments deployed around it.
      Conrad and Bean donned their Portable Life Support System (PLSS) backpacks that provided oxygen and communications while on the surface and donned their helmets and gloves. They depressurized the LM, opened the hatch, and Conrad backed out onto the porch, slowly climbing down the ladder. Halfway down, he pulled a lanyard that deployed a color TV camera on the side of the LM’s descent stage, providing a view of him on the LM ladder. After he jumped from the bottom rung onto the footpad, Conrad exclaimed, “Whoopie! Man, that may have been a small one for Neil, but that’s a long one for me,” in reference to Armstrong’s famous words as he took humanity’s first step on the Moon and Conrad’s shorter stature. As he stepped off the pad, he remarked, “Oooh is that soft and queasy.” After taking a few tentative steps, Conrad informed everyone that he could see Surveyor 3 sitting inside the crater. He collected the contingency sample – in case they had to leave quickly due to an emergency, geologists would have one small sample from the Ocean of Storms.
      Bean joined Conrad on the surface, both acclimating rapidly to working in one-sixth g. Conrad set up the S-band antenna for communications with Earth, but while setting up the TV camera, Bean accidentally pointed it at the Sun and damaged the vidicon tube, ending the live TV transmission from the Moon. Bean deployed the Solar Wind Collector (SWC), a Swiss experiment that collected particles from the solar wind, and then he and Conrad set up the American flag. They began the primary task of the first spacewalk – setting up the various instruments of the Apollo Lunar Surface Experiment Package (ALSEP). Conrad and Bean carried them to their deployment location about 430 feet to the northwest of Intrepid. They explored the area around the ALSEP site, visiting craters of interest and collecting rock and soil samples before heading back toward Intrepid. They remarked on several occasions how the lunar dust clung to their suits and equipment, and as Conrad quipped, “We’re going to be a couple of dirty boogers.” First Bean then Conrad climbed up the ladder and once inside Intrepid they closed the hatch and repressurized the cabin. Their first spacewalk lasted 3 hours and 56 minutes. They set up hammocks in Intrepid and went to sleep.

      Left and middle: Charles “Pete” Conrad and Alan L. Bean with the Surveyor 3 spacecraft, with their Lunar Module (LM) Intrepid visible in the background. Right: View from inside the LM through Bean’s window following the second spacewalk.
      After a short night’s rest, Conrad and Bean prepared for their second spacewalk. As before, first Conrad and then Bean descended the ladder to the surface. Conrad walked to the ALSEP to inspect one of the instruments, the seismometer they deployed during the first spacewalk picking up his footsteps. Both then headed west from Intrepid, where Conrad rolled two rocks down into a crater, the vibrations captured by the seismometer. They collected several documented samples, often preceded with expressions like “Oooooh!” and “That’s a beauty!” and dug a trench to expose subsurface material, collecting a sample from about eight inches deep.
      They set off toward the main objective of this spacewalk – Surveyor 3, resting on the inner slope of 600-foot-wide Surveyor Crater. Entering the crater from the south rim, they walked counterclockwise while descending down the slope until they reached the robotic spacecraft. After taking “tourist” pictures with Surveyor, the two photographed the craft from all angles, noting that the trenches left by its scoop and the marks from its footpads when it bounced after landing looked as fresh as when Surveyor photographed them in 1967. Using cutters, Conrad removed the craft’s camera, scoop, and other parts for return to Earth, where engineers and scientists examined them for the effects of 31 months in the harsh lunar environment. The work at Surveyor completed, the two returned to Intrepid. Bean retrieved the SWC experiment, overcoming difficulties in rolling it back up. Compared with a short 77-minute exposure during Apollo 11, this SWC collected samples of the solar wind for nearly 19 hours. With everything packed up, Bean followed by Conrad headed up the ladder. After closing the hatch, they repressurized Intrepid, ending the 3-hour 49-minute excursion.

      The Apollo 12 landing site photographed by the Lunar Reconnaissance Orbiter in 2011, the inset showing the Lunar Module Intrepid’s descent stage.

      Left: A still from 16 mm film recorded aboard Yankee Clipper of Intrepid’s approach just prior to docking. Middle: The Moon shortly after Trans Earth Injection. Right: A receding Moon during the trans Earth coast.
      After returning inside Intrepid, Conrad and Bean took photographs out the windows, showing the signs of their visit – numerous footprints, the American flag, the S-band antenna, and in the distance, the ALSEP station. As Gordon in Yankee Clipper flew overhead on his 30th lunar revolution, Intrepid’s Ascent Stage engine ignited, and Conrad and Bean lifted off from the Moon after 31 hours and 31 minutes on the surface. Conrad exclaimed, “Liftoff! And away we go!” with Bean adding, “Boy, did it fire!” Intrepid and Yankee Clipper executed a series of maneuvers that led to their docking about three and a half hours after liftoff from the Moon. Their independent flights had lasted 37 hours and 42 minutes. The three astronauts opened the hatches between the two spacecraft and began transfers from Intrepid into Yankee Clipper, including the lunar samples, cameras, and film. Gordon transferred some unneeded items to be jettisoned in Intrepid. The transfers completed, they closed the hatches between the spacecraft and jettisoned the LM. To calibrate the seismometer left on the Moon, controllers sent a command to Intrepid to fire its thrusters to drop it out of orbit and send it crashing onto the surface. The seismometer recorded signals for nearly one hour after the impact.

      Left: Recording from the Apollo 12 seismometer of the intentional crash of Intrepid’s ascent stage. Right: LRO image of the impact area and debris field of Intrepid’s ascent stage, east of the Fra Mauro B crater.
      The primary activity for their remaining time around the Moon consisted of photographing potential landing sites for future Apollo missions, such as the Fra Mauro highlands and the Descartes region. On their 45th revolution, they went around to the Moon’s back side for the last time and they fired the SPS for the Trans Earth Injection burn. Apollo 12 left lunar orbit after 3 days 17 hours and 2 minutes. Conrad radioed to Mission Control, “Hello, Houston. Apollo 12’s en route home.”
      During the three-day return trip to Earth, the astronauts conducted a midcourse maneuver to refine their trajectory, answered questions from geologists and other scientists, and held a press conference at the end of which they held up a homemade sign to the camera that read, “Yankee Clipper sailed with Intrepid to the Sea of Storms, Moon, November 14, 1969,” signed by all three crew members. With the Sun and the Earth nearly aligned, the astronauts could only see a very thin crescent of their home planet, prompting Conrad to comment, “Houston, we just got our first glimpse of you this morning, and there’s not very much of you out there.” 

      Left: The Moon continues to shrink in size as Apollo 12 heads for home. Middle: The Earth appearing as a thin crescent. Right: The Apollo 12 astronauts observed a total solar eclipse as they passed into Earth’s shadow shortly before reentry.

      Left: The Apollo 12 Command Module Yankee Clipper descends on its three main parachutes seconds before splashdown. Middle: A recovery helicopter hovers over Yankee Clipper in the Stable II, or apex down, position, seconds after splashdown. Right: Image taken by a recovery diver of the decontamination officer assisting Alan L. Bean out of Yankee Clipper, with Richard F. Gordon, left, and Charles “Pete” Conrad already aboard the life raft.
      Shortly before reentry, orbital mechanics had a show in store for the astronauts – their trajectory passed through the Earth’s shadow, treating them to a total solar eclipse. Gordon radioed Mission Control, “We’re getting a spectacular view at eclipse,” and Bean added that it was a “fantastic sight.” The excitement of the eclipse over, the astronauts prepared the cabin for reentry. The CM separated from the Service Module and rotated to point its heatshield into the direction of flight. At 400,000 feet, Yankee Clipper now travelling at 24,625 miles per hour encountered the first tendrils of Earth’s atmosphere. About four minutes of radio blackout followed as ionized gases created by the heat of reentry surrounded the spacecraft. As Apollo 12 came out of the blackout, the prime recovery ship U.S.S. Hornet established radar contact with the spacecraft at a distance of 119 miles. At about 24,000 feet, the spacecraft jettisoned its apex cover, then deployed its two drogue parachutes to slow and stabilize the capsule. At 10,000 feet, the three main orange and white parachutes deployed, with Conrad reporting, “Three gorgeous beautiful chutes.” Precisely 244 hours and 36 minutes after lifting off from Florida, Apollo 12 splashed down in the Pacific Ocean less than four miles from Hornet, bringing the second lunar landing mission to a successful conclusion.

      Left: Apollo 12 astronauts Richard F. Gordon, left, Alan L. Bean, and Charles “Pete” Conrad aboard the recovery helicopter. Middle: Conrad, front, Gordon, and Bean walk from the helicopter to the Mobile Quarantine Facility (MQF). Right: Admiral John S. McCain addresses the Apollo 12 astronauts in the MQF.
      The capsule assumed the apex down Stable 2 position in the water, but in less than five minutes three self-inflating balloons righted the spacecraft into the Stable 1 upright orientation. Five minutes later, a helicopter dropped the first three recovery team swimmers into the water, tasked with securing a flotation collar and rafts to the spacecraft. Decontamination officer Ernest “Ernie” L. Jahncke next dropped into the water and once the crew opened the hatch, he handed them fresh flight suits and respirators. A few minutes later, the crew reopened the hatch, and first Conrad, then Gordon, and finally Bean climbed aboard a life raft where Jahncke used a disinfectant solution to decontaminate the astronauts and the spacecraft. The recovery helicopter lowered a Billy Pugh net to haul the astronauts up from the raft, first Gordon, then Bean, and finally Conrad. Aboard the helicopter, NASA flight surgeon Dr. Clarence A. Jernigan gave each astronaut a brief physical examination during the short flight back to Hornet, declaring all three healthy.
      After it landed on Hornet’s deck, sailors lowered the helicopter to the hangar deck, where Conrad, Gordon, and Bean, followed by Dr. Jernigan, walked the few steps to the Mobile Quarantine Facility (MQF) where NASA engineer Brock R. “Randy” Stone awaited them. He sealed the door of the MQF exactly one hour after splashdown. The five men spent the next five days together in the MQF until they arrived at the Lunar Receiving Laboratory (LRL) at MSC. The astronauts took congratulatory phone calls from President Richard M. Nixon, who field-promoted all three from U.S. Navy Commanders to Captains, and from NASA Administrator Thomas O. Paine. After the astronauts talked briefly with their families, Commander-in-Chief of Pacific Naval Forces Admiral John S. McCain formally welcomed them back to Earth, followed by brief speeches by Rear Admiral Donald C. Davis, Commander of Recovery Forces, and Capt. Carl J. Seiberlich, Hornet’s skipper.

      Left: Apollo 12 Command Module Yankee Clipper in the water with U.S.S. Hornet approaching as a rescue helicopter circles. Middle: Recovery team members lift Yankee Clipper out of the water. Right: Sailors haul Yankee Clipper aboard the Hornet.
      Within an hour after the astronauts arrived on board Hornet, the recovery team hauled Yankee Clipper out of the water and towed it below to the hangar deck next to the MQF. As Hornet set sail for Pearl Harbor, arriving there four days later, workers attached a hermetically sealed plastic tunnel between the MQF and Yankee Clipper, allowing Stone to leave the MQF and open the hatch to the capsule without breaking the biological barrier. He retrieved the two rock boxes containing the lunar samples, the bags containing the Surveyor parts, film cassettes, and mission logs from the capsule. He brought them to the MQF where he sealed them in plastic bags and transferred them to the outside through a transfer lock that included a decontamination wash.
      Outside the MQF, NASA engineers placed these items into transport containers and loaded them aboard two separate aircraft. The first aircraft carrying one rock box and a second package containing film departed Hornet within nine hours of the recovery, flying to Pago Pago, American Samoa. From there the two containers were placed aboard a cargo aircraft and flown directly to Ellington Air Force Base (AFB) near MSC in Houston, arriving there late in the afternoon of Nov. 25. A second aircraft departed Hornet 14 hours after the first and included the second rock box, additional film as well as the astronaut medical samples. It flew to Pago Pago where workers transferred the containers to another cargo plane that flew them to Houston. Less than 48 hours after splashdown, scientists in the LRL were examining the lunar samples and processing the film.

      Left: Technicians carry the first box of Apollo 12 lunar samples from the cargo plane after its arrival at Ellington Air Force Base in Houston. Middle: Technicians log in the first set of Apollo 12 lunar samples and film at the Lunar Receiving Laboratory’s (LRL) loading dock. Right: A technician weighs the first Apollo 12 Sample Return Container in the LRL.

      Left: Technicians place the first Apollo 12 Sample Return Container (SRC) inside a glovebox at the Lunar Receiving Laboratory. Middle: The first Apollo 12 SRC inside a glovebox. Right: Scientists get the first glimpse of the Moon rocks inside the first SRC.

      Left: Apollo 12 astronauts Richard F. Gordon, second from left, Alan L. Bean and Charles “Pete” Conrad prepare their mission report inside the MQF. Middle: Workers at Pearl Harbor in Honolulu offload the Mobile Quarantine Facility (MQF) from Hornet with the Apollo 12 crew inside. Right: Workers at Ellington Air Force Base in Houston offload the MQF with the astronauts inside.
      Meanwhile, in the Pacific Ocean, Hornet sailed for Pearl Harbor, Hawaii, with the astronauts inside the MQF to maintain the strict back-contamination protocols. They also celebrated Thanksgiving on Nov. 27. Dr. Jernigan conducted regular medical examinations of the astronauts, who showed no ill effects from their ten-day spaceflight or any signs of infection by any lunar microorganisms. The crew members availed themselves of one amenity aboard the MQF that was a novelty at the time – a microwave oven for meal preparation.
      On Nov. 28, Hornet arrived at Pearl Harbor. Workers lifted the MQF with the astronauts inside onto a flat-bed trailer. After a brief welcoming ceremony including traditional Hawaiian flower leis, ukulele music, and hula dancers, they drove the MQF to nearby Hickam AFB, where Air Force personnel loaded it onto a cargo aircraft. After an eight-hour flight, the aircraft arrived at Ellington on the morning of Nov. 29, where the MQF was offloaded in front of a waiting crowd of well-wishers including MSC Director Robert R. Gilruth and Apollo 11 astronaut Neil A. Armstrong. The astronauts’ wives and children were on hand to welcome them home to Houston. Workers placed the MQF on a flat-bed truck and drove it to the LRL. Less than two hours after landing in Houston the astronauts arrived inside the Crew Reception Area (CRA) where they spent the next 11 days. During their time in quarantine, they completed many of the postflight debriefs and examined the lunar rocks as well as the parts of Surveyor 3 such as its camera that they returned from the Ocean of Storms.

      Left: Robert R. Gilruth, director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, welcomes the Apollo 12 astronauts home. Middle: The Apollo 12 astronauts’ wives Barbara Gordon, left, Jane Conrad, and Sue Bean and their children welcome their husbands home. Right: Apollo 11 astronaut Neil A. Armstrong greets the Apollo 12 crew upon their return to Ellington.

      Left: Workers drive the Apollo 12 astronauts inside the Mobile Quarantine Facility (MQF) from Ellington Air Force Base to the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Middle: The MQF approaches MSC. Right: The MQF docked the MSC’s Building 37, the Lunar Receiving Laboratory.

      Left: Charles “Pete” Conrad examines some of the Moon rocks he and Alan L. Bean returned from the Moon. Middle: Conrad and Richard F. Gordon place the rocks samples back in the collection bags. Right: Conrad examines the camera from Surveyor 3 that he and Bean returned from the Moon.

      Left: The Apollo 12 Command Module Yankee Clipper arrives at the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Yankee Clipper temporarily parked outside the LRL before workers roll it inside. Right: In the LRL, Richard F. Gordon writes on Yankee Clipper that served as his home for 10 days.
      After the astronauts departed Hornet in Pearl Harbor, workers lifted Yankee Clipper from the carrier’s flight deck to the dock and drove it to Hickam AFB where technicians safed the vehicle by draining its toxic fuels. To preserve back-contamination protocols, Yankee Clipper’s hatch remained sealed. On Dec. 1, workers loaded Yankee Clipper onto a cargo aircraft at Hickam AFB. It arrived at Ellington AFB the next day and workers trucked it to the LRL, then towed it inside the spacecraft room of the CRA. The Apollo 12 astronauts signed their names on the capsule below the same words they held up during their inflight news conference – “Yankee Clipper Sailed with Intrepid to The Ocean of Storms, Moon, November 14, 1969.”

      Left: The Apollo 12 Command Module Yankee Clipper on display at the Virginia Air and Space Center in Hampton. Middle: A technician examines the Surveyor 3 camera returned by Apollo 12. Right: The Surveyor 3 camera on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C.
      Visitors to the Virginia Air and Space Center in Hampton can view the Apollo 12 CM Yankee Clipper on display. Surveyor’s camera is on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C.
      Apollo 13

      Left: Apollo 13 astronaut James A. Lovell preparing to test his spacesuit in a vacuum chamber in the Space Environment Simulation Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Workers at NASA’s Kennedy Space Center in Florida prepare the Apollo 13 Command and Service Module. Right: Lovell during the geology field trip to Kilbourne Hills, New Mexico.
      The next Moon landing mission, Apollo 13, planned to launch on March 12, 1970, and visit the Fra Mauro highlands region of the Moon. With the mission’s increased emphasis on science, geology training for the Apollo 13 prime crew of Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise, and their backups John W. Young, Jack L. Swigert, and Charles M. Duke, took on greater importance. Lovell, Haise, Young, and Duke, accompanied by several geologists, traveled to Kilbourne Hole, New Mexico, for a one-day geology field trip on Nov. 11. The area’s volcanic origins served as appropriate training for their planned landing site, then believed to be a result of volcanic activity. The astronauts practiced deploying their ALSEP set of instruments, including during suited tests in a vacuum chamber in MSC’s Space Environment Simulation Laboratory. At KSC, workers in the Manned Spacecraft Operations Building (MSOB) continued preparing both the CSM and the LM for Apollo 13 prior to stacking with the Saturn V rocket in December.
      Apollo 14

      Left: The Apollo 14 Command and Service Modules arrive at NASA’s Kennedy Space Center (KSC) for preflight processing. Middle: The Apollo 14 Lunar Module (LM) descent stage arrives at KSC. Right: The Apollo 14 LM ascent stage arrives at KSC.
      Spacecraft components for Apollo 14, then planned for launch around July 1970, arrived at KSC in November 1969. The CM and SM arrived on Nov. 19 and workers in the MSOB mated the two components five days later. The two stages of the LM arrived in the MSOB on Nov. 24.
      With special thanks to Robert B. Fish for his expertise on U.S.S. Hornet recovery operations.
      To be continued …
      News from around the world in November 1969:
      November 10 – Sesame Street premieres on PBS.
      November 12 – Five Americans and one New Zealander became the first women to visit the South Pole.
      November 15 – Wendy’s Hamburgers opens in Columbus, Ohio.
      November 20 – Brazilian soccer star Pelé scores his 1,000th goal.
      November 22 – Isolation of a single gene announced by scientists at Harvard University.
      Explore More
      12 min read 40 Years Ago: STS-51A – “The Ace Repo Company”
      Article 6 days ago 1 min read Oral History with Jon A. McBride, 1943 – 2024
      Article 7 days ago 9 min read 30 Years Ago: STS-66, the ATLAS-3 Mission to Study the Earth’s Atmosphere
      Article 1 week ago View the full article
  • Check out these Videos

×
×
  • Create New...