Jump to content

NASA Celebrates Hispanic Heritage Month 2024


NASA

Recommended Posts

  • Publishers

In honor of Hispanic Heritage Month, we recognize Hispanic astronauts who have flown in space. The table below lists these individuals of various nationalities who have made significant contributions to their space programs. The first Hispanic astronauts completed short flights to a Soviet space station and aboard the space shuttle. In the past 23 years, many more have completed flights to the International Space Station and contributed to its assembly, operations, and research activities.  

Table of Hispanic astronauts who have flown in space
Table of Hispanic astronauts who have flown in space.

Arnaldo Tamayo Méndez of Cuba holds the title of the first person of Hispanic heritage to fly in space. He spent eight days aboard the Salyut-6 space station in September 1980 as part of the Soviet Union’s Interkosmos program to fly cosmonauts from friendly socialist countries. The first Hispanic to fly on the space shuttle, Payload Specialist Rodolfo Neri Vela of Mexico, also introduced tortillas to astronauts’ on board menus during his flight on STS-61B in November 1985. Tortillas continue to be a staple on the space station today, for everything from breakfast tacos, to burgers, sandwiches, and pizzas. Selected as an astronaut in 1980, Costa Rican-born Franklin R. Chang-Díaz holds the honor as the first Hispanic American in space. He flew in space a record-tying seven times, including one visit to the Russian space station Mir and one to the International Space Station.

Cuban cosmonaut Arnaldo Tamayo Méndez Rodolfo Neri Vela enjoys a trend-setting tortilla during the STS-61B mission NASA astronaut Franklin R. Chang-Díaz
Left: Portrait of Cuban cosmonaut Arnaldo Tamayo Méndez. Middle: Mexican payload specialist Rodolfo Neri Vela enjoys a trend-setting tortilla during the STS-61B mission. Right: Portrait of NASA astronaut Franklin R. Chang-Díaz.

Franklin R. Chang-Díaz

Chang-Díaz’s first flight, STS-61C aboard space shuttle Columbia, took place in January 1986, a six-day flight to deploy a communications satellite and to remotely observe Halley’s comet. The crew included two future NASA administrators, NASA astronauts Charles F. Bolden and U.S. Senator (D-FL) C. William “Bill” Nelson. The flight landed just 10 days before the tragic loss of space shuttle Challenger. His next mission, STS 34 aboard Atlantis, in October 1989 saw the deployment of the Galileo spacecraft to explore Jupiter with an orbiter and an atmospheric probe. Chang-Díaz launched on his third mission, STS 46 in July 1992, an eight-day flight aboard Atlantis to test fly the first Tethered Satellite System (TSS-1).

Franklin R. Chang-Díaz, center, the first Hispanic American astronaut, with his fellow STS-61C crew members Chang-Díaz, and the STS-34 crew Chang-Díaz, with the STS-46 crew
Left: Franklin R. Chang-Díaz, center, the first Hispanic American astronaut, with his fellow STS-61C crew members. Middle: Chang-Díaz, center, and the STS-34 crew. Right: Chang-Díaz, upper right, with the STS-46 crew.

Chang-Díaz returned to space for his fourth mission in January 1994 aboard Discovery. The eight-day STS-60 flight comprised the first flight in the Shuttle-Mir program, with Russian cosmonaut Sergey K. Krikalev a member of the crew. Chang-Díaz launched on his fifth flight in February 1996, the 16-day STS-75 mission aboard Columbia to refly the TSS. On his sixth mission in June 1998, the STS-91 crew docked Discovery with the Russian space station Mir and returned astronaut Andrew S.W. Thomas to earth, the final Shuttle-Mir mission.

Franklin R. Chang-Díaz, with the STS-60 crew Chang-Díaz with his STS-75 crew mates Chang-Díaz, with the STS-91 and Mir 25 crews
Left: Franklin R. Chang-Díaz, lower left, with the STS-60 crew. Middle: Chang-Díaz, left, with his STS-75 crew mates. Right: Chang-Díaz, with the STS-91 and Mir 25 crews.

During his record-tying seventh trip into space, Chang-Díaz made his only visit to the space station. The main goals of Endeavour’s STS-111 mission in June 2002 included the exchange of the Expedition 4 and 5 crews and the resupply of the station using the Leonardo Multi-Purpose Logistics Module (MPLM). Two new research facilities rode in the MPLM, the fifth Expedite the Processing of Experiments to the Space Station (EXPRESS) rack and the Microgravity Sciences Glovebox. Chang-Díaz completed three spacewalks with his fellow mission specialist, French astronaut Philippe Perrin, to install the Mobile Base System portion of the Canadarm2’s remote manipulator system and perform maintenance tasks on the station.

NASA astronaut Franklin R. Chang-Díaz with his STS-111 crewmates and the Expedition 4 and 5 crews Chang-Díaz during the first STS-111 spacewalk Chang-Díaz in Endeavour’s middeck following undocking from the space station
Left: NASA astronaut Franklin R. Chang-Díaz, left of center, with his STS-111 crewmates and the Expedition 4 and 5 crews. Middle: Chang-Díaz during the first STS-111 spacewalk. Right: Chang-Díaz in Endeavour’s middeck following undocking from the space station.

Sidney M. Gutierrez

NASA selected New Mexico native Sidney M. Gutierrez as an astronaut in 1984. On his first mission in June 1991, he served as the pilot of Columbia on the STS-40 Spacelab Life Sciences-1 mission, a nine-day flight dedicated to investigating the responses of the human body to weightlessness. He also served as a test subject for several of the experiments. During his second mission in April 1994, Gutierrez served as the commander of STS-59, the Space Radar Laboratory-1 flight, an 11-day mission aboard Endeavour. The payload included a synthetic aperture imaging radar.

NASA astronaut Sidney M. Gutierrez with his STS-40 crew mates Gutierrez with the STS-59 crew.
Left: NASA astronaut Sidney M. Gutierrez, center, with his STS-40 crew mates. Right: Gutierrez, center, with the STS-59 crew.

Ellen Ochoa

Selected as the first female Hispanic astronaut in 1990, Ellen Ochoa completed four spaceflights and then served as the first Hispanic director of NASA’s Johnson Space Center in Houston. On her first mission in April 1993, she served as a mission specialist on the nine-day STS-56 flight, the second Atmospheric Laboratory for Applications and Science (ATLAS) mission aboard Discovery. An accomplished flautist, she played her flute during the flight. On her second flight, STS-66 in March 1994, Ochoa flew aboard Atlantis and operated the experiments of the ATLAS-3 payload during the 11-day mission.

Ellen Ochoa and the rest of the STS-56 crew Ochoa plays the flute on Discovery’s flight deck Ochoa and the rest of the STS-66 crew
Left: Ellen Ochoa, top left, and the rest of the STS-56 crew. Middle: Ochoa plays the flute on Discovery’s flight deck. Right: Ochoa, top left, and the rest of the STS-66 crew.

Ochoa holds the distinction as the first Hispanic astronaut to visit the space station, making her first visit in May 1999 as a mission specialist aboard Discovery’s 10-day STS-96 mission. The goals of the mission – only the second shuttle flight to the station that, at the time, comprised only two modules – included the transfer of two tons of logistics to the station, launched inside a Spacehab double module, and the delivery of the Russian Strela cargo crane.

The space station as seen from STS-96 NASA astronaut Ellen Ochoa with the STS-96 crew in the Unity Node 1 Ochoa with fellow STS-96 crewmembers Julie Payette of the Canadian Space Agency in the Zarya module.
Left: The space station as seen from STS-96. Middle: NASA astronaut Ellen Ochoa, lower right, with the STS-96 crew in the Unity Node 1. Right: Ochoa, bottom, with fellow STS-96 crewmembers Julie Payette of the Canadian Space Agency in the Zarya module.

Ochoa returned to a much-enlarged space station aboard space shuttle Atlantis in April 2002 during the STS-110 mission that delivered the 13-ton S0 truss – the center segment section to which future truss segments were later attached. Ochoa operated the Space Station Remote Manipulator System (SSRMS), also known as Canadarm2, to lift the S0 truss from the shuttle’s payload bay and attach it atop the Destiny module. The S0 truss also contained the Mobile Transporter to allow the SSRMS to translate up and down the trusses. Ochoa was named as JSC’s deputy director in 2007, then as JSC’s first Hispanic director in 2013. She served in that position until her retirement from NASA in 2018.

 NASA astronaut Ellen Ochoa operating Canadarm2 The space station as seen from the departing STS-110, showing the S0 truss mounted on Destiny Portrait of Ellen Ochoa as director of NASA’s Johnson Space Center in Houston
Left: NASA astronaut Ellen Ochoa operating Canadarm2 in the Destiny module. Middle: The space station as seen from the departing STS-110, showing the S0 truss mounted on Destiny. Right: Portrait of Ochoa as director of NASA’s Johnson Space Center in Houston.

Michael E. Lopez-Alegria

NASA selected Michael E. “LA” Lopez-Alegria, born in Madrid, Spain, as an astronaut in 1992. On his first spaceflight, he served as a mission specialist on STS-73, the second flight of the United States Microgravity Laboratory. The 16-day mission aboard Columbia in October 1995 included 37 investigations supported by 11 facilities, with the seven-member crew working around the clock in two shifts in a Spacelab module.

Michael E. Lopez-Alegria with the rest of the STS-73 crew inside the Spacelab module. Lopez-Alegria working on biological experiment in the Spacelab module
Left: Michael E. Lopez-Alegria, center, with the rest of the STS-73 crew inside the Spacelab module. Right: Lopez-Alegria working on biological experiment in the Spacelab module.

Lopez-Alegria served as a mission specialist on STS-92 during his first visit to the space station. He and his six crewmates launched aboard Discovery in  October 2000, the 100th launch of the program and the last to visit an unoccupied station. At the time, the station comprised just three modules. During the mission, the STS-92 crew installed the Z1 truss atop the Unity module, four Control Moment Gyros, and the third Pressurized Mating Adaptor. The Z1 truss  enabled the addition of solar arrays and radiators on the subsequent assembly flight and also contained high-rate communications equipment including the first Space-to-Ground antenna. Lopez-Alegria participated in two of the mission’s four spacewalks with Peter J. “Jeff” Wisoff to complete the assembly tasks. During their last spacewalk, the two conducted the first flight evaluation at the station of the Simplified Aid for EVA Rescue (SAFER), a propulsive backpack to be used by astronauts should they become detached from the spacecraft. The STS-92 crew left the station ready for its first inhabitants, and indeed less than two weeks later, the first Expedition crew arrived to begin permanent residency in low Earth orbit.

NASA astronaut Michael E. Lopez-Alegria working outside the space station during STS-92 Lopez-Alegria tests the Simplified Aid for EVA Rescue as fellow NASA astronaut Peter J. “Jeff” Wisoff looks on The space station as seen from Discovery shortly after undocking, showing the Z1 Truss with the Space-to-Ground Antenna at top and the third Pressurized Mating Adaptor at bottom.
Left: NASA astronaut Michael E. Lopez-Alegria working outside the space station during STS-92. Middle: Lopez-Alegria, left, tests the Simplified Aid for EVA Rescue as fellow NASA astronaut Peter J. “Jeff” Wisoff looks on. Right: The space station as seen from Discovery shortly after undocking, showing the Z1 Truss with the Space-to-Ground Antenna at top and the third Pressurized Mating Adaptor at bottom.

For his third flight into space, Lopez-Alegria returned to the station in November 2002 during the STS-113 mission, the facility now permanently occupied and having grown significantly in the intervening two years. The primary tasks for the STS-113 crew included adding the P1 truss on the station’s port side, installing the Crew Equipment Translation Aid (CETA) cart, and assisting in the exchange between the Expedition 5 and 6 crews. Lopez-Alegria and fellow STS-113 mission specialist John B. Harrington conducted three spacewalks to complete the installation of the P1 truss and the CETA cart. After STS-113, assembly of the station came to a temporary halt following the Feb. 1, 2003, Columbia accident, and the subsequent grounding of the space shuttle fleet. Flights did not resume until September 2006.

NASA astronaut Michael E. Lopez-Alegria during the first STS-113 spacewalk. Lopez-Alegria, second from right in the middle row, posing in the Destiny module with his STS-113 crewmates, as well as the Expedition 5 and 6 crews The space station as seen by the departing STS-113 crew, with the newly installed P1 truss visible at right
Left: NASA astronaut Michael E. Lopez-Alegria during the first STS-113 spacewalk.  Middle: Lopez-Alegria, second from right in the middle row, posing in the Destiny module with his STS-113 crewmates, as well as the Expedition 5 and 6 crews. Right: The space station as seen by the departing STS-113 crew, with the newly installed P1 truss visible at right.

Lopez-Alegria returned to the space station again shortly after assembly resumed. For his fourth spaceflight, he launched aboard Soyuz TMA9 in September 2006, from the Baikonur Cosmodrome in Kazakhstan,. Mikhail V. Tyurin of Roscosmos accompanied him during the 215-day mission, to that time the longest space station expedition, was Mikhail V. Tyurin of Roscosmos. European Space Agency (ESA) astronaut Thomas A. Reiter, onboard the station since July 2006, became part of the Expedition 14 crew. As Commander of Expedition 14, Lopez-Alegria oversaw one of the most complex set of activities in the assembly of the station – the reconfiguration of its power and cooling systems. A week before his arrival, the STS-115 mission had delivered the second set of solar arrays to the station as part of the P3/P4 truss segment, positioning them outboard of the P1 segment. As part of the reconfiguration, the port side P6 array mounted atop the Z1 truss needed to be retracted to prevent interference with the rotation of the new arrays, a task that was completed during the visiting STS-116 mission in December that also added the P5 short spacer to the port side truss. That mission brought NASA astronaut Sunita L. “Suni” Williams to the station as a new addition to Expedition 14 and returned Reiter back to Earth. During Expedition 14, Lopez-Alegria took part in five spacewalks, two in Orlan spacesuits with Tyurin to conduct work on the outside of the Russian segment and three in American spacesuits, with Williams to reconfigure the cooling system of the U.S. segment. He accumulated a total of 67 hours and 40 minutes over 10 spacewalks – still the record among American astronauts. Lopez-Alegria also conducted a variety of scientific experiments.

Space station configuration when NASA astronaut Michael E. Lopez-Alegria arrived in September 2006 Lopez-Alegria, back row middle, with STS-116 and Expedition 14 crew members Celebrating the holidays aboard the space station
Left: Space station configuration when NASA astronaut Michael E. Lopez-Alegria arrived in September 2006. Middle: Lopez-Alegria, back row middle, with STS-116 and Expedition 14 crew members. Right: Celebrating the holidays aboard the space station.

NASA astronaut Michael E. Lopez-Alegria conducting a session of the Canadian TRAC experiment in the Destiny module Michael E. Lopez-Alegria conducts maintenance on the exterior of the Russian segment The space station’s configuration at the end of Lopez-Alegria’s mission
Left: NASA astronaut Michael E. Lopez-Alegria conducting a session of the Canadian TRAC experiment in the Destiny module. Middle: In an Orlan suit, Lopez-Alegria conducts maintenance on the exterior of the Russian segment. Right: The space station’s configuration at the end of Lopez-Alegria’s mission – note the retracted P6 solar array.

Lopez-Alegria retired from NASA in 2012, joining Axiom Space shortly thereafter. In April 2022, he commanded the Ax-1 mission, the first commercial astronaut mission to the space station. He and his three crewmates spent 17 days aboard, conducting a variety of experiments. Lopez-Alegria returned to space as commander of the Ax-3 mission in January 2024. He and his three multi-national crewmates spent 22 days aboard the space station conducting numerous experiments. Across his six missions, Lopez-Alegria accumulated a total of 297 days in space.

Axiom astronaut Michael E. Lopez-Alegria floats into the space station during the Ax-1 mission Lopez-Alegria and the rest of the Ax-1 crew. The 11 crew members aboard the space station during the Ax-1 mission, with Lopez-Alegria at far right.
Left: Axiom Space astronaut Michael E. Lopez-Alegria floats into the space station during the Ax-1 mission.
Middle: Lopez-Alegria, second from right, and the rest of the Ax-1 crew. Right: The 11 crew members
aboard the space station during the Ax-1 mission, with Lopez-Alegria at far right.

Axiom Space astronaut Michael E. Lopez-Alegria answers questions from the space station’s Cupola during the Ax-3 mission Lopez-Alegria, second from left, and the rest of the Ax-3 crew The 11 members of the Expedition 70 and Ax-3 crews, with Lopez-Alegria at far left
Left: Axiom Space astronaut Michael E. Lopez-Alegria answers questions from the space station’s Cupola during the Ax-3 mission. Middle: Lopez-Alegria, second from left, and the rest of the Ax-3 crew. Right: The 11 members of the Expedition 70 and Ax-3 crews, with Lopez-Alegria at far left.

Carlos I. Noriega

In 1994, NASA selected Carlos I. Noriega as the first Peruvian-born astronaut. On his first spaceflight in May 1997, he served as a mission specialist aboard STS-84, the sixth Shuttle-Mir docking mission. During the nine-day flight, the crew resupplied the Mir space station, brought NASA astronaut C. Michael Foale to the Russian outpost, and returned Jerry M. Linenger to Earth.

Carlos I. Noriega sets up an experiment during the STS-84 mission Noriega working on an experiment in the Spacehab module The 10 members of the STS-84 and Mir resident crew, with Noriega
Left: Carlos I. Noriega sets up an experiment during the STS-84 mission. Middle: Noriega working on an experiment in the Spacecab module. Right: The 10 members of the STS-84 and Mir resident crew, with Noriega at upper right.

In December 2000, Noriega launched on his second mission, aboard Endeavour with his four crewmates on STS-97, their primary goal to install the P6 truss segment with the first set of solar arrays and radiators atop the Z1 truss. STS-97 marked the first time a shuttle visited the station after its occupancy began, but given the busy spacewalk schedule, the hatches between the two vehicles were only open for 24 hours. Noriega and fellow mission specialist Joseph R. Tanner conducted three spacewalks to complete the P6 installation and other assembly tasks. The new solar arrays generated enough power for the arrival of the U.S. laboratory module Destiny early in 2001 and the start of intensive research aboard the space station.

NASA astronaut Carlos I. Noriega waves to the camera as he installs the P6 truss and solar arrays. Noriega with the STS-97 and Expedition 1 crews in the Zarya Service Module. The space station as seen from the departing STS-97 showing the newly deployed P6 solar arrays.
Left: NASA astronaut Carlos I. Noriega waves to the camera as he installs the P6 truss and solar arrays. Middle: Noriega, center, with the STS-97 and Expedition 1 crews in the Zarya Service Module. Right: The space station as seen from the departing STS-97 showing the newly deployed P6 solar arrays.

Pedro Duque

The European Space Agency (ESA) selected Pedro Duque, born in Madrid, Spain, as an astronaut in 1992. Four years later, he joined NASA’s astronaut class of 1996 in training and two years later certified as a mission specialist. His first launch into space took place in October 1998 on Discovery’s STS-95 mission, the nine-day flight that saw astronaut John H. Glenn’s return to space. Duque returned to space in October 2003 aboard Soyuz TMA3, conducting experiments aboard the space station as part of his Cervantes visiting mission. He returned to Earth 10 days later aboard Soyuz TMA2.

Spanish astronaut Pedro Duque, lower left, representing the European Space Agency, with his STS-95 crewmates Duque conducting an experiment in the Microgravity Science Glovebox aboard the space station Duque with his Expedition 7 and 8 crewmates
Left: Spanish astronaut Pedro Duque, lower left, representing the European Space Agency, with his STS-95 crewmates. Middle: Duque conducting an experiment in the Microgravity Science Glovebox aboard the space station. Right: Duque, center, with his Expedition 7 and 8 crewmates.

Marcos C. Pontes

The Brazilian Space Agency selected Marcos C. Pontes as an astronaut in 1998. He trained with NASA’s astronaut class of 1998 and certified as a mission specialist two years later. Pontes made his one and only spaceflight in March 2006 aboard Soyuz TMA8, carrying out eight experiments. He returned to Earth 10 days later aboard Soyuz TMA7.

Brazilian astronaut Marcos Pontes, center at rear, with his Expedition 12 and 13 crewmates Pontes works on an experiment in the Destiny Laboratory Module Pontes at work on an experiment in the Russian Zvezda module.
Left: Brazilian astronaut Marcos Pontes, center at rear, with his Expedition 12 and 13 crewmates. Middle: Pontes works on an experiment in the Destiny Laboratory Module. Right: Pontes at work on an experiment in the Russian Zvezda module.

John D. “Danny” Olivas

Selected as a member of NASA’s Astronaut Class of 1998, John D. “Danny” Olivas visited the space station on two occasions as a shuttle mission specialist. His first visit took place aboard Atlantis during the STS-117 mission in June 2007. During the flight, Olivas and fellow mission specialist James F. Reilly conducted two of the four spacewalks to install the S3/S4 truss segment that included the third set of solar arrays. To prevent interfering with the rotation of the new arrays, the crew retracted the starboard P6 array mounted atop the Z1 truss. The STS-117 mission also served as a crew exchange flight, with NASA astronaut Clayton C. Anderson replacing Suni Williams as a member of Expedition 15.

NASA astronaut John D. “Danny” Olivas during an STS-117 spacewalk working on the S3/S4 truss installation. Olivas, back row at right, with the STS-117 and Expedition 15 crews The space station as seen by the departing STS-117 crew, showing the new set of starboard solar arrays at right.
Left: NASA astronaut John D. “Danny” Olivas during an STS-117 spacewalk working on the S3/S4 truss installation. Middle: Olivas, back row at right, with the STS-117 and Expedition 15 crews. Right: The space station as seen by the departing STS-117 crew, showing the new set of starboard solar arrays at right.

On his return to the station, Olivas found it a bit more crowded – three months earlier, the permanent crew aboard the station had expanded from three to six. He and his crewmates launched aboard Discovery on the STS-128 mission in August 2009. The shuttle’s payload bay contained the Leonardo MPLM bringing supplies to help maintain a 6-person crew on the space station, including three systems racks: a crew quarters, an Air Revitalization System  rack, and the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) for crew exercise – as well as three research racks – the Fluid Integrated Rack , the Materials Science Research Rack, and the second Minus Eighty-degree Laboratory Freezer for ISS (MELFI). Olivas participated in three spacewalks to replace the Ammonia Tank Assembly  on the P1 truss and to retrieve two experiments from the European Columbus module’s External Payload Facility. STS-128 also completed the final shuttle-based crew exchange, with NASA astronauts Nicole P. Stott and Timothy L. Kopra exchanging places as Expedition 20 crewmembers.

NASA astronaut John D. “Danny” Olivas poses during spacewalk work on the Ammonia Tank Assembly. NASA astronaut John D. “Danny” Olivas eating a chocolate and peanut butter snack NASA astronaut John D. “Danny” Olivas, at center, with the STS-128 and Expedition 20 crews
Left:NASA astronaut John D. “Danny” Olivas poses during spacewalk work on the Ammonia Tank Assembly. Middle: Olivas eating a chocolate and peanut butter snack. Right: Olivas, at center, with the STS-128 and Expedition 20 crews.

George D. Zamka

Selected as a NASA astronaut in 1998, George D. Zamka completed his first space flight as pilot on Discovery’s STS-120 mission. Launching in October 2007, Zamka and his crewmates brought the Harmony Node 2 module to the station, temporarily berthing it on the Unity Node 1’s port side until the Expedition 16 crew relocated it to Destiny’s forward hatch. In its final location, Harmony enabled the later installation of the European and Japanese elements. The crew also relocated the P6 truss segment from atop Z1 to the outboard port truss. During the redeployment of the P6 solar arrays, one of the arrays developed a tear that required repair using a cufflink-like device to sew up the gap in the panel. STS-120 also conducted a crew exchange, with NASA astronauts Daniel M. Tani and Clay Anderson exchanging places as members of Expedition 16. As the STS-120 pilot, Zamka completed the undocking from the station and the departure fly-around maneuver.

NASA astronaut George D. Zamka holding the cufflink device used to repair the torn solar array Zamka, lower right, with the STS-120 and Expedition 16 crews The space station as seen from STS-120 departing, showing the newly delivered Harmony Node 2 module
Left: NASA astronaut George D. Zamka holding the cufflink device used to repair the torn solar array. Middle: Zamka, lower right, with the STS-120 and Expedition 16 crews. Right: The space station as seen from STS-120 departing, showing the newly delivered Harmony Node 2 module temporarily berthed at the Unity Node 1 and the relocated and redeployed P6 truss segment and solar arrays at left.

When he returned to the orbiting lab in February 2010, Zamka did so as commander of space shuttle Endeavour’s STS-130 mission. After guiding the shuttle to a successful docking with the station, Zamka and his crewmates, along with the Expedition 22 crew, installed the Tranquility Node 3 module to Unity’s port side and activated the new element. The new module provided accommodations for life support and habitation facilities for the station’s six-person crew. The crew removed the Cupola from its launch position at the end of Tranquility and relocated it to the module’s Earth-facing port. The Cupola’s six trapezoidal and one circular center window provide crews not only visibility for approaching visiting vehicles, but also spectacular views of their home planet passing by below. 

NASA astronaut George D. Zamka peering through one of the Cupola’s windows Zamka with the STS-130 and Expedition 22 crews. The space station as seen from the departing STS-130, showing the Tranquility Node 3 and Cupola berthed at the Unity Node 1, left of center.
Left: NASA astronaut George D. Zamka peering through one of the Cupola’s windows. Middle: Zamka, front row second from right, with the STS-130 and Expedition 22 crews. Right: The space station as seem from the departing STS-130, showing the Tranquility Node 3 and Cupola berthed at the Unity Node 1, left of center.

Joseph M. “Joe” Acaba

Joseph M. “Joe” Acaba was selected in 2004 as part of NASA’s Educator Astronaut Program and qualified as a mission specialist. His first flight into space was aboard STS-119 in March 2009. Discovery brought up the S6 final truss segment with the fourth and final set of solar arrays, bringing the U.S. segment of the station’s useable power generating capability between 42 and 60 kilowatts. Acaba completed two of the mission’s three spacewalks, one with fellow mission specialist Steven R. Swanson and the other with fellow educator-astronaut and mission specialist Richard R. “Ricky” Arnold. During the STS-119 mission, Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA) replaced NASA astronaut Sandra H. Magnus as a member of the Expedition 18 crew.

NASA astronaut Joseph M. Acaba during the third STS-119 spacewalk Acaba with the STS-119 and Expedition 18 crews The space station as seen from the departing STS-119, with the newly added S6 truss segment and solar arrays
Left: NASA astronaut Joseph M. Acaba during the third STS-119 spacewalk. Middle: Acaba, front row at right, with the STS-119 and Expedition 18 crews. Right: The space station as seen from the departing STS-119, with the newly added S6 truss segment and solar arrays, at right.

For his second visit to the station, Acaba stayed for 125 days as part of Expeditions 31 and 32, launching in May 2012 from Kazakhstan aboard Soyuz TMA-04M. A week after arriving, Acaba and his crewmates welcomed the first commercial vehicle to dock with the space station, the SpaceX Dragon cargo resupply vehicle on its Demo-2 mission carrying food, water, scientific experiments and other supplies. The Expedition 31 crew loaded the Dragon spacecraft with cargo and experiment samples for return to Earth. The crew observed and photographed a rare celestial event, a transit of Venus across the Sun on June 5. In addition to conducting numerous science experiments, Acaba helped fire prevention icon Smokey the Bear celebrate his 68th birthday.

NASA astronaut Joseph M. Acaba with his Expedition 31 crewmates inside the SpaceX Dragon resupply vehicle NASA astronaut Joseph M. Acaba running on the COLBERT treadmill. NASA astronaut Joseph M. Acaba refracted in a globule of water.
Left: NASA astronaut Joseph M. Acaba, top right, with his Expedition 31 crewmates inside the SpaceX Dragon resupply vehicle. Middle: Acaba running on the COLBERT treadmill. Right: Acaba refracted in a globule of water.

NASA astronaut Joseph M. Acaba drawing a blood sample from Akihiko Hoshide of the Japan Aerospace Exploration Agency NASA astronaut Joseph M. Acaba with a toy Smokey the Bear in the Cupola to help celebrate the forest fire prevention icon’s 68th birthday NASA astronaut Joseph M. Acaba, lower right, with this Expedition 32 crewmates.
Left: NASA astronaut Joseph M. Acaba, right, drawing a blood sample from Akihiko Hoshide of the Japan Aerospace Exploration Agency. Middle: Acaba with a toy Smokey the Bear in the Cupola to help celebrate the forest fire prevention icon’s 68th birthday. Right: Acaba, lower right, with this Expedition 32 crewmates.

Acaba returned to the space station five years later as a member of Expedition 53 and 54, launching in September 2017, aboard Soyuz MS-06 Acaba joined NASA astronaut Randolph J. “Randy” Bresnik for a nearly seven-hour spacewalk to lubricate the newly installed replacement Latching End Effector on the SSRMS. Acaba continued with the research program and celebrated his Puerto Rican heritage with several events. He returned to Earth after a 168-day flight. Over his three missions, Acaba accumulated 306 days in space and nearly 20 hours in spacewalk time. Since February 2023, he has served as the chief of the astronaut office.

NASA astronaut Joseph M. Acaba conducting an experiment in the Microgravity Sciences Glovebox. Acaba showing Puerto Rico pride During a spacewalk, Acaba is lubricating the Candarm2 Latching End Effector Acaba with his Expedition 53 crewmates.
Left: NASA astronaut Joseph M. Acaba conducting an experiment in the Microgravity Sciences Glovebox. Middle left: In the Cupola, Acaba showing Puerto Rico pride. Middle right: During a spacewalk, Acaba is lubricating the Candarm2 Latching End Effector. Right: Acaba, left, with his Expedition 53 crewmates.

NASA astronaut Joseph M. Acaba working with the Biological Research in Canisters experiment. Acaba speaking with the Puerto Rico Institute of Robotics. During the holidays, Acaba participating in a parranda by video hhm-2023-82-acaba-exp-54-crew-photo-iss0
Left: NASA astronaut Joseph M. Acaba working with the Biological Research in Canisters experiment. Middle left: Acaba speaking with the Puerto Rico Institute of Robotics. Middle right: During the holidays, Acaba participating in a parranda by video. Right: Acaba, upper left, with his Expedition 54 crewmates.

José M. Hernández

Selected in 2004 as a NASA astronaut, José M. Hernández made his single visit to the space station during the STS-128 mission. Launched aboard space shuttle Discovery in August 2009, Hernández operated both the shuttle and station robotic arms to move the Leonardo MPLM back and forth and translate astronauts during the mission’s three spacewalks. He participated in the transfer and installation of the three systems racks and the three research racks aboard the orbiting laboratory. STS-128 also completed the final shuttle-based crew exchange, with Stott replacing Kopra as an Expedition 20 crew member. In collaboration with Amazon Studios, NASA is helping chronicle Hernández’ life and career through the film “A Million Miles Away,” telling the story of his journey from migrant farmer to NASA space explorer.

NASA astronaut José M. Hernández operating the shuttle’s robotic arm to transfer the Leonardo Multipurpose Logistics Module (MPLM) to the station. NASA astronaut José M. Hernández operating the station’s robotic arm to return the MPLM to the shuttle’s payload bay. NASA astronaut José M. Hernández with the STS-128 and Expedition 20 crews
Left:  NASA astronaut José M. Hernández operating the shuttle’s robotic arm to transfer the Leonardo Multipurpose Logistics Module (MPLM) to the station. Middle: Hernández operating the station’s robotic arm to return the MPLM to the shuttle’s payload bay. Right: Hernández, front row center, with the STS-128 and Expedition 20 crews.

Serena M. Auñón-Chancellor

Serena M. Auñón-Chancellor was selected as a member of NASA’s Astronaut Class of 2009 and made her first spaceflight nine years later. She launched aboard Soyuz MS-09 in June 2018and began work on the more than 300 research investigations she carried out during her stay aboard the orbiting laboratory. Auñón-Chancellor returned to Earth after completing a 197-day flight.

NASA astronaut Serena M. Auñón-Chancellor conducting the AngieX Cancer Therapy experiment in the Microgravity Sciences Glovebox. NASA astronaut Serena M. Auñón-Chancellor completing a session of the Eye Exam NASA astronaut Serena M. Auñón-Chancellor posing with her Expedition 56 crewmates in the Harmony Node 2 module.
Left: NASA astronaut Serena M. Auñón-Chancellor conducting the AngieX Cancer Therapy experiment in the Microgravity Sciences Glovebox. Middle: Auñón-Chancellor completing a session of the Eye Exam – Fundoscope experiment to help understand vision changes in microgravity. Right: Auñón-Chancellor, top, posing with her Expedition 56 crewmates in the Harmony Node 2 module.

NASA astronaut Serena M. Auñón-Chancellor working on the BioServe Protein Crystalography-1 experiment Expedition 57 crew members in their best Halloween outfits NASA astronaut Serena M. Auñón-Chancellor and her Expedition 57 crewmates in the Destiny module
Left: NASA astronaut Serena M. Auñón-Chancellor working on the BioServe Protein Crystalography-1 experiment. Middle: Expedition 57 crew members in their best Halloween outfits – Sergei V. Prokopiev of Roscosmos, left, as Elvis, ESA astronaut Alexander Gerst as Darth Vader, and Auñón-Chancellor as a mad scientist. Right: Auñón-Chancellor and her Expedition 57 crewmates in the Destiny module.

Francisco “Frank” C. Rubio

Selected as an astronaut by NASA in 2017, Dr. Francisco “Frank” C. Rubio began his first trip to space in September 2022, with Russian cosmonauts Sergei V. Prokopyev and Dmitri A. Petelin aboard Soyuz MS-22, for a planned six-month stay aboard the space station. A leak aboard their Soyuz MS-22 spacecraft in December resulted in the loss of its coolant, and they could no longer rely on it to return to Earth. Roscosmos sent the replacement Soyuz MS-23 to the station in February 2023. The incident extended their mission to over one year. On Sept. 11, Rubio broke the record of 355 days for the longest single flight by an American astronaut, set by Mark T. Vande Hei in March 2022. Prokopyev, Petelin, and Rubio landed on Sept. 27 after a 371-day flight, the longest aboard the space station up to that time.

NASA astronaut Francisco “Frank” C. Rubio receives his gold astronaut pin from Japan Aerospace Exploration Agency astronaut and fellow Expedition 68 crew member Koichi Wakata hhm-2023-93-rubio-exp-68-nov-15-2022-iss NASA astronaut Francisco “Frank” C. Rubio with Russian cosmonauts Sergey V. Prokopyev and Dmitri A. Petelin with a cake with “356” written on it to signify they surpassed the previous record
of 355 days as the longest flight aboard the space station.
Left: Shortly after arriving at the space station, NASA astronaut Francisco “Frank” C. Rubio receives his gold astronaut pin from Japan Aerospace Exploration Agency astronaut and fellow Expedition 68 crew member Koichi Wakata. Middle: Rubio during one of his two spacewalks. Right: Rubio, left, with Russian cosmonauts Sergey V. Prokopyev and Dmitri A. Petelin with a cake with “356” written on it to signify they surpassed the previous record of 355 days as the longest flight aboard the space station up to that time.

To be continued…

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for life before DNA emerged — can favor making the building blocks of proteins in either the left-hand or the right-hand orientation. Resolving this mystery could provide clues to the origin of life. The findings appear in research recently published in Nature Communications.
      Proteins are the workhorse molecules of life, used in everything from structures like hair to enzymes (catalysts that speed up or regulate chemical reactions). Just as the 26 letters of the alphabet are arranged in limitless combinations to make words, life uses 20 different amino acid building blocks in a huge variety of arrangements to make millions of different proteins. Some amino acid molecules can be built in two ways, such that mirror-image versions exist, like your hands, and life uses the left-handed variety of these amino acids. Although life based on right-handed amino acids would presumably work fine, the two mirror images are rarely mixed in biology, a characteristic of life called homochirality. It is a mystery to scientists why life chose the left-handed variety over the right-handed one.
      A diagram of left-handed and right-handed versions of the amino acid isovaline, found in the Murchison meteorite.NASA DNA (deoxyribonucleic acid) is the molecule that holds the instructions for building and running a living organism. However, DNA is complex and specialized; it “subcontracts” the work of reading the instructions to RNA (ribonucleic acid) molecules and building proteins to ribosome molecules. DNA’s specialization and complexity lead scientists to think that something simpler should have preceded it billions of years ago during the early evolution of life. A leading candidate for this is RNA, which can both store genetic information and build proteins. The hypothesis that RNA may have preceded DNA is called the “RNA world” hypothesis.
      If the RNA world proposition is correct, then perhaps something about RNA caused it to favor building left-handed proteins over right-handed ones. However, the new work did not support this idea, deepening the mystery of why life went with left-handed proteins.
      The experiment tested RNA molecules that act like enzymes to build proteins, called ribozymes. “The experiment demonstrated that ribozymes can favor either left- or right-handed amino acids, indicating that RNA worlds, in general, would not necessarily have a strong bias for the form of amino acids we observe in biology now,” said Irene Chen, of the University of California, Los Angeles (UCLA) Samueli School of Engineering, corresponding author of the Nature Communications paper.
      In the experiment, the researchers simulated what could have been early-Earth conditions of the RNA world. They incubated a solution containing ribozymes and amino acid precursors to see the relative percentages of the right-handed and left-handed amino acid, phenylalanine, that it would help produce. They tested 15 different ribozyme combinations and found that ribozymes can favor either left-handed or right-handed amino acids. This suggested that RNA did not initially have a predisposed chemical bias for one form of amino acids. This lack of preference challenges the notion that early life was predisposed to select left-handed-amino acids, which dominate in modern proteins.
      “The findings suggest that life’s eventual homochirality might not be a result of chemical determinism but could have emerged through later evolutionary pressures,” said co-author Alberto Vázquez-Salazar, a UCLA postdoctoral scholar and member of Chen’s research group.
      Earth’s prebiotic history lies beyond the oldest part of the fossil record, which has been erased by plate tectonics, the slow churning of Earth’s crust. During that time, the planet was likely bombarded by asteroids, which may have delivered some of life’s building blocks, such as amino acids. In parallel to chemical experiments, other origin-of-life researchers have been looking at molecular evidence from meteorites and asteroids.
      “Understanding the chemical properties of life helps us know what to look for in our search for life across the solar system,” said co-author Jason Dworkin, senior scientist for astrobiology at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and director of Goddard’s Astrobiology Analytical Laboratory.
      Dworkin is the project scientist on NASA’s OSIRIS-REx mission, which extracted samples from the asteroid Bennu and delivered them to Earth last year for further study.
      “We are analyzing OSIRIS-REx samples for the chirality (handedness) of individual amino acids, and in the future, samples from Mars will also be tested in laboratories for evidence of life including ribozymes and proteins,” said Dworkin.
      The research was supported by grants from NASA, the Simons Foundation Collaboration on the Origin of Life, and the National Science Foundation. Vázquez-Salazar acknowledges support through the NASA Postdoctoral Program, which is administered by Oak Ridge Associated Universities under contract with NASA.
      Share
      Details
      Last Updated Nov 21, 2024 EditorWilliam SteigerwaldContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Astrobiology Explore More
      2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
      NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
      Article 2 weeks ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
      NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
      Article 3 weeks ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
      Article 3 weeks ago View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   5 Min Read NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis
      An artist’s concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. Credits:
      NASA-JPL, Caltech In 1936, astronomers saw a puzzling event in the constellation Orion: the young star FU Orionis (FU Ori) became a hundred times brighter in a matter of months. At its peak, FU Ori was intrinsically 100 times brighter than our Sun. Unlike an exploding star though, it has declined in luminosity only languidly since then.
      Now, a team of astronomers has wielded NASA’s Hubble Space Telescope‘s ultraviolet capabilities to learn more about the interaction between FU Ori’s stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. They find that the inner disk touching the star is extraordinarily hot — which challenges conventional wisdom.
      The observations were made with the telescope’s COS (Cosmic Origins Spectrograph) and STIS (Space Telescope Imaging Spectrograph) instruments. The data includes the first far-ultraviolet and new near-ultraviolet spectra of FU Ori.
      “We were hoping to validate the hottest part of the accretion disk model, to determine its maximum temperature, by measuring closer to the inner edge of the accretion disk than ever before,” said Lynne Hillenbrand of Caltech in Pasadena, California, and a co-author of the paper. “I think there was some hope that we would see something extra, like the interface between the star and its disk, but we were certainly not expecting it. The fact we saw so much extra — it was much brighter in the ultraviolet than we predicted — that was the big surprise.”
      A Better Understanding of Stellar Accretion
      Originally deemed to be a unique case among stars, FU Ori exemplifies a class of young, eruptive stars that undergo dramatic changes in brightness. These objects are a subset of classical T Tauri stars, which are newly forming stars that are building up by accreting material from their disk and the surrounding nebula. In classical T Tauri stars, the disk does not touch the star directly because it is restricted by the outward pressure of the star’s magnetic field.
      The accretion disks around FU Ori objects, however, are susceptible to instabilities due to their enormous mass relative to the central star, interactions with a binary companion, or infalling material. Such instability means the mass accretion rate can change dramatically. The increased pace disrupts the delicate balance between the stellar magnetic field and the inner edge of the disk, leading to material moving closer in and eventually touching the star’s surface.
      This is an artist’s concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. A team of astronomers has used the Hubble Space Telescope’s ultraviolet capabilities to learn more about the interaction between FU Ori’s stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. They found that the inner disk, touching the star, is much hotter than expected—16,000 kelvins—nearly three times our Sun’s surface temperature. That sizzling temperature is nearly twice as hot as previously believed. NASA-JPL, Caltech
      Download this image

      The enhanced infall rate and proximity of the accretion disk to the star make FU Ori objects much brighter than a typical T Tauri star. In fact, during an outburst, the star itself is outshined by the disk. Furthermore, the disk material is orbiting rapidly as it approaches the star, much faster than the rotation rate of the stellar surface. This means that there should be a region where the disk impacts the star and the material slows down and heats up significantly. 
      “The Hubble data indicates a much hotter impact region than models have previously predicted,” said Adolfo Carvalho of Caltech and lead author of the study. “In FU Ori, the temperature is 16,000 kelvins [nearly three times our Sun’s surface temperature]. That sizzling temperature is almost twice the amount prior models have calculated. It challenges and encourages us to think of how such a jump in temperature can be explained.”
      To address the significant difference in temperature between past models and the recent Hubble observations, the team offers a revised interpretation of the geometry within FU Ori’s inner region: The accretion disk’s material approaches the star and once it reaches the stellar surface, a hot shock is produced, which emits a lot of ultraviolet light.
      Planet Survival Around FU Ori
      Understanding the mechanisms of FU Ori’s rapid accretion process relates more broadly to ideas of planet formation and survival.
      “Our revised model based on the Hubble data is not strictly bad news for planet evolution, it’s sort of a mixed bag,” explained Carvalho. “If the planet is far out in the disk as it’s forming, outbursts from an FU Ori object should influence what kind of chemicals the planet will ultimately inherit. But if a forming planet is very close to the star, then it’s a slightly different story. Within a couple outbursts, any planets that are forming very close to the star can rapidly move inward and eventually merge with it. You could lose, or at least completely fry, rocky planets forming close to such a star.”
      Additional work with the Hubble UV observations is in progress. The team is carefully analyzing the various spectral emission lines from multiple elements present in the COS spectrum. This should provide further clues on FU Ori’s environment, such as the kinematics of inflowing and outflowing gas within the inner region.
      “A lot of these young stars are spectroscopically very rich at far ultraviolet wavelengths,” reflected Hillenbrand. “A combination of Hubble, its size and wavelength coverage, as well as FU Ori’s fortunate circumstances, let us see further down into the engine of this fascinating star-type than ever before.”
      These findings have been published in The Astrophysical Journal Letters.
      The observations were taken as part of General Observer program 17176.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Abigail Major, Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Nov 21, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exploring the Birth of Stars



      Hubble’s Night Sky Challenge



      Hubble Focus: The Lives of Stars


      This e-book highlights the mission’s recent discoveries and observations related to the birth, evolution, and death of stars.

      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to ESI Home
      Computational Materials Engineering for Lunar Metals Welding
      Azadeh Haghighi
      University of Illinois, Chicago
      Weld-ASSIST: Weldability Assessment for In-Space Conditions using a Digital Twin Wei Li
      University of Texas at Dallas
      Integrated Computational Materials Modelling Framework for Investigating the Process-Structure-Property Linkage of the Lunar Metal Welding with Internal Defects Passive Lunar Dust Control through Advanced Materials and Surface Engineering
      SungWoo Nam
      University of California, Irvine
      Deformable Crumpled Nano-ball Coatings with Adaptable Adhesion and Mechanical Energy Absorption for Lunar Dust Mitigation Chih-Hao Chang
      University of Texas at Austin
      Engineering the Adhesion Mechanisms of Hierarchical Dust-Mitigating Nanostructures Lei Zhai
      University of Central Florida
      Studying Passive Dust Mitigation on Anisotropic Structured Surface  Min Zou
      University of Arkansas, Fayetteville
      Developing High-Performance Bioinspired Surface Textures for Repelling Lunar Dust  Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      This content is password protected. To view it please enter your password below:
      Password:
      View the full article
    • By NASA
      5 min read
      5 Surprising NASA Heliophysics Discoveries Not Related to the Sun
      With NASA’s fleet of heliophysics spacecraft, scientists monitor our Sun and investigate its influences throughout the solar system. However, the fleet’s constant watch and often-unique perspectives sometimes create opportunities to make discoveries that no one expected, helping us to solve mysteries about of the solar system and beyond.
      Here are five examples of breakthroughs made by NASA heliophysics missions in other fields of science.
      This graphic shows missions in NASA’s Heliophysics Division fleet as of July 2024. NASA Thousands and Thousands of Comets
      The SOHO mission — short for Solar and Heliospheric Observatory, which is a joint mission between ESA (European Space Agency) and NASA — has a coronagraph that blocks out the Sun in order to see the Sun’s faint outer atmosphere, or corona. 
      It turns out SOHO’s coronagraph also makes it easy to spot sungrazing comets, those that pass so close to the Sun that other observatories can’t see them against the brightness of our star.
      Before SOHO was launched in December 1995, fewer than 20 sungrazing comets were known. Since then, SOHO has discovered more than 5,000. 
      The vast number of comets discovered using SOHO has allowed scientists to learn more about sungrazing comets and identify comet families, descended from ancestor comets that broke up long ago.

      Learn More

      Two sungrazing comets fly close to the Sun in these images captured by ESA/NASA’s SOHO (Solar and Heliospheric Observatory). They were the 3,999th and 4,000th comets discovered in SOHO images. ESA/NASA/SOHO/Karl Battams Dimming of a Supergiant
      In late 2019, the supergiant star Betelgeuse began dimming unexpectedly. Telescopes all over the world — ​​​​and around it — tracked these changes until a few months later when Betelgeuse appeared too close to the Sun to observe. That’s when NASA’s STEREO (Sun-watching Solar Terrestrial Relations Observatory (STEREO) came to the rescue. 
      For several weeks in the middle of 2020, STEREO was the only observatory able to see Betelgeuse. At the time, the STEREO-A spacecraft was trailing behind Earth, at a vantage point where Betelgeuse was still far enough away from the Sun to be seen. This allowed astronomers to keep tabs on the star while it was out of view from Earth.  
      STEREO’s observations revealed another unexpected dimming between June and August of 2020, when ground-based telescopes couldn’t view the star.
      Astronomers later concluded that these dimming episodes were caused by an ejection of mass from Betelgeuse — like a coronal mass ejection from our Sun but with about 400 times more mass — which obscured part of the star’s bright surface.

      Learn More

      The background image shows the star Betelgeuse as seen by the Heliospheric Imager aboard NASA’s STEREO (Solar Terrestrial Relations Observatory) spacecraft. The inset figure shows measurements of Betelgeuse’s brightness taken by different observatories from late 2018 to late 2020. STEREO’s observations, marked in red, revealed an unexpected dimming in mid-2020 when Betelgeuse appeared too close to the Sun for other observatories to view it. NASA/STEREO/HI (background); Dupree et al. (inset) The Glowing Surface of Venus
      NASA’s Parker Solar Probe studies the Sun’s corona up close — by flying through it. To dive into the Sun’s outer atmosphere, the spacecraft has flown past Venus several times, using the planet’s gravity to fling itself closer and closer to the Sun.
      On July 11, 2020, during Parker’s third Venus flyby, scientists used Parker’s wide-field imager, called WISPR, to try to measure the speed of the clouds that obscure Venus’ surface. Surprisingly, WISPR not only observed the clouds, it also saw through them to the surface below.
      The images from that flyby and the next (in 2021) revealed a faint glow from Venus’ hot surface in near-infrared light and long wavelengths of red (visible) light that maps distinctive features like mountainous regions, plains, and plateaus.
      Scientists aimed WISPR at Venus again on Nov. 6, 2024, during Parker’s seventh flyby, observing a different part of the planet than previous flybys. With these images, they’re hoping to learn more about Venus’ surface geology, mineralogy, and evolution.

      Learn More

      As Parker Solar Probe flew by Venus on its fourth flyby, it captured these images, strung into a video, showing bright and dark features on the nightside surface of the planet. NASA/APL/NRL The Brightest Gamma-Ray Burst
      You’ve heard of the GOAT. But have you heard of the BOAT?
      It stands for the “brightest of all time”, a gamma-ray burst discovered on Oct. 9, 2022.  
      A gamma-ray burst is a brief but intense eruption of gamma rays in space, lasting from seconds to hours.
      This one, named GRB 221009A, glowed brilliantly for about 10 minutes in the constellation Sagitta before slowly fading.
      The burst was detected by dozens of spacecraft, including NASA’s Wind, which studies the perpetual flow of particles from the Sun, called the solar wind, just before it reaches Earth.
      Wind and NASA’s Fermi Gamma-Ray Space Telescope measured the brightness of GRB 221009A, showing that it was 70 times brighter than any other gamma-ray burst ever recorded by humans — solidifying its status as the BOAT.

      Learn More

      Astronomers think GRB 221009A represents the birth of a new black hole formed within the heart of a collapsing star. In this artist’s concept, the black hole drives powerful jets of particles traveling near the speed of light. The jets emit X-rays and gamma rays as they stream into space. NASA/Swift/Cruz deWilde A Volcano Blasts Its Way to Space
      NASA’s ICON (Ionospheric Connection Explorer) launched in 2019 to study how Earth’s weather interacts with weather from space. When the underwater Hunga Tonga-Hunga Ha‘apai volcano erupted on Jan. 15, 2022, ICON helped show that the volcano produced more than ash and tsunami waves — its effects reached the edge of space.
      In the hours after the eruption, ICON detected hurricane-speed winds in the ionosphere — Earth’s electrified upper atmospheric layer at the edge of space. ICON clocked the wind speeds at up to 450 miles per hour, making them the strongest winds the mission had ever measured below 120 miles altitude.
      The ESA Swarm mission revealed that these extreme winds altered an electric current in the ionosphere called the equatorial electrojet. After the eruption, the equatorial electrojet surged to five times its normal peak power and dramatically flipped direction.
      Scientists were surprised that a volcano could affect the electrojet so severely — something they’d only seen during a strong geomagnetic storm caused by an eruption from the Sun.

      Learn More

      The Hunga Tonga-Hunga Ha’apai eruption on Jan. 15, 2022, caused many effects, some illustrated here, that were felt around the world and even into space. Some of those effects, like extreme winds and unusual electric currents were picked up by NASA’s ICON (Ionospheric Connection Explorer) mission and ESA’s (the European Space Agency) Swarm. Illustration is not to scale.  NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 20, 2024 Related Terms
      Comets Fermi Gamma-Ray Space Telescope Gamma-Ray Bursts Goddard Space Flight Center Heliophysics Heliophysics Division ICON (Ionospheric Connection Explorer) Parker Solar Probe (PSP) SOHO (Solar and Heliospheric Observatory) Stars STEREO (Solar TErrestrial RElations Observatory) The Sun The Sun & Solar Physics Uncategorized Venus Volcanoes Wind Mission Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode


      Article


      3 hours ago
      4 min read NASA Satellites Reveal Abrupt Drop in Global Freshwater Levels
      Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low…


      Article


      5 days ago
      4 min read NASA’s Swift Studies Gas-Churning Monster Black Holes


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...