Members Can Post Anonymously On This Site
Gamma-Ray Burst Found to be Most Energetic Event in Universe
-
Similar Topics
-
By NASA
At NASA, high-end computing is essential for many agency missions. This technology helps us advance our understanding of the universe – from our planet to the farthest reaches of the cosmos. Supercomputers enable projects across diverse research, such as making discoveries about the Sun’s activity that affects technologies in space and life on Earth, building artificial intelligence-based models for innovative weather and climate science, and helping redesign the launch pad that will send astronauts to space with Artemis II.
These projects are just a sample of the many on display in NASA’s exhibit during the International Conference for High Performance Computing, Networking, Storage and Analysis, or SC24. NASA’s Dr. Nicola “Nicky” Fox, associate administrator for the agency’s Science Mission Directorate, will deliver the keynote address, “NASA’s Vision for High Impact Science and Exploration,” on Tuesday, Nov. 19, where she’ll share more about the ways NASA uses supercomputing to explore the universe for the benefit of all. Here’s a little more about the work NASA will share at the conference:
1. Simulations Help in Redesign of the Artemis Launch Environment
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This simulation of the Artemis I launch shows how the Space Launch System rocket's exhaust plumes interact with the air, water, and the launchpad. Colors on surfaces indicate pressure levels—red for high pressure and blue for low pressure. The teal contours illustrate where water is present. NASA/Chris DeGrendele, Timothy Sandstrom Researchers at NASA Ames are helping ensure astronauts launch safely on the Artemis II test flight, the first crewed mission of the Space Launch System (SLS) rocket and Orion spacecraft, scheduled for 2025. Using the Launch Ascent and Vehicle Aerodynamics software, they simulated the complex interactions between the rocket plume and the water-based sound suppression system used during the Artemis I launch, which resulted in damage to the mobile launcher platform that supported the rocket before liftoff.
Comparing simulations with and without the water systems activated revealed that the sound suppression system effectively reduces pressure waves, but exhaust gases can redirect water and cause significant pressure increases.
The simulations, run on the Aitken supercomputer at the NASA Advanced Supercomputing facility at Ames, generated about 400 terabytes of data. This data was provided to aerospace engineers at NASA’s Kennedy Space Center in Florida, who are redesigning the flame deflector and mobile launcher for the Artemis II launch.
2. Airplane Design Optimization for Fuel Efficiency
In this comparison of aircraft designs, the left wing models the aircraft’s initial geometry, while the right wing models an optimized shape. The surface is colored by the air pressure on the aircraft, with orange surfaces representing shock waves in the airflow. The optimized design modeled on the right wing reduces drag by 4% compared to the original, leading to improved fuel efficiency. NASA/Brandon Lowe To help make commercial flight more efficient and sustainable, researchers and engineers at NASA’s Ames Research Center in California’s Silicon Valley are working to refine aircraft designs to reduce air resistance, or drag, by fine-tuning the shape of wings, fuselages, and other aircraft structural components. These changes would lower the energy required for flight and reduce the amount of fuel needed, produce fewer emissions, enhance overall performance of aircraft, and could help reduce noise levels around airports.
Using NASA’s Launch, Ascent, and Vehicle Aerodynamics computational modeling software, developed at Ames, researchers are leveraging the power of agency supercomputers to run hundreds of simulations to explore a variety of design possibilities – on existing aircraft and future vehicle concepts. Their work has shown the potential to reduce drag on an existing commercial aircraft design by 4%, translating to significant fuel savings in real-world applications.
3. Applying AI to Weather and Climate
This visualization compares the track of the Category 4 hurricane, Ida, from MERRA-2 reanalysis data (left) with a prediction made without specific training, from NASA and IBM’s Prithvi WxC foundation model (right). Both models were initialized at 00 UTC on 2021-08-27.The University of Alabama in Huntsville/Ankur Kumar; NASA/Sujit Roy Traditional weather and climate models produce global and regional results by solving mathematical equations for millions of small areas (grid boxes) across Earth’s atmosphere and oceans. NASA and partners are now exploring newer approaches using artificial intelligence (AI) techniques to train a foundation model.
Foundation models are developed using large, unlabeled datasets so researchers can fine-tune results for different applications, such as creating forecasts or predicting weather patterns or climate changes, independently with minimal additional training.
NASA developed the open source, publicly available Prithvi Weather-Climate foundation model (Prithvi WxC), in collaboration with IBM Research. Prithvi WxC was pretrained using 160 variables from NASA’s Modern-era Retrospective analysis for Research and Applications (MERRA-2) dataset on the newest NVIDIA A100 GPUs at the NASA Advanced Supercomputing facility.
Armed with 2.3 billion parameters, Prithvi WxC can model a variety of weather and climate phenomena – such as hurricane tracks – at fine resolutions. Applications include targeted weather prediction and climate projection, as well as representing physical processes like gravity waves.
4. Simulations and AI Reveal the Fascinating World of Neutron Stars
3D simulation of pulsar magnetospheres, run on NASA’s Aitken supercomputer using data from the agency‘s Fermi space telescope. The red arrow shows the direction of the star’s magnetic field. Blue lines trace high-energy particles, producing gamma rays, in yellow. Green lines represent light particles hitting the observer’s plane, illustrating how Fermi detects pulsar gamma rays. NASA/Constantinos Kalapotharakos To explore the extreme conditions inside neutron stars, researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are using a blend of simulation, observation, and AI to unravel the mysteries of these extraordinary cosmic objects. Neutron stars are the dead cores of stars that have exploded and represent some of the densest objects in the universe.
Cutting-edge simulations, run on supercomputers at the NASA Advanced Supercomputing facility, help explain phenomena observed by NASA’s Fermi Gamma-ray Space Telescope and Neutron star Interior Composition Explorer (NICER) observatory. These phenomena include the rapidly spinning, highly magnetized neutron stars known as pulsars, whose detailed physical mechanisms have remained mysterious since their discovery. By applying AI tools such as deep neural networks, the scientists can infer the stars’ mass, radius, magnetic field structure, and other properties from data obtained by the NICER and Fermi observatories.
The simulations’ unprecedented results will guide similar studies of black holes and other space environments, as well as play a pivotal role in shaping future scientific space missions and mission concepts.
5. Modeling the Sun in Action – From Tiny to Large Scales
Image from a 3D simulation showing the evolution of flows in the upper layers of the Sun, with the most vigorous motions shown in red. These turbulent flows can generate magnetic fields and excite sound waves, shock waves, and eruptions. NASA/Irina Kitiashvili and Timothy A. Sandstrom The Sun’s activity, producing events such as solar flares and coronal mass ejections, influences the space environment and cause space weather disturbances that can interfere with satellite electronics, radio communications, GPS signals, and power grids on Earth. Scientists at NASA Ames produced highly realistic 3D models that – for the first time – allow them to examine the physics of solar plasma in action, from very small to very large scales. These models help interpret observations from NASA spacecraft like the Solar Dynamics Observatory (SDO).
Using NASA’s StellarBox code on supercomputers at NASA’s Advanced Supercomputing facility, the scientists improved our understanding of the origins of solar jets and tornadoes – bursts of extremely hot, charged plasma in the solar atmosphere. These models allow the science community to address long-standing questions of solar magnetic activity and how it affects space weather.
6. Scientific Visualization Makes NASA Data Understandable
This global map is a frame from an animation showing how wind patterns and atmospheric circulation moved carbon dioxide through Earth’s atmosphere from January to March 2020. The DYAMOND model’s high resolution shows unique sources of carbon dioxide emissions and how they spread across continents and oceans.NASA/Scientific Visualization Studio NASA simulations and observations can yield petabytes of data that are difficult to comprehend in their original form. The Scientific Visualization Studio (SVS), based at NASA Goddard, turns data into insight by collaborating closely with scientists to create cinematic, high-fidelity visualizations.
Key infrastructure for these SVS creations includes the NASA Center for Climate Simulation’s Discover supercomputer at Goddard, which hosts a variety of simulations and provides data analysis and image-rendering capabilities. Recent data-driven visualizations show a coronal mass ejection from the Sun hitting Earth’s magnetosphere using the Multiscale Atmosphere-Geospace Environment (MAGE) model; global carbon dioxide emissions circling the planet in the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) model; and representations of La Niña and El Niño weather patterns using the El Niño-Southern Oscillation (ENSO) model.
For more information about NASA’s virtual exhibit at the International Conference for High Performance Computing, Networking, Storage and Analysis, being held in Atlanta, Nov. 17-22, 2024, visit:
https://www.nas.nasa.gov/SC24
For more information about supercomputers run by NASA High-End Computing, visit:
https://hec.nasa.gov
For news media:
Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
Authors: Jill Dunbar, Michelle Moyer, and Katie Pitta, NASA’s Ames Research Center; and Jarrett Cohen, NASA’s Goddard Space Flight Center
View the full article
-
By NASA
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 3 min read
Summary of Aura 20th Anniversary Event
Snippets from The Earth Observer’s Editor’s Corner
The last of NASA’s three EOS Flagships – Aura – marked 20 years in orbit on July 15, 2024, with a celebration on September 18, 2024, at the Goddard Space Flight Center’s (GSFC) Recreational Center. The 120 attendees – including about 40 virtually – reminisced about Aura’s (originally named EOS-CHEM) tumultuous beginning, from the instrument and Principal Investigator (PI) selections up until the delayed launch at the Vandenberg Space Force Base (then Vandenberg Air Force Base) in California. They remembered how Bill Townsend, who was Deputy Director of GSFC at the time, and Ghassem Asrar, who was NASA’s Associate Administrator for Earth Science, spent many hours on site negotiating with the Vandenberg and Boeing launch teams in preparation for launch (after several delays and aborts). The Photo shows the Aura mission program scientist, project scientists (PS), and several instrument principal investigators (PI) shortly before launch.
Photo 1. The Aura (formerly EOS CHEM) mission program scientist, project scientists (PS), and several of instrument principal investigators (PI) at Vandenberg Space Force Base (then Air Force Base) shortly before launch on July 15, 2004. The individuals pictured [left to right] are Reinhold Beer [NASA/Jet Propulsion Laboratory (JPL)—Tropospheric Emission Spectrometer (TES) PI]; John Gille [University of Colorado, Boulder/National Center for Atmospheric Research (NCAR)—High Resolution Dynamics Limb Sounder (HIRDLS) PI]; Pieternel Levelt [Koninklijk Nederlands Meteorologisch Instituut (KNMI), Royal Netherlands Meteorological Institute—Ozone Monitoring Instrument (OMI) PI]; Ernest Hilsenrath [NASA’s Goddard Space Flight Center (GSFC)—Aura Deputy Scientist and U.S. OMI Co-PI];Anne Douglass [GSFC—Aura Deputy PS]; Mark Schoeberl [GSFC—Aura Project Scientist]; Joe Waters [NASA/JPL—Microwave Limb Sounder (MLS) PI]; P.K. Bhartia [GSFC—OMI Science Team Leader and former Aura Project Scientist]; and Phil DeCola [NASA Headquarters—Aura Program Scientist]. NOTE: Affiliations/titles listed for individuals named were those at the time of launch. Photo Credit: Ernest Hilsenrath At the anniversary event, Bryan Duncan [GSFC—Aura Project Scientist] gave formal opening remarks. Aura’s datasets have given a generation of scientists the most comprehensive global view of gases in Earth’s atmosphere to better understand the chemical and dynamic processes that shape their concentrations. Aura’s objective was to gather data to monitor Earth’s ozone layer, examine trends in global air pollutants, and measure the concentration of atmospheric constituents contributing to climate forcing. To read more about Aura’s incredible 20 years of accomplished air quality and climate science, see the anniversary article “Aura at 20 Years” in The Earth Observer.
Bill Guit [GSFC—Aqua and Aura Program Manager and former Aura Mission Operations Lead] gave brief remarks focusing on how Aura became part of the international Afternoon Constellation, or “A-Train,” of satellites, including Aqua, which launched in 2002, and joined by several other NASA and international missions. Aura and Aqua have provided data for over two decades of multidisciplinary Earth science discovery and enhancement.
Both current and former Aura instrument PIs gave brief remarks. Each discussed Aura’s scientific legacy and their instrument’s contributions. They thanked their engineering teams for the successful development and operation of their instruments, and the members of the instrument science teams for developing the algorithms, discovering new science, and demonstrating how the science will serve the public. The PIs were particularly grateful that their instruments or the variants thereof will continue to fly on current and/or future NASA science missions or on international operational satellites.
Steve Platnick
EOS Senior Project Scientist
Share
Details
Last Updated Nov 14, 2024 Related Terms
Earth Science View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Shauntina Lilly, a NASA Glenn public affairs officer, speaks to students about NASA’s available internships and educational resources during the STEM Goes Red for Girls event at Great Lakes Science Center, home of the NASA Glenn Visitor Center, on Oct. 21.Credit: NASA/Debbie Welch NASA’s Glenn Research Center in Cleveland supported this year’s STEM Goes Red for Girls event at Great Lakes Science Center on Oct. 21. The program provides seventh and eighth grade students exposure to some of Greater Cleveland’s leading STEM companies. The event also featured a hands-on exhibitor fair, speed mentoring, and educational classes.
Hosted by the American Heart Association, this year’s event welcomed its largest audience to date with 352 students and educators from 32 schools within Northeast Ohio. NASA Glenn’s presence focused heavily on internships and career advice, but also highlighted the center’s work with the Space Communications and Navigation program’s Deep Space Network. Glenn’s Julie Sufka also served as a mentor, speaking to young girls about STEM opportunities in mathematics.
Return to Newsletter Explore More
1 min read NASA Glenn Chief Counsel Named to CSU Law Hall of Fame
Article 2 mins ago 5 min read NASA Funds New Studies Looking at Future of Sustainable Aircraft
Article 20 hours ago 4 min read X-59 Fires Up its Engine for First Time on its Way to Takeoff
Article 7 days ago View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s SPHEREx observatory undergoes integration and testing at BAE Systems in Boulder, Colorado, in April 2024. The space telescope will use a technique called spectroscopy across the entire sky, capturing the universe in more than 100 colors. BAE Systems The space telescope will detect over 100 colors from hundreds of millions of stars and galaxies. Here’s what astronomers will do with all that color.
NASA’s SPHEREx mission won’t be the first space telescope to observe hundreds of millions of stars and galaxies when it launches no later than April 2025, but it will be the first to observe them in 102 colors. Although these colors aren’t visible to the human eye because they’re in the infrared range, scientists will use them to learn about topics that range from the physics that governed the universe less than a second after its birth to the origins of water on planets like Earth.
“We are the first mission to look at the whole sky in so many colors,” said SPHEREx Principal Investigator Jamie Bock, who is based jointly at NASA’s Jet Propulsion Laboratory and Caltech, both in Southern California. “Whenever astronomers look at the sky in a new way, we can expect discoveries.”
Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx will collect infrared light, which has wavelengths slightly longer than what the human eye can detect. The telescope will use a technique called spectroscopy to take the light from hundreds of millions of stars and galaxies and separate it into individual colors, the way a prism transforms sunlight into a rainbow. This color breakdown can reveal various properties of an object, including its composition and its distance from Earth.
NASA’s SPHEREx mission will use spectroscopy — the splitting of light into its component wavelengths — to study the universe. Watch this video to learn more about spectroscopy. NASA’s Goddard Space Flight Center Here are the three key science investigations SPHEREx will conduct with its colorful all-sky map.
Cosmic Origins
What human eyes perceive as colors are distinct wavelengths of light. The only difference between colors is the distance between the crests of the light wave. If a star or galaxy is moving, its light waves get stretched or compressed, changing the colors they appear to emit. (It’s the same with sound waves, which is why the pitch of an ambulance siren seems to go up as its approaches and lowers after it passes.) Astronomers can measure the degree to which light is stretched or compressed and use that to infer the distance to the object.
SPHEREx will apply this principle to map the position of hundreds of millions of galaxies in 3D. By doing so, scientists can study the physics of inflation, the event that caused the universe to expand by a trillion-trillion fold in less than a second after the big bang. This rapid expansion amplified small differences in the distribution of matter. Because these differences remain imprinted on the distribution of galaxies today, measuring how galaxies are distributed can tell scientists more about how inflation worked.
Galactic Origins
SPHEREx will also measure the collective glow created by all galaxies near and far — in other words, the total amount of light emitted by galaxies over cosmic history. Scientists have tried to estimate this total light output by observing individual galaxies and extrapolating to the trillions of galaxies in the universe. But these counts may leave out some faint or hidden light sources, such as galaxies too small or too distant for telescopes to easily detect.
With spectroscopy, SPHEREx can also show astronomers how the total light output has changed over time. For example, it may reveal that the universe’s earliest generations of galaxies produced more light than previously thought, either because they were more plentiful or bigger and brighter than current estimates suggest. Because light takes time to travel through space, we see distant objects as they were in the past. And, as light travels, the universe’s expansion stretches it, changing its wavelength and its color. Scientists can therefore use SPHEREx data to determine how far light has traveled and where in the universe’s history it was released.
Water’s Origins
SPHEREx will measure the abundance of frozen water, carbon dioxide, and other essential ingredients for life as we know it along more than 9 million unique directions across the Milky Way galaxy. This information will help scientists better understand how available these key molecules are to forming planets. Research indicates that most of the water in our galaxy is in the form of ice rather than gas, frozen to the surface of small dust grains. In dense clouds where stars form, these icy dust grains can become part of newly forming planets, with the potential to create oceans like the ones on Earth.
The mission’s colorful view will enable scientists to identify these materials, because chemical elements and molecules leave a unique signature in the colors they absorb and emit.
Big Picture
Many space telescopes, including NASA’s Hubble and James Webb, can provide high-resolution, in-depth spectroscopy of individual objects or small sections of space. Other space telescopes, like NASA’s retired Wide-field Infrared Survey Explorer (WISE), were designed to take images of the whole sky. SPHEREx combines these abilities to apply spectroscopy to the entire sky.
By combining observations from telescopes that target specific parts of the sky with SPHEREx’s big-picture view, scientists will get a more complete — and more colorful — perspective of the universe.
More About SPHEREx
SPHEREx is managed by JPL for NASA’s Astrophysics Division within the Science Mission Directorate in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions across the U.S. and in South Korea. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available.
For more information about the SPHEREx mission visit:
https://www.jpl.nasa.gov/missions/spherex/
News Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2024-152
Share
Details
Last Updated Oct 31, 2024 Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Galaxies Jet Propulsion Laboratory The Search for Life The Universe Explore More
5 min read ‘Blood-Soaked’ Eyes: NASA’s Webb, Hubble Examine Galaxy Pair
Stare deeply at these galaxies. They appear as if blood is pumping through the top…
Article 1 hour ago 3 min read Buckle Up: NASA-Funded Study Explores Turbulence in Molecular Clouds
On an airplane, motions of the air on both small and large scales contribute to…
Article 21 hours ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
Article 22 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
Six pioneers in American space and missile development were honored in a ceremony hosted by Space Systems Command recognizing achievements in astronautics that resonate in today’s contested space environment.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.