Members Can Post Anonymously On This Site
Igniting Inspiration: Jennifer Becerra’s STEM Legacy at Johnson
-
Similar Topics
-
By NASA
If you ask Johnson Space Center employees why they work for NASA, many will tell you it was always their dream. For others, landing a job at NASA was an unexpected stop on their career path. Here is a look at where five Johnson team members worked before NASA and how they are helping to advance the agency’s mission today.
Michelle Wood
How it started: Michelle Wood working as an American Sign Language interpreter (left). How it’s going: Wood as a flight controller in Johnson Space Center’s Mission Control Center in Houston. Images courtesy of Wood Wood worked as an American Sign Language interpreter before joining NASA about seven years ago. Today, she is an Operational Support Officer flight controller and instructor in the Mission Control Center.
***
Warnecke Miller
How it started: Miller is shown completing firearms training as a Federal Bureau of Investigation intern in the summer of 1998 (left). How it’s going: Miller emceeing a retirement celebration for a Johnson colleague in April 2024. Images courtesy of Miller Miller has been an attorney in Johnson’s Office of the General Counsel for 12 years. Before that, she served as an administrative law judge for Social Security and adjudicated disability cases.
***
Celeste Budwit-Hunter
How it started: Celeste Budwit-Hunter is pictured as a school counselor (left). How it’s going: Budwit-Hunter with NASA astronauts Mike Finke, Suni Williams, and Butch Wilmore and her Procedures Group editorial team members in Johnson’s Space Vehicle Mockup Facility. Images courtesy of Budwit-Hunter Budwit-Hunter was a technical writer in the oil and gas industry before earning a master’s degree in family therapy. She went on to work for The Council on Alcohol and Drugs (now The Council on Recovery) and then as a private school counselor for students with learning disabilities. She returned to technical writing while starting a private family therapy practice. After several years of treatment and recovery following a cancer diagnosis, Budwit-Hunter applied to become an editor in the Flight Operations Director’s Procedures Group. She is now the group’s lead editor and is training to become a book manager.
***
Don Walker
How it started: A photo of a young Don Walker standing in front of an Apollo lunar module mockup on the Johnson campus in the early 1970s (left). How it’s going: Walker’s official NASA portrait. Walker worked as a freelancer in television production before joining the Johnson team 38 years ago. Today, Walker is an engineering technician in the Office of the Chief Information Officer, working master control for the center’s television operations.
***
Donna Coyle
How it started: Donna Coyle as a college student in Rome (left). How it’s going: Coyle outside Space Center Houston prior to the Expedition 68 crew debrief and awards ceremony in 2023. Images courtesy of Coyle Coyle earned a bachelor’s degree in international relations before switching gears to work as an expeditor in the oil and gas industry. That role involved working with cross-functional teams to ensure the smooth and timely delivery of equipment and materials to worksites. After visiting locations and seeing how equipment, piping, and steel were made, she was inspired to go back to school to become an engineer. Coyle’s grandfather worked at NASA during the Apollo missions, and she decided to follow in his footsteps. She joined the Johnson team in 2021 as a crew time engineer, analyzing astronaut time as a resource to help with decision-making before and during expeditions to the International Space Station.
Do you want to join the NASA team? Visit our Careers site to explore open opportunities and find your place with us!
View the full article
-
By NASA
NASA’s Office of STEM Engagement at Johnson Space Center in Houston offers students a unique gateway to opportunity through the High School Aerospace Scholars (HAS) program. The initiative provides Texas juniors with hands-on experience in space exploration, working on projects ranging from rocket building to problem-solving in collaborative teams.
The stories of HAS alumni highlight the program’s impact, showcasing how it has opened doors to diverse careers in STEM and inspired graduates to empower others.
Johnson Community Engagement Lead Jessica Cordero, who served as the manager of the HAS program from 2018 to 2021, reflected on her time with the students:
“I had the privilege of working with so many incredible students who brought imagination and determination to their dreams,” she said. “During HAS, they connected with peers who shared their passion for NASA and STEM, and by the time they completed the program, they had a clear vision of the degrees they would pursue in college. These students are the Artemis Generation—we are in great hands!”
Meet Former HAS Student Neel Narayan
For Neel Narayan, NASA’s HAS program was a transformative experience that reshaped his understanding of space exploration and his place within it.
Through his time in the program, Narayan learned to navigate complex challenges with confidence. “My experience working with difficult information at HAS, combined with having mentors explain the unknown, taught me to be okay with confusion and comfortable with solving hard problems,” he said. “That’s what STEM is all about.”
Neel Narayan at NASA’s High School Aerospace Scholars (HAS) 20th anniversary ceremony. Before participating in the program, Narayan had a narrow view of what a STEM career entailed: long equations and solitary hours behind a computer. HAS completely dismantled that misconception. He said the program, “broke the most complex concepts into granular bites of digestible information, showing that complexity can be distilled if done correctly.”
“During the one-week onsite experience, I was talking to scientists, building rockets, and exploring NASA facilities—none of which involved equations!” he said. “HAS taught me that STEM is not confined to technical work.”
Narayan describes HAS as an eye-opening experience that redefined his approach to problem-solving. “Most of us are unaware of what we don’t know,” he said. “In collaborating with others, I was made aware of solutions that I didn’t know existed. The greatest asset you can have when solving a problem is another person.”
He credits the HAS community, especially his fellow scholars, with shaping his academic and professional growth. “I benefited most from the networking opportunities, particularly with the other HAS scholars in my cohort,” he said. “For those of us studying together in California, we’ve met up to discuss work, school, and external opportunities. Everyone in the program comes out very successful, and I’m grateful to have met those people and to still stay in touch with them.”
For high school students considering STEM but unsure of their direction, Narayan offers simple advice: keep exploring. “You don’t need to know your career path yet—in fact, you shouldn’t,” he said. “There is no better field to explore than STEM because of its vastness.”
Neel Narayan, University of Stanford. Narayan is currently pursuing a master’s degree in computational and mathematical engineering at Stanford University after earning an undergraduate degree in computer science. With his graduate program, Narayan is building on the foundation he developed through NASA’s HAS program.
Narayan aspires to contribute to the agency’s innovation and groundbreaking work. “NASA’s research changes the world, and being part of that mission is a dream I’ve had for a while,” he said.
Meet Sarah Braun
NASA’s HAS program solidified Sarah Braun’s understanding of how a STEM career could encompass her diverse interests, from design and education to plotting spacecraft orbits and planning launches. From her time in HAS to her current space exploration career, Braun believes STEM can be as multifaceted as the people who pursue it.
“HAS showed me the options ahead were as endless as my imagination,” she said. “The program convinced me that all my skills would be put to use in STEM, including getting to be creative and artistic.”
Sarah Braun engages in science, technology, engineering, and mathematics outreach at the Air Zoo Aerospace & Science Museum in Portage, Michigan, standing beside a Gemini model. The program gave her the opportunity to network, problem-solve, and collaborate with students from various backgrounds. “Learning how to communicate designs I could picture in my head was the biggest challenge, but by observing my teammates and mentors, I built the skills I needed.”
The networking opportunities she gained through HAS have also been instrumental to her academic and career growth. “The mentors I met through HAS have supported me throughout college and into my early career,” she said. “They taught me countless technical skills and how to best take advantage of my college years. I would never have made it to where I am today without HAS!”
After completing the HAS program, Braun interned with NASA, where she worked on space systems and paved the way for her career at Collins Aerospace.
Sarah Braun at the National Museum of the U.S. Air Force in Dayton, Ohio. She stands in front of the hardware she now works on at Collins Aerospace. Braun advises high school students uncertain about their career paths to get engaged and ask questions. “There are so many people out there who pursue STEM to follow a passion or challenge themselves,” she said. “Talking with people about what they have experienced and learned has been a huge help and inspiration for me throughout the years.”
She is also passionate about inspiring and educating others. “Whether I’m leading after-school STEM clubs or mentoring students, outreach and teaching have become my biggest contributions to NASA’s mission of exploration and discovery,” said Braun.
Meet Audrey Scott
Audrey Scott credits the HAS program with giving her a chance to explore science in the real world. “I experienced the excitement space could bring through livestream events like the landing of NASA’s InSight Lander mission and Cassini’s Grand Finale,” she said.
Audrey Scott, front, with fellow 2019 HAS graduates. Scott shared that the HAS program opened her eyes to the vast possibilities within STEM fields. Seeing the many ways to apply a STEM degree in practice broadened her perspective and inspired her to pursue her passion.
After HAS, Scott chose to study astrophysics at the University of Chicago in Illinois, where she is now pursuing her Ph.D. in experimental cosmology and laying the groundwork for a future in space exploration.
“My time with HAS and its encouragement of STEM excellence gave me the confidence I needed to take the plunge,” said Scott.
The program also transformed her approach to teamwork and exposed her to fast-paced problem-solving. “My school didn’t prioritize group projects, so working with people from all different backgrounds and personalities was informative for my future work in college,” she said. “HAS was a safe space to experiment with being both a leader and collaborator.”
She encourages high school students uncertain of their path to “try everything.” Scott advises, “If you have a moment of fascination, take advantage of that intellectual and creative energy, and learn something new. Time spent realizing you don’t like something is just as useful as time spent realizing you do.” She also recommends seeking out resources, finding mentors, and talking to everyone.
Scott continues to connect with some of her HAS cohort, especially young women navigating STEM paths alongside her. “We’ve been able to support each other through challenges,” she said. “Being part of HAS made me, in a way, part of the NASA family.”
Audrey Scott, front, with fellow 2019 HAS graduates. Scott’s HAS experience opened doors to opportunities like the Brooke Owens Fellowship, where she worked on a satellite in partnership with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and later the Illinois Space Grant award, which took her to NASA’s Jet Propulsion Laboratory in Southern California. She envisions part of her thesis research as a Ph.D. candidate taking place at a NASA center and remains open to a future at the agency.
“I’ll continue advocating for space exploration and pushing the boundaries of what’s known,” she said. “In my research, I’m driven by questions like, ‘What did the beginning of the universe look like—and why are we here?’”
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Rebecca Anderson, a junior enrolled at the Portage School of Leaders High School in South Bend, Indiana, spent time with NASA Glenn Research Center’s Daniel Sutliff, an acoustic engineer, on the campus of the University of Notre Dame on Nov. 7, 2024. Students witnessed the operation of the Advanced Noise Control Fan owned by NASA and on loan to the university for STEM experiences.Credit: Matt Cashore/University of Notre Dame High school students in Indiana are contributing to NASA’s groundbreaking research to develop quieter, more fuel-efficient aircraft engines.
Their learning experience is a collaboration between aircraft noise researchers from NASA’s Glenn Research Center in Cleveland and educators from the University of Notre Dame’s Turbomachinery Laboratory. The collaboration aims to encourage students’ interest in science, technology, engineering, and math (STEM) careers.
Recently, Notre Dame hosted students from The Portage School of Leaders High School and a team from NASA Glenn to see the Advanced Noise Control Fan operate in an outdoor setting. The fan is a NASA-owned test rig that has been configured to enable the study of a quieter aircraft engine technology. Known as the open rotor fan concept, the configuration involves an engine fan without a cover. Ground microphones were used during the test operated by Notre Dame to evaluate the radiated sound as the open rotor fan spun at various speeds.
NASA’s Advanced Noise Control Fan is on loan at the University of Notre Dame through a Space Act Agreement. It provides a hands-on learning laboratory for students in STEM.Credit: Matt Cashore/University of Notre Dame Students from the high school, which is part of the Career Academy Network of Public Schools, used 3D printers from the school’s facilities to fabricate parts for the open rotor test fan. The parts, known as stator blades, help direct and control airflow, ensuring smooth operation of the large, exposed fan blades that are the defining feature of an open fan engine design.
“It was beyond words,” said Rebecca Anderson, a junior from the high school. “The part I enjoyed most was when they got the fan running. It was really impressive to see how quiet it was. I feel like everyone involved in STEM would love to work for NASA, including me.”
NASA researcher Dr. Daniel Sutliff was part of the team from NASA Glenn to spend time mentoring the students.
“This is real-world, hands-on research for them,” Sutliff said. “If airlines are able to use technologies to make flight quieter and cleaner, passengers will have more enjoyable flights.”
The Advanced Noise Control Fan is on loan to Notre Dame from NASA through a Space Act Agreement. The fan research is supported by NASA’s Advanced Air Transport Technology project and its Efficient Quiet Integrated Propulsors technical challenge.
Explore More
2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
Article 28 mins ago 1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award
Article 21 hours ago 1 min read NASA Glenn’s Office of Communications Earns Top Honors
Article 21 hours ago View the full article
-
By European Space Agency
Video: 00:10:27 In 1975, 10 European countries came together with a vision to collaborate on key space activities: science and astronomy, launch capabilities and space applications: the European Space Agency, ESA, was born.
In 2025, we mark half a century of joint European achievement – filled with firsts and breakthroughs in science, exploration and technology, and the space infrastructure and economy that power Europe today.
During the past five decades ESA has grown, developing ever bolder and bigger projects and adding more Member States, with Slovenia joining as the latest full Member State in January.
We’ll also celebrate the 50th anniversary of ESA’s Estrack network, 30 years of satellite navigation in Europe and 20 years since ESA launched the first demonstration satellite Giove-A which laid the foundation for the EU’s own satnav constellation Galileo. Other notable celebrations are the 20th anniversary of ESA’s Business Incubation Centres, or BICs, and the 30th year in space for SOHO, the joint ESA and NASA Solar and Heliospheric Observatory.
Sadly though, 2025 will mean end of science operations for Integral and Gaia. Integral, ESA's gamma-ray observatory has exotic objects in space since 2002 and Gaia concludes a decade of mapping the stars. But as some space telescopes retire, another one provides its first full data release. Launched in 2023, we expect Euclid’s data release early in the new year.
Launch-wise, we’re looking forward to Copernicus Sentinel-4 and -5 (Sentinel-4 will fly on an MTG-sounder satellite and Sentinel-5 on the MetOp-SG-A1 satellite), Copernicus Sentinel-1D, Sentinel-6B and Biomass. We’ll also launch the SMILE mission, or Solar wind Magnetosphere Ionosphere Link Explorer, a joint mission with the Chinese academy of science.
The most powerful version of Europe’s new heavy-lift rocket, Ariane 6, is set to fly operationally for the first time in 2025. With several European commercial launcher companies planning to conduct their first orbital launches in 2025 too, ESA is kicking off the European Launcher Challenge to support the further development of European space transportation industry.
In human spaceflight, Polish ESA project astronaut Sławosz Uznański will fly to the ISS on the commercial Axiom-4 mission. Artemis II will be launched with the second European Service Module, on the first crewed mission around the Moon since 1972.
The year that ESA looks back on a half century of European achievement will also be one of key decisions on our future. At the Ministerial Council towards the end of 2025, our Member States will convene to ensure that Europe's crucial needs, ambitions and the dreams that unite us in space become reality.
So, in 2025, we’ll celebrate the legacy of those who came before but also help establish a foundation for the next 50 years. Join us as we look forward to a year that honours ESA’s legacy and promises new milestones in space.
View the full article
-
By NASA
4 Min Read NASA Finds ‘Sideways’ Black Hole Using Legacy Data, New Techniques
Image showing the structure of galaxy NGC 5084, with data from the Chandra X-ray Observatory overlaid on a visible-light image of the galaxy. Chandra’s data, shown in purple, revealed four plumes of hot gas emanating from a supermassive black hole rotating “tipped over” at the galaxy’s core. Credits: X-ray: NASA/CXC, A. S. Borlaff, P. Marcum et al.; Optical full image: M. Pugh, B. Diaz; Image Processing: NASA/USRA/L. Proudfit NASA researchers have discovered a perplexing case of a black hole that appears to be “tipped over,” rotating in an unexpected direction relative to the galaxy surrounding it. That galaxy, called NGC 5084, has been known for years, but the sideways secret of its central black hole lay hidden in old data archives. The discovery was made possible by new image analysis techniques developed at NASA’s Ames Research Center in California’s Silicon Valley to take a fresh look at archival data from the agency’s Chandra X-ray Observatory.
Using the new methods, astronomers at Ames unexpectedly found four long plumes of plasma – hot, charged gas – emanating from NGC 5084. One pair of plumes extends above and below the plane of the galaxy. A surprising second pair, forming an “X” shape with the first, lies in the galaxy plane itself. Hot gas plumes are not often spotted in galaxies, and typically only one or two are present.
The method revealing such unexpected characteristics for galaxy NGC 5084 was developed by Ames research scientist Alejandro Serrano Borlaff and colleagues to detect low-brightness X-ray emissions in data from the world’s most powerful X-ray telescope. What they saw in the Chandra data seemed so strange that they immediately looked to confirm it, digging into the data archives of other telescopes and requesting new observations from two powerful ground-based observatories.
Hubble Space Telescope image of galaxy NGC 5084’s core. A dark, vertical line near the center shows the curve of a dusty disk orbiting the core, whose presence suggests a supermassive black hole within. The disk and black hole share the same orientation, fully tipped over from the horizontal orientation of the galaxy.NASA/STScI, M. A. Malkan, B. Boizelle, A.S. Borlaff. HST WFPC2, WFC3/IR/UVIS. The surprising second set of plumes was a strong clue this galaxy housed a supermassive black hole, but there could have been other explanations. Archived data from NASA’s Hubble Space Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile then revealed another quirk of NGC 5084: a small, dusty, inner disk turning about the center of the galaxy. This, too, suggested the presence of a black hole there, and, surprisingly, it rotates at a 90-degree angle to the rotation of the galaxy overall; the disk and black hole are, in a sense, lying on their sides.
The follow-up analyses of NGC 5084 allowed the researchers to examine the same galaxy using a broad swath of the electromagnetic spectrum – from visible light, seen by Hubble, to longer wavelengths observed by ALMA and the Expanded Very Large Array of the National Radio Astronomy Observatory near Socorro, New Mexico.
“It was like seeing a crime scene with multiple types of light,” said Borlaff, who is also the first author on the paper reporting the discovery. “Putting all the pictures together revealed that NGC 5084 has changed a lot in its recent past.”
It was like seeing a crime scene with multiple types of light.
Alejandro Serrano Borlaff
NASA Research Scientist
“Detecting two pairs of X-ray plumes in one galaxy is exceptional,” added Pamela Marcum, an astrophysicist at Ames and co-author on the discovery. “The combination of their unusual, cross-shaped structure and the ‘tipped-over,’ dusty disk gives us unique insights into this galaxy’s history.”
Typically, astronomers expect the X-ray energy emitted from large galaxies to be distributed evenly in a generally sphere-like shape. When it’s not, such as when concentrated into a set of X-ray plumes, they know a major event has, at some point, disturbed the galaxy.
Possible dramatic moments in its history that could explain NGC 5084’s toppled black hole and double set of plumes include a collision with another galaxy and the formation of a chimney of superheated gas breaking out of the top and bottom of the galactic plane.
More studies will be needed to determine what event or events led to the current strange structure of this galaxy. But it is already clear that the never-before-seen architecture of NGC 5084 was only discovered thanks to archival data – some almost three decades old – combined with novel analysis techniques.
The paper presenting this research was published Dec. 18 in The Astrophysical Journal. The image analysis method developed by the team – called Selective Amplification of Ultra Noisy Astronomical Signal, or SAUNAS – was described in The Astrophysical Journal in May 2024.
For news media:
Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
Share
Details
Last Updated Dec 18, 2024 Related Terms
Black Holes Ames Research Center Ames Research Center's Science Directorate Astrophysics Chandra X-Ray Observatory Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research General Hubble Space Telescope Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Missions NASA Centers & Facilities Science & Research Supermassive Black Holes The Universe Explore More
4 min read Space Gardens
Article 18 mins ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
Article 1 hour ago 4 min read NASA Open Science Reveals Sounds of Space
NASA has a long history of translating astronomy data into beautiful images that are beloved…
Article 1 hour ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.