Jump to content

Kathryn Sullivan: The First American Woman to Walk in Space


Recommended Posts

  • Publishers
Posted
8 Min Read

Kathryn Sullivan: The First American Woman to Walk in Space

Astronaut Kathryn Sullivan checks the latch of the SIR-B antenna in the Challenger's open cargo bay during her extravehicular activity (EVA). The orbital refueling system (ORS) is just beyond the mission specialist's helmet. To the left is the large format camera (LFC). The LFC and ORS are stationed on a device called the mission peculiar experiment support structure (MPESS).
Astronaut Kathryn D. Sullivan checks the latch of the SIR-B antenna in the space shuttle Challenger's open cargo bay during her historic extravehicular activity (EVA) on Oct. 11, 1984. Earlier, America's first woman to perform an EVA and astronaut David C. Leestma, participated in an in-space simulation of refueling a spacecraft in orbit.
Credits: NASA

Forty years ago, in October 1984, Kathryn D. Sullivan became the first American woman to walk in space. But being the first presented several challenges that started well before she took those historic steps. Things got complicated just after she learned of her assignment.

Questions of Physiology

Biomedical researchers at NASA’s Johnson Space Center (JSC) raised what they believed was a serious issue with women walking in space and alerted George W.S. Abbey, the head of the Flight Crew Operations Directorate. Females, he learned, were more likely than their male counterparts to develop the bends in the low-pressure environment of the extravehicular mobility unit (EMU), the spacesuit she would wear. To alleviate the possibility of developing decompression syndrome, all spacewalkers had to breathe pure oxygen before a spacewalk to eliminate nitrogen from their bloodstream. Researchers insisted Sullivan (and any future women spacewalkers) spend more time than their male counterparts breathing pure oxygen before going outside of the space shuttle. Sullivan quickly learned that there were flaws in the research, which she countered, and Abbey ended up approving the same requirements for men and women doing an extravehicular activity (EVA). 

Setting the Record

After the STS-41G crew had been named in the fall of 1983, a colleague—flush with excitement over the recent flight announcement — congratulated Sally K. Ride and Sullivan on their new titles: Ride being the first woman to fly in space twice and Sullivan the first woman to walk in space. Both shook their heads and explained that it would be many months before launch and that a Soviet woman would fly and do a spacewalk well before the space shuttle Challenger and her crew made it to orbit. As expected, the Soviets assigned cosmonaut Svetlana Y. Savitskaya to a second mission in 1983, less than a month after NASA’s crew announcement. In July 1984, Savitskaya, not Ride, went on to become the first woman to enter space twice and earned the distinction of being the first female to walk in space.

Kathryn Sullivan and Sally ride synchronize their watches befor launching
Astronauts Sally K. Ride (right) and Kathryn D. Sullivan, two of three mission specialists, synchronize their watches prior to ingressing the Space Shuttle Challenger on the launch pad at Kennedy Space Center on October 5, 1984.
NASA

Sullivan was not disappointed at losing the title. As she recalled in an oral history interview, being selected for an EVA was an “extraordinary opportunity,” and it did not matter where she was in the queue. She could not understand how people arrived at the idea that the “seventh, tenth, or thirteenth … is [any] less meaningful … than some historical first.”

Others at the Johnson Space Center still thought there was a way they could best the Soviets. Sullivan’s trainers took note of how short Savitskaya’s EVA was. It was only about three and a half hours. “A little bit more than that,” they explained, and “you’ll get the duration record!” But the idea of breaking her record by a few minutes seemed ludicrous. “I’m certainly not going to go tromping around on dinner speeches … saying, ‘Well yes, but I have the duration record.’” 

“Hello, I’m right here!”

While the issue of breaking and setting records remained of interest at NASA more than twenty years after the Soviets sent cosmonaut Yuri Gagarin into space, Sullivan found herself grappling with other matters she found equally frustrating. First, there was the sexist media. No journalist asked how she was feeling about her role in the mission. Flying women in space was still new to the American news media in 1983—Ride had only flown her first mission in June, and while Judith A. Resnik had been named to a mission, she had not yet been in orbit. But Ride had not completed an EVA; only men had walked in space, and some found the activity challenging. Astronaut Eugene A. Cernan described his first EVA as the “spacewalk from hell.” Spacewalks can be physically demanding, and it was assumed that women might not have the strength to do so. Reporters asked commander Robert L. Crippen and Ride, “Do you think Kathy can do this?” Sitting at the preflight press conference she reminded reporters that she could speak for herself. “Hello, I’m right here! Hello. Hello.”

The 7-member crew of STS-41G
The crew assigned to the STS-41G mission included (seated left to right) Jon A. McBride, pilot; mission specialists Sally K. Ride, Kathryn D. Sullivan, and David C. Leestma. Standing in the rear, left to right, are payload specialist Paul D. Scully-Power, mission commander Robert Crippen, and payload specialist Marc Garneau. Launched aboard the Space Shuttle Challenger on October 5, 1984, the STS-41G mission marked the first flight to include two women.
NASA

There was also the matter of why her spacewalking partner, David C. Leestma, led the EVA. She had two years seniority in the Astronaut Office, arriving in 1978; NASA named Leestma to the corps in 1980. She also worked on spacesuit issues and the mission’s payload longer than he had, but both were rookies on this mission. Sullivan did not think Crippen and Abbey thought she was incapable, but for traditional norms to have been breached in this instance she could not explain why she—the senior ranking astronaut—was playing a support role instead of leading. If anyone asked why, Sullivan told Crippen he—not she—would have to answer the tough questions.

Space Suit Fit

As she prepared for the flight, she began training in the shuttle EMU, which never quite fit her body. The suit’s elbow did not align with hers so when she bent her arm, she had to use extra force. The lower portion of the suit was misaligned, making it difficult to bend her knee. Being the first American woman to do a spacewalk, she decided what was most important was to perform the EVA and demonstrate the EMU worked for women. “I reckoned the wrong thing to do was to turn the first evolution of a woman doing a spacewalk into a controversy. … I just sucked it up and dealt with it.” The suit techs knew the EMU was not quite her size, but she made it work. Later, when assigned to STS-45, one of the techs noticed how poorly the suit fit. “We ought to do something about it. It ought to fit you,” he said. Sullivan responded, “We can start that conversation now, but if you think I was going to make that the conversation on the first EVA you’re crazy.”

Astronaut Kathryn D. Sullivan puts on a spacesuit for EVA training
Astronaut Kathryn D. Sullivan, STS-41G mission specialist, gets some help with her extravehicular mobility unit (EMU) prior to participating in an underwater simulation of an extravehicular activity (EVA) scheduled for her flight aboard the Columbia in October 1984. Dr. Sullivan and David C. Leestma (out of frame) participated in the rehearsal in NASA’s weightless environment training facility (WET-F) at the Johnson Space Center.
NASA

A Walk to Remember

Two days after Sullivan’s thirty-third birthday, STS-41G launched on October 5, 1984. Once in orbit, the flight plan changed quickly. A problem with a malfunctioning Ku-band antenna meant that the EVA had to be pushed back to the day before reentry. Sullivan worried that the walk might be scrapped, but when they finally began the pre-breathing protocol, she relaxed. “Challenger, Houston: You are GO for EVA,” Sullivan recalled, “were the sweetest words I had ever heard.” Sullivan and Leestma’s EVA was short—only three hours and twenty-nine minutes—but busy. Leestma demonstrated it was possible to refuel satellites in orbit, while Sullivan monitored his work. When he wrapped up his task, Sullivan finally had the opportunity to “do something, not just watch things.” She stowed the malfunctioning antenna and before they went back inside the shuttle, they filmed a scene for an IMAX film, The Dream is Alive—where the two spacewalkers rose from the bottom of the space shuttle’s windows and waved at the crew inside, mimicking the “Kilroy Was Here” meme. When filming concluded, Sullivan and Leestma returned to Challenger. “My first spacewalking adventure,” Sullivan wrote in her memoir, “was over all too soon.” The next day, President Ronald Reagan called to ask Sullivan about her experience. “Kathy, when we met at the White House, I know you were excited about walking in space. Was it what you expected?” he asked. Sullivan responded affirmatively and added, “I think it was the most fantastic experience of my life.”

I think it was the most fantastic experience of my life.

Kathryn Sullivan

Kathryn Sullivan

NASA Astronaut

When she returned to JSC she learned that the EVA flight team had tried to figure out how to send her a diplomatic message to stay outside longer to beat Savitskaya’s record. There ended up being a “five-or six-minute difference” between Sullivan and Savitskaya, “and in the wrong direction as far as they were concerned.”

Despite all the challenges she faced as the first American woman to walk in space, Sullivan called the EVA “a fabulously cool experience.” She hoped to do another, but she never received another assignment to walk in space. She recognized what a unique opportunity she had—very few people have flown in space, and even fewer “get to sneak outside. I’m not going to diminish one dose of sneaking outside just because I didn’t get two, three, or four.”

Watch Suit Up – 50 Years of Spacewalks

About the Author

Jennifer Ross-Nazzal

Jennifer Ross-Nazzal

NASA Human Spaceflight Historian

Jennifer Ross-Nazzal is the NASA Human Spaceflight Historian. She is the author of Winning the West for Women: The Life of Suffragist Emma Smith DeVoe and Making Space for Women: Stories from Trailblazing Women of NASA's Johnson Space Center.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      From left to right, NASA’s Carruthers Geocorona Observatory, IMAP (Interstellar Mapping and Acceleration Probe), and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1) missions will map our Sun’s influence across the solar system in new ways. Credit: NASA NASA will provide live coverage of prelaunch and launch activities for an observatory designed to study space weather and explore and map the boundaries of our solar neighborhood.
      Launching with IMAP (Interstellar Mapping and Acceleration Probe) are two rideshare missions, NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1), both of which will provide insight into space weather and its impacts at Earth and across the solar system.
      Liftoff of the missions on a SpaceX Falcon 9 rocket is targeted for 7:32 a.m. EDT, Tuesday, Sept. 23, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Watch coverage beginning at 6:40 a.m. on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      The IMAP spacecraft will study how the Sun’s energy and particles interact with the heliosphere — an enormous protective bubble of space around our solar system — to enhance our understanding of space weather, cosmic radiation, and their impacts on Earth and human and robotic space explorers. The spacecraft and its two rideshares will orbit approximately one million miles from Earth, positioned toward the Sun at a location known as Lagrange Point 1.
      NASA’s Carruthers Geocorona Observatory is a small satellite that will observe Earth’s outermost atmospheric layer, the exosphere. It will image the faint glow of ultraviolet light from this region, called the geocorona, to better understand how space weather impacts our planet. The Carruthers mission continues the legacy of the Apollo era, expanding on measurements first taken during Apollo 16.
      The SWFO-L1 spacecraft will monitor space weather and detect solar storms in advance, serving as an early warning beacon for potentially disruptive space weather, helping safeguard Earth’s critical infrastructure and technological-dependent industries. The SWFO-L1 spacecraft is the first NOAA observatory designed specifically for and fully dedicated to continuous, operational space weather observations.
      Media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Sunday, Sept. 21
      2:30 p.m. – NASA Prelaunch News Conference on New Space Weather Missions
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Brad Williams, IMAP program executive, NASA Headquarters Irene Parker, deputy assistant administrator for Systems at NOAA’s National Environmental Satellite, Data, and Information Service Denton Gibson, launch director, NASA’s Launch Services Program, NASA Kennedy Julianna Scheiman, director, NASA Science Missions, SpaceX Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation for previously credentialed media. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
      3:45 p.m. – NASA, NOAA Science News Conference on New Space Weather Missions
      Joe Westlake, director, Heliophysics Division, NASA Headquarters David McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign Jamie Favors, director, Space Weather Program, Heliophysics Division, NASA Headquarters Clinton Wallace, director, NOAA Space Weather Prediction Center James Spann, senior scientist, NOAA Office of Space Weather Observations Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov. Members of the public may ask questions on social media using the hashtag #AskNASA.
      Monday, Sept. 22
      11:30 a.m. – In-person media one-on-one interviews with the following:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Kieran Hegarty, IMAP project manager, Johns Hopkins University Applied Physics Lab Jamie Rankin, IMAP instrument lead for Solar Wind and Pickup Ion, Princeton University John Clarke, Carruthers deputy principal investigator, Boston University Dimitrios Vassiliadis, SWFO-L1 program scientist, NOAA Brent Gordon, deputy director, NOAA Space Weather Prediction Center Remote media may request a one-on-one video interview online by 3 p.m. on Thursday, Sept. 18.
      Tuesday, Sept. 23
      6:40 a.m. – Launch coverage begins on NASA+,  Amazon Prime and more. NASA’s Spanish launch coverage begins on NASA+, and the agency’s Spanish-language YouTube channel.
      7:32 a.m. – Launch
      Audio-Only Coverage
      Audio-only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 6 a.m., Sept. 23, as the countdown milestones occur. Streaming video and photos of the launch will be accessible on demand shortly after liftoff. Follow countdown coverage on the IMAP blog.
      For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con María-José Viñas: maria-jose.vinasgarcia@nasa.gov.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:


      X: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellies
      Facebook: NASA, NASA Kennedy, NASA Solar System, NOAA Satellites
      Instagram: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellites
      For more information about these missions, visit:
      https://www.nasa.gov/sun
      -end-
      Abbey Interrante
      Headquarters, Washington
      301-201-0124
      abbey.a.interrante@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Leejay Lockhart
      Kennedy Space Center, Fla.
      321-747-8310
      leejay.lockhart@nasa.gov
      John Jones-Bateman
      NOAA’s Satellite and Information Service, Silver Spring, Md.
      202-242-0929
      john.jones-bateman@noaa.gov
      Share
      Details
      Last Updated Sep 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Heliophysics Division Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Science Mission Directorate View the full article
    • By European Space Agency
      Image: First view of aerosols from MetOp Second Generation’s 3MI instrument View the full article
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
      First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
      To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
      The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
      “We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
      Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
      Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
      The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
      On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
      Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
      Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
      Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
      Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
      “I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
      Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
      The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
      In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
      All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
      “There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
      Share
      Details
      Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
      Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
      Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...