Jump to content

Does Distant Planet Host Volcanic Moon Like Jupiter’s Io?


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

This artist’s concept depicts a potential volcanic moon on an exoplanet
This artist’s concept depicts a potential volcanic moon between the exoplanet WASP-49 b, left, and its parent star. New evidence indicating that a massive sodium cloud observed near WASP-49 b is produced by neither the planet nor the star has prompted researchers to ask if its origin could be an exomoon.
NASA/JPL-Caltech

The existence of a moon located outside our solar system has never been confirmed but a new NASA-led study may provide indirect evidence for one.

New research done at NASA’s Jet Propulsion Laboratory reveals potential signs of a rocky, volcanic moon orbiting an exoplanet 635 light-years from Earth. The biggest clue is a sodium cloud that the findings suggest is close to but slightly out of sync with the exoplanet, a Saturn-size gas giant named WASP-49 b, although additional research is needed to confirm the cloud’s behavior. Within our solar system, gas emissions from Jupiter’s volcanic moon Io create a similar phenomenon.

Although no exomoons (moons of planets outside our solar system) have been confirmed, multiple candidates have been identified. It’s likely these planetary companions have gone undetected because they are too small and dim for current telescopes to detect.

The sodium cloud around WASP-49 b was first detected in 2017, catching the attention of Apurva Oza, formerly a postdoctoral researcher at NASA’s Jet Propulsion Laboratory and now a staff scientist at Caltech, which manages JPL. Oza has spent years investigating how exomoons might be detected via their volcanic activity. For example, Io, the most volcanic body in our solar system, constantly spews sulfur dioxide, sodium, potassium, and other gases that can form vast clouds around Jupiter up to 1,000 times the giant planet’s radius. It’s possible that astronomers looking at another star system could detect a gas cloud like Io’s even if the moon itself were too small to see.

Exomoons — moons around planets outside our solar system — are most likely too small to observe directly with current technology. In this video, learn how scientists tracked the motion of a sodium cloud 635 light-years away and found that it could be created by volcanos on a potential exomoon. NASA/JPL-Caltech

Both WASP-49 b and its star are composed mostly of hydrogen and helium, with trace amounts of sodium. Neither contains enough sodium to account for the cloud, which appears to be coming from a source that is producing roughly 220,000 pounds (100,000 kilograms) of sodium per second. Even if the star or planet could produce that much sodium, it’s unclear what mechanism could eject it into space.

Could the source be a volcanic exomoon? Oza and his colleagues set out to try to answer that question. The work immediately proved challenging because from such a great distance, the star, planet, and cloud often overlap and occupy the same tiny, faraway point in space. So the team had to watch the system over time.

A Cloud on the Move

As detailed in a new study published in the Astrophysical Journal Letters, they found several pieces of evidence that suggest the cloud is created by a separate body orbiting the planet, though additional research is needed to confirm the cloud’s behavior. For example, twice their observations indicated the cloud suddenly increased in size, as if being refueled, when it was not next to the planet.

Artist's concept of sodium cloud seen around the exoplanet WASP-49 b might be created by a volcanic moon
New NASA-led research suggests a sodium cloud seen around the exoplanet WASP-49 b might be created by a volcanic moon, which is depicted in this artist’s concept. Jupiter’s fiery moon Io produces a similar cloud.
NASA/JPL-Caltech

They also observed the cloud moving faster than the planet in a way that would seem impossible unless it was being generated by another body moving independent of, and faster, than the planet.

“We think this is a really critical piece of evidence,” said Oza. “The cloud is moving in the opposite direction that physics tells us it should be going if it were part of the planet’s atmosphere.”

While these observations have intrigued the research team, they say they would need to observe the system for longer to be sure of the cloud’s orbit and structure.

A Chance of Volcanic Clouds

For part of their sleuthing, the researchers used the European Southern Observatory’s Very Large Telescope in Chile. Oza’s co-author Julia Seidel, a research fellow at the observatory, established that the cloud is located high above the planet’s atmosphere, much like the cloud of gas Io produces around Jupiter.  

They also used a computer model to illustrate the exomoon scenario and compare it to the data. The exoplanet WASP-49 b orbits the star every 2.8 days with clocklike regularity, but the cloud appeared and disappeared behind the star or behind the planet at seemingly irregular intervals. Using their model, Oza and team showed that a moon with an eight-hour orbit around the planet could explain the cloud’s motion and activity, including the way it sometimes seemed to move in front of the planet and did not seem to be associated with a particular region of the planet.

“The evidence is very compelling that something other than the planet and star are producing this cloud,” said Rosaly Lopes, a planetary geologist at JPL who co-authored the study with Oza. “Detecting an exomoon would be quite extraordinary, and because of Io, we know that a volcanic exomoon is possible.” 

A Violent End

On Earth, volcanoes are driven by heat in its core left over from the planet’s formation. Io’s volcanoes, on the other hand, are driven by Jupiter’s gravity, which squeezes the moon as it gets closer to the planet then reduces its “grip” as the moon moves away. This flexing heats the small moon’s interior, leading to a process called tidal volcanism.

If WASP-49 b has a moon similar in size to Earth’s, Oza and team estimate that the rapid loss of mass combined with the squeezing from the planet’s gravity will eventually cause it to disintegrate.

“If there really is a moon there, it will have a very destructive ending,” said Oza.  

News Media Contact

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

2024-135

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Wednesday, Jan. 15, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. The Blue Ghost lander will carry 10 NASA science and technology instruments to the lunar surface to further understand the Moon and help prepare for future human missions.Credit: NASA/Frank Michaux A suite of NASA scientific investigations and technology demonstrations is on its way to our nearest celestial neighbor aboard a commercial spacecraft, where they will provide insights into the Moon’s environment and test technologies to support future astronauts landing safely on the lunar surface under the agency’s Artemis campaign.
      Carrying science and tech on Firefly Aerospace’s first CLPS or Commercial Lunar Payload Services flight for NASA, Blue Ghost Mission 1 launched at 1:11 a.m. EST aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The company is targeting a lunar landing on Sunday, March 2.
      “This mission embodies the bold spirit of NASA’s Artemis campaign – a campaign driven by scientific exploration and discovery,” said NASA Deputy Administrator Pam Melroy. “Each flight we’re part of is vital step in the larger blueprint to establish a responsible, sustained human presence at the Moon, Mars, and beyond. Each scientific instrument and technology demonstration brings us closer to realizing our vision. Congratulations to the NASA, Firefly, and SpaceX teams on this successful launch.” 
      Once on the Moon, NASA will test and demonstrate lunar drilling technology, regolith (lunar rocks and soil) sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation methods. The data captured could also benefit humans on Earth by providing insights into how space weather and other cosmic forces impact our home planet.  
      “NASA leads the world in space exploration, and American companies are a critical part of bringing humanity back to the Moon,” said Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “We learned many lessons during the Apollo Era which informed the technological and science demonstrations aboard Firefly’s Blue Ghost Mission 1 – ensuring the safety and health of our future science instruments, spacecraft, and, most importantly, our astronauts on the lunar surface. I am excited to see the incredible science and technological data Firefly’s Blue Ghost Mission 1 will deliver in the days to come.”
      As part of NASA’s modern lunar exploration activities, CLPS deliveries to the Moon will help humanity better understand planetary processes and evolution, search for water and other resources, and support long-term, sustainable human exploration of the Moon in preparation for the first human mission to Mars. 
      There are 10 NASA payloads flying on this flight:
      Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will characterize heat flow from the interior of the Moon by measuring the thermal gradient and conductivity of the lunar subsurface. It will take several measurements to about a 10-foot final depth using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Lead organization: Texas Tech University  Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. Lead organization: Honeybee Robotics   Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon. The retroreflector that will fly on this mission could also collect data to understand various aspects of the lunar interior and address fundamental physics questions. Lead organization: University of Maryland Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. The RAC instrument will measure accumulation rates of lunar regolith on the surfaces of several materials including solar cells, optical systems, coatings, and sensors through imaging to determine their ability to repel or shed lunar dust. The data captured will allow the industry to test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace  Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but now will demonstrate the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University  Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. The EDS technology is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center  Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and the Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact it. Lead organizations: NASA’s Goddard Space Flight Center, Boston University, and Johns Hopkins University  Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from Global Navigation Satellite System constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of rocket plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier payloads are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machine’s first CLPS delivery. Lead organization: NASA’s Langley Research Center  “With 10 NASA science and technology instruments launching to the Moon, this is the largest CLPS delivery to date, and we are proud of the teams that have gotten us to this point,” said Chris Culbert, program manager for the Commercial Lunar Payload Services initiative at NASA’s Johnson Space Center in Houston. “We will follow this latest CLPS delivery with more in 2025 and later years. American innovation and interest to the Moon continues to grow, and NASA has already awarded 11 CLPS deliveries and plans to continue to select two more flights per year.”
      Firefly’s Blue Ghost lander is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the Moon’s near side. The NASA science on this flight will gather valuable scientific data studying Earth’s nearest neighbor and helping pave the way for the first Artemis astronauts to explore the lunar surface later this decade.
      Learn more about NASA’s CLPS initiative at:
      https://www.nasa.gov/clps
      -end-
      Amber Jacobson / Karen Fox
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / karen.c.fox@nasa.gov
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jan 15, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon Johnson Space Center Kennedy Space Center Lunar Science Science & Research Science Mission Directorate View the full article
    • By NASA
      Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in FloridaSpaceX As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.
      Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.
      How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.

      The ten NASA payloads aboard Firefly’s Blue Ghost lander include:

      Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
      Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
      Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
      Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
      Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
      Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
      Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
      Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
      Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
      Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center 
      Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.

      Learn more about CLPS and Artemis at: http://www.nasa.gov/clps 

      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov

      Natalia Riusech / Nilufar Ramji  
      Johnson Space Center, Houston 
      281-483-5111 
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      View the full article
    • By NASA
      Following the historic year of 1969 that saw two successful Moon landings, 1970 opened on a more sober note. Ever-tightening federal budgets forced NASA to rescope its future lunar landing plans. The need for a Saturn V to launch an experimental space station in 1972 forced the cancellation of the final Moon landing mission and an overall stretching out of the Moon landing flights. Apollo 13 slipped to April, but the crew of James Lovell, Thomas “Ken” Mattingly, and Fred W. Haise and their backups John Young, John “Jack” Swigert, and Charles Duke continued intensive training for the landing at Fra Mauro. Training included practicing their surface excursions and water egress, along with time in spacecraft simulators. The three stages of the Apollo 14 Saturn V arrived at the launch site and workers began the stacking process for that mission now planned for October 1970. Scientists met in Houston to review the preliminary findings from their studies of the lunar samples returned by Apollo 11. 
      Apollo Program Changes 
      Apollo Moon landing plans in early 1970, with blue indicating completed landings, green planned landings at the time, and red canceled landings. Illustration of the Apollo Applications Program, later renamed Skylab, experimental space station then planned for 1972. On Jan. 4, 1970, NASA Deputy Administrator George Low announced the cancellation of Apollo 20, the final planned Apollo Moon landing mission. The agency needed the Saturn V rocket that would have launched Apollo 20 to launch the Apollo Applications Program (AAP) experimental space station, renamed Skylab in February 1970. Since previous NASA Administrator James Webb had precluded the building of any additional Saturn V rockets in 1968, this proved the only viable yet difficult solution.  
      In other program changes, on Jan. 13 NASA Administrator Thomas Paine addressed how NASA planned to deal with ongoing budgetary challenges. Lunar landing missions would now occur every six months instead of every four, and with the slip of Apollo 13 to April, Apollo 14 would now fly in October instead of July. Apollo 15 and 16 would fly in 1971, then AAP would launch in 1972, and three successive crews would spend, 28, 56, and 56 days aboard the station. Lunar landing missions would resume in 1973, with Apollo 17, 18, and 19 closing out the program by the following year. 
      Top NASA managers in the Mission Control Center, including Sigurd “Sig” Sjoberg, third from left, Christopher Kraft, sitting in white shirt, and Dale Myers, third from right. Wernher von Braun in his office at NASA Headquarters in Washington, D.C. In addition to programmatic changes, several key management changes took place at NASA in January 1970. On Nov. 26, 1969, Christopher Kraft , the director of flight operations at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, assumed the position of MSC deputy director. On Dec. 28, MSC Director Robert Gilruth named Sigurd “Sig” Sjoberg, deputy director of flight operations since 1963, to succeed Kraft. At NASA Headquarters in Washington, D.C., Associate Administrator for Manned Space Flight George Mueller resigned his position effective Dec. 10, 1969. To replace Mueller, on Jan. 8, NASA Administrator Paine named Dale Myers, vice president and general manager of the space shuttle program at North American Rockwell Corporation. On Jan. 27, Paine announced that Wernher von Braun, designer of the Saturn family of rockets and director of the Marshall Space Flight Center in Huntsville, Alabama, since its establishment in 1960, would move to NASA Headquarters and assume the position of deputy associate administrator for planning. 
      Apollo 11 Lunar Science Symposium 
      Sign welcoming scientists to the Apollo 11 Lunar Science Conference. Apollo 11 astronaut Edwin “Buzz” Aldrin addresses a reception at the First Lunar Science Conference. Between Jan. 5 and 8, 1970, several hundred scientists, including all 142 U.S. and international principal investigators provided with Apollo 11 samples, gathered in downtown Houston’s Albert Thomas Exhibit and Convention Center for the Apollo 11 Lunar Science Conference. During the conference, the scientists discussed the chemistry, mineralogy, and petrology of the lunar samples, the search for carbon compounds and any evidence of organic material, the results of dating of the samples, and the results returned by the Early Apollo Surface Experiments Package (EASEP). Senior NASA managers including Administrator Paine, Deputy Administrator Low, and Apollo Program Director Rocco Petrone attended the conference, and Apollo 11 astronaut Edwin “Buzz” Aldrin gave a keynote speech at a dinner reception. The prestigious journal Science dedicated its Jan. 30, 1970, edition to the papers presented at the conference, dubbing it “The Moon Issue”. The Lunar Science Conference evolved into an annual event, renamed the Lunar and Planetary Science Conference in 1978, and continues to attract scientists from around the world to discuss the latest developments in lunar and planetary exploration. 
      Apollo 12 
      Apollo 12 astronaut Richard Gordon riding in one of the Grand Marshal cars in the Rose Parade in Pasadena, California. Actress June Lockhart, left, interviews Apollo 12 astronauts Charles “Pete” Conrad, Gordon, and Alan Bean during the Rose Parade.courtesy emmyonline.com Apollo 12 astronauts and their wives visiting former President and Mrs. Lyndon B. Johnson at the LBJ Ranch in Texas. On New Year’s Day 1970, Apollo 12 astronauts Charles “Pete” Conrad, Richard Gordon, and Alan Bean led the 81st annual Tournament of Roses Parade in Pasadena, California, as Grand Marshals. Actress June Lockhart, an avid space enthusiast, interviewed them during the TV broadcast of the event. As President Richard Nixon had earlier requested, Conrad, Gordon, and Bean and their wives paid a visit to former President Lyndon B. Johnson and First Lady Lady Bird Johnson at their ranch near Fredericksburg, Texas, on Jan. 14, 1970. The astronauts described their mission to the former President and Mrs. Johnson.  
      The Apollo 12 Command Module Yankee Clipper arrives at the North American Rockwell (NAR) facility in Downey, California. Yankee Clipper at NAR in Downey. A technician examines the Surveyor 3 camera returned by the Apollo 12 astronauts. Managers released the Apollo 12 Command Module (CM) Yankee Clipper from quarantine and shipped it back to its manufacturer, the North American Rockwell plant in Downey, California, on Jan. 12. Engineers there completed a thorough inspection of the spacecraft and eventually prepared it for public display. NASA transferred Yankee Clipper to the Smithsonian Institution in 1973, and today the capsule resides at the Virginia Air & Space Center in Hampton, Virginia. NASA also released from quarantine the lunar samples and the parts of the Surveyor 3 spacecraft returned by the Apollo 12 astronauts. The scientists received their allocated samples in mid-February, while after initial examination in the Lunar Receiving Laboratory (LRL) the Surveyor parts arrived at NASA’s Jet Propulsion Laboratory in Pasadena, California, for detailed analysis. 
      Apollo 13 
      As the first step in the programmatic rescheduling of all Moon landings, on Jan. 7, NASA announced the delay of the Apollo 13 launch from March 12 to April 11. The Saturn V rocket topped with the Apollo spacecraft had rolled out the previous December to Launch Pad 39A where workers began tests on the vehicle. The prime crew of Lovell, Mattingly, and Haise, and their backups Young, Swigert, and Duke, continued to train for the 10-day mission to land in the Fra Mauro region of the Moon.  

      During water recovery exercises, Apollo 13 astronauts (in white flight suits) Thomas “Ken” Mattingly, left, Fred Haise, and James Lovell in the life raft after emerging from the boilerplate Apollo capsule. Apollo 13 astronaut Lovell suits up for a spacewalk training session. Apollo 13 astronaut Haise during a spacewalk simulation. Apollo 13 prime crew members Lovell, Mattingly, and Haise completed their water egress training in the Gulf of Mexico near the coast of Galveston, Texas, on Jan. 24. With support from the Motorized Vessel Retriever, the three astronauts entered a boilerplate Apollo CM. Sailors lowered the capsule into the water, first in the Stable 2 or apex down position. Three self-inflating balloons righted the spacecraft into the Stable 1 apex up position within a few minutes. With assistance from the recovery team, Lovell, Mattingly, and Haise exited the spacecraft onto a life raft. A helicopter lifted them out of the life rafts using Billy Pugh nets and returned them to Retriever. Later that day, the astronauts returned to the MSC to examine Moon rocks in the LRL that the Apollo 12 astronauts had returned the previous November. 
      During their 33.5 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the Apollo Lunar Surface Experiment Package (ALSEP), a suite of five investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. Mattingly planned to remain in the Command and Service Module (CSM), conducting geologic observations from lunar orbit including photographing potential future landing sites. Lovell and Haise conducted several simulations of the spacewalk timelines, including setting up the ALSEP equipment, practicing taking core samples, and photographing their activities for documentation purposes. They and their backups conducted practice sessions with the partial gravity simulator, also known as POGO, an arrangement of harnesses and servos that simulated walking in the lunar one-sixth gravity. Lovell and Young completed several flights in the Lunar Landing Training Vehicle (LLTV) that simulated the flying characteristics of the Lunar Module (LM) for the final several hundred feet of the descent to the surface. 

      A closed Apollo 13 rock box. An open rock box, partially outfitted with core sample tubes and sample container dispenser. A technician holds the American flag that flew aboard Apollo 13. In the LRL, technicians prepared the Apollo Lunar Sample Return Containers (ALSRC), or rock boxes, for Apollo 13. Like all missions, Apollo 13 carried two ALSRCs, with each box and lid manufactured from a single block of aluminum. Workers placed sample containers and bags and two 2-cm core sample tubes inside the two ALSRCs. Once loaded, technicians sealed the boxes under vacuum conditions so that they would not contain pressure greater than lunar ambient conditions. Engineers at MSC prepared the American flag that Lovell and Haise planned to plant on the Moon for stowage on the LM’s forward landing strut. 
      Apollo 14 
      Workers lower the Apollo 14 Lunar Module (LM) ascent stage onto the Command Module (CM) in a preflight docking test. Workers prepare the Apollo 14 LM descent stage for mating with the ascent stage. Workers prepare the Apollo 14 LM ascent stage for mating with the descent stage. As part of the rescheduling of Moon missions, NASA delayed the launch of the next flight, Apollo 14, from July to October 1970. The CSM and the LM had arrived at NASA’s Kennedy Space Center (KSC) in Florida late in 1969 and technicians conducted tests on the vehicles in the Manned Spacecraft Operations Building (MSOB). On Jan. 12, workers lowered the ascent stage of the LM onto the CSM to perform a docking test – the next time the two vehicles docked they would be on the way to the Moon and the test verified their compatibility. Workers mated the two stages of the LM on Jan. 20. 
      The first stage of Apollo 14’s Saturn V inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida. The second stage of Apollo 14’s Saturn V arrives at the VAB. The third stage of Apollo 14’s Saturn V arrives at KSC. The three stages of the Apollo 14 Saturn V arrived in KSC’s cavernous Vehicle Assembly Building (VAB) in mid-January and while workers stacked the first stage on its Mobile Launch Platform on Jan. 14, they delayed stacking the remainder of the rocket stages until May 1970. That decision proved fortunate, since engineers needed to modify the second stage engines following the pogo oscillations experienced during the Apollo 13 launch. 

      Apollo 14 backup Commander Eugene Cernan prepares for a vacuum chamber test in the Space Environment Simulation Lab (SESL). Apollo 14 backup crew member Joe Engle during a vacuum chamber test in the SESL. Apollo 14 astronauts Alan Shepard, Stuart Roosa, and Edgar Mitchell and their backups Eugene Cernan, Ronald Evans, and Joe Engle continued training for their mission. In addition to working in spacecraft simulators, Shepard, Mitchell, Cernan, and Engle conducted suited vacuum chamber runs in MSC’s Space Environmental Simulation Laboratory (SESL) and completed their first familiarization with deploying their suite of ALSEP investigations.  
      NASA engineer William Creasy, kneeling in sport coat, and the technical team that built the Modular Equipment Transporter (MET), demonstrate the prototype to Roundup editor Sally LaMere. Apollo 14 support astronaut William Pogue tests the MET during parabolic flight. The Apollo 14 astronauts made the first use of the Modular Equipment Transporter (MET), a golf-cart like wheeled conveyance to transport their tools and lunar samples. A team led by project design engineer William Creasy developed the MET based on recommendations from the first two Moon landing crews on how to improve efficiency on the lunar surface. Creasy and his team demonstrated the MET to Sally LaMere, editor of The Roundup, MSC’s employee newsletter. Three support astronauts, William Pogue, Anthony “Tony” England, and Gordon Fullerton tested the MET prototype in simulated one-sixth lunar gravity during parabolic aircraft flights.   
      To be continued … 
      News from around the world in January 1970: 
      January 1 – President Richard Nixon signs the National Environmental Protection Act into law. 
      January 4 – The Beatles hold their final recording session at Abbey Road Studios in London. 
      January 5 – Daytime soap opera All My Children premieres. 
      January 11 – The Kansas City Chiefs beat the Minnesota Vikings 23-7 in Super Bowl IV, played in Tulane Stadium in New Orleans. 
      January 22 – Pan American Airlines flies the first scheduled commercial Boeing-747 flight from New York to London. 
      January 14 – Diana Ross and the Supremes perform their final concert in Las Vegas. 
      January 25 – The film M*A*S*H, directed by Robert Altman, premieres. 
      January 26 – Simon & Garfunkel release Bridge Over Troubled Water, their fifth and final album. 

      View the full article
    • By NASA
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission One lander will carry 10 NASA science and technology instruments to the Moon’s near side. Credit: Firefly Aerospace Carrying NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission 1 is targeting launch Wednesday, Jan. 15. The mission will lift off on a SpaceX’s Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      Live launch coverage will air on NASA+ with prelaunch events starting Monday, Jan. 13. Learn how to watch NASA content through a variety of platforms, including social media. Follow all events at:
      https://www.nasa.gov/live/
      After the launch, Firefly’s Blue Ghost lander will spend approximately 45 days in transit to the Moon before landing on the lunar surface in early March. The lander will carry 10 NASA science investigations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 
      Science investigations on this flight aim to test and demonstrate lunar subsurface drilling technology, regolith sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation methods. The data captured could benefit humans on Earth by providing insights into how space weather and other cosmic forces impact Earth.
      The deadline has passed for media accreditation for in-person coverage of this launch. The agency’s media accreditation policy is available online. More information about media accreditation is available by emailing: ksc-media-accreditat@mail.nasa.gov.
      Full coverage of this mission is as follows (all times Eastern):
      Monday, Jan. 13
      2:30 p.m. – Lunar science media teleconference with the following participants:
      Chris Culbert, CLPS program manager, NASA’s Johnson Space Center Maria Banks, CLPS project scientist, NASA Johnson Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 1:30 p.m. EST Jan. 13, at: ksc-newsroom@mail.nasa.gov.
      Tuesday, Jan. 14
      1 p.m. – Lunar delivery readiness media teleconference with the following participants:
      Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters Jason Kim, CEO, Firefly Aerospace Julianna Scheiman, director, NASA science missions, SpaceX Mark Burger, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 12 p.m. EST on Tuesday, Jan. 14, at: ksc-newsroom@mail.nasa.gov.
      Wednesday, Jan. 15
      12:30 a.m. – Launch coverage begins on NASA+ and the agency’s website.
      1:11 a.m. – Launch
      NASA Launch Coverage
      Audio only of the media teleconferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, the full mission broadcast can be heard on -1220 and -1240, while the countdown net only can be heard on -7135 beginning approximately one hour before the mission broadcast begins.
      On launch day, a “tech feed” of the launch without NASA TV commentary will be carried on the NASA TV media channel.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 12:30 a.m. EST Jan. 15, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on our launch blog for updates.
      NASA Virtual Guests for Launch
      Members of the public can register to attend this launch virtually. Registrants will receive mission updates and activities by email, including curated mission resources, schedule updates, and a virtual guest passport stamp following a successful launch. Print your passport and get ready to add your stamp!
      Watch, Engage on Social Media
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:
      X: @NASA, @NASAKennedy, @NASAArtemis, @NASAMoon
      Facebook: NASA, NASAKennedy, NASAArtemis
      Instagram: @NASA, @NASAKennedy, @NASAArtemis
      Coverage en Español
      Did you know NASA has a Spanish section called NASA en español? Check out NASA en español on X, Instagram, Facebook, and YouTube for additional mission coverage.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      For media inquiries relating to the launch provider, please contact SpaceX’s communications department by emailing: media@spacex.com. For media inquiries relating to the CLPS provider, Firefly Aerospace, please contact Firefly’s communication department by emailing: press@fireflyspace.com.
      For more information about the agency’s CLPS initiative, see:
      https://www.nasa.gov/clps
      -end-
      Karen Fox / Alise Fisher
      Headquarters, Washington
      301-286-6284 / 202-358-1275
      karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov  
      Natalia Riusech
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      View the full article
    • By NASA
      Skywatching Home Skywatching The Next Full Moon is the Wolf… Skywatching Home What’s Up Eclipses Explore the Night Sky Night Sky Network More Tips and Guides FAQ   27 Min Read The Next Full Moon is the Wolf Moon
      The Moon sets over Homestead National Historic Park in Nebraska. Credits:
      National Park Service/Homestead The next full Moon is the Wolf Moon; the Ice or Old Moon; the Moon after Yule; the start of Prayag Kumbh Mela; Shakambhari Purnima; Paush Purnima; the Thiruvathira, Thiruvathirai, or Arudhra Darisanam festival Moon; and Duruthu Poya.
      The phases of the Moon for January 2025. NASA/JPL-Caltech The next full Moon will be Monday evening, Jan. 13, 2025, appearing opposite the Sun (in Earth-based longitude) at 5:27 p.m. EST. This will be Tuesday from the South Africa and Eastern European time zones eastward across the remainder of Africa, Europe, Asia, Australia, etc., to the International Date Line in the mid-Pacific. The Moon will appear full for about three days around this time, from Sunday evening (and possibly the last part of Sunday morning) into Wednesday morning. On the night of the full Moon, for most of the continental USA as well as parts of Africa, Canada, and Mexico, the Moon will pass in front of the planet Mars.
      The Maine Farmers’ Almanac began publishing Native American names for full Moons in the 1930s. Over time these names have become widely known and used. According to this almanac, as the full Moon in January this is the Wolf Moon, from the packs of wolves heard howling outside the villages amid the cold and deep snows of winter.
      European names for this Moon include the Ice Moon, the Old Moon, and (as the full Moon after the winter solstice) the Moon after Yule. Yule was a three to 12-day festival near the winter solstice in pre-Christian Europe. In the tenth century King Haakon I associated Yule with Christmas as part of the Christianization of Norway, and this association spread throughout Europe. The exact timing of this pre-Christian celebration is unclear. Some sources now associate Yule with the 12 days of Christmas, so that the Moon after Yule is after Twelfth Night on January 6. Other sources suggest that Yule is an old name for the month of January, so the Moon after Yule is in February. In the absence of more reliable historic information, I’m going with the full Moon after the winter solstice as the Moon after Yule.
      This full Moon corresponds with the start of the 44-day festival Prayag Kumbh Mela, also known as Maha Kumbh. This Hindu pilgrimage and festival is held every 12 years in the Indian city of Prayagraj at the confluence of three rivers, the Ganges, the Yamuna, and the mythical Sarasvati. It is expected to draw around 400 million visitors. Similar Kumbh celebrations are held approximately every 12 years at the convergence of three rivers in three other Indian cities, Nashik (upcoming in 2027), Ujjain (in 2028), and Haridwar (in 2033).
      In the Hindu calendar, this full Moon is Shakambhari Purnima, the last day in the 8-day Shakambari Navratri holiday that celebrates the goddess Shakambhari. In the Purnimanta tradition that ends months on the full Moon day, this full Moon is Paush Purnima, the last day of the Hindu month of Paush. The day after Paush Purnima is the start of the month of Magha, a period of austerity. Bathing in the holy waters of India is an important activity for both Shakambari Navratri and Magha.
      This full Moon corresponds with the Thiruvathira, Thiruvathirai, or Arudhra Darisanam festival, celebrated by Hindus in the Indian states of Kerala and Tamil Nadu.
      For the Buddhists of Sri Lanka, this is Duruthu Poya, which commemorates Siddhartha Gautama Buddha’s first visit to Sri Lanka.
      In many lunar and lunisolar calendars the months change with the new Moon and full Moons fall in the middle of the lunar month. This full Moon is in the middle of the 12th and final month of the Chinese Year of the Rabbit. The new Moon on January 29 will be Chinese New Year, the start of the Year of the Snake. This full Moon is in the middle of Tevet in the Hebrew calendar and Rajab, the seventh month of the Islamic calendar. Rajab is one of the four sacred months in which warfare and fighting are forbidden.
      As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Take care in the cold weather and take advantage of these early sunsets to enjoy and share the wonders of the night sky. And avoid starting any wars.
      Here are the other celestial events between now and the full Moon after next, with times and angles based on the location of NASA Headquarters in Washington, D.C.:
      As winter continues in the Northern Hemisphere, the daily periods of sunlight continue to lengthen. Our 24-hour clock is based on the average length of a day with the solar days near the solstices longer than those near the equinoxes. For Washington, D.C. and similar latitudes (I’ve not checked for other areas) the latest sunrise of the year (ignoring Daylight Saving Time) occurred on January 4. Monday, January 13 (the day of the full Moon), morning twilight will begin at 6:24 a.m. EST, sunrise will be at 7:26 a.m., solar noon will be at 12:17 p.m. when the Sun will reach its maximum altitude of 29.8 degrees, sunset will be at 5:08 p.m., and evening twilight will end at 6:11 p.m. By Wednesday, February 12 (the day of the full Moon after next), morning twilight will begin at 6:04 a.m., sunrise will be at 7:03 a.m., solar noon will be at 12:23 p.m. when the Sun will reach its maximum altitude of 37.7 degrees, sunset will be at 5:43 p.m., and evening twilight will end at 6:41 p.m.
      This should be a good time for planet watching, especially with a backyard telescope. Venus, Jupiter, Mars, Saturn, and Uranus will all be in the evening sky. Brightest will be Venus, appearing in the southwestern sky. With a telescope you should be able to see it shift from half-full to a 29% illuminated crescent during this lunar cycle as it brightens and moves closer to the Earth.
      Venus will reach its brightest for the year just after the full Moon after next. Second in brightness will be Jupiter in the eastern sky. With a telescope you should be able to see Jupiter’s four bright moons, Ganymede, Callisto, Europa, and Io, noticeably shifting positions in the course of an evening. Jupiter was at its closest and brightest in early December. Third in brightness will be Mars low in the east-northeastern sky. Mars will be at its closest and brightest for the year a few days after this full Moon. Fourth in brightness will be Saturn, appearing near Venus in the southwestern sky. With a telescope you should be able to see Saturn’s bright moon Titan and maybe its rings. The rings are appearing very thin and will be edge-on to the Earth in March 2025. We won’t get the “classic” view of Saturn showing off its rings until 2026. Saturn was at its closest and brightest in early September and will appear its closest to Venus (2.2 degrees apart) the evening of January 18. Fifth in brightness and technically bright enough to see without a telescope (if you are in a very dark location and your eyesight is better than mine) will be Uranus high in the southeastern sky. Uranus was at its closest and brightest in mid-November.
      During this lunar cycle these planets will be rotating westward around the pole star Polaris (with Venus shifting more slowly) making them easier to see earlier in the evening, and friendlier for backyard stargazing, especially if you have young ones with earlier bedtimes.
      Comets
      As mentioned in my last posting, the sungrazing comet C/2024 G3 (ATLAS) will be passing very near the Sun on January 13. There is a chance that this comet will break up and vanish from view as it approaches the Sun, much as comet C/2024 S1 (ATLAS) did in October. In addition, its visual magnitude might not be bright enough to see in the daytime due to the glow of the nearby Sun. If it does not break up and is bright enough, Northern Hemisphere viewers will have the best viewing near its closest approach. For the Washington, D.C. area, it could be brightest the evening of January 12 before it sets on the southwestern horizon. You will need to find a distant object to block direct sunlight so you can safely look about 5 degrees to the upper right of the Sun. If the horizon is very clear, your best chance might be after sunset at 5:07 p.m. EST, but before the comet sets about 10 minutes later. Southern Hemisphere viewers will have the best viewing after closest approach, immediately after sunset from mid-January on (dimming each evening as it moves away from the Sun and the Earth). You may need binoculars or a telescope to see it, although comets are hard to predict.
      Meteor Showers
      Two minor meteor showers, the γ-Ursae Minorids (404 GUM) and α-Centaurids (102 ACE), will peak during this lunar cycle. The light of the waning Moon will interfere with the γ-Ursae Minorids peak on January 18. The α-Centaurids, only visible from the Southern Hemisphere, are expected to peak on February 8. In recent years the average peak has been 6 visible meteors per hour (under ideal conditions), although this shower showed bursts of 20 to 30 meteors per hour in 1974 and 1980. The best viewing conditions will likely be after the waxing gibbous Moon sets in the early mornings around the peak.
      Evening Sky Highlights
      On the evening of Monday, Jan. 13, 2025 (the evening of the full Moon), as twilight ends (at 6:11 p.m. EST), the rising Moon will be 13 degrees above the east-northeastern horizon with the bright planet Mars (the third brightest planet) 2 degrees to the lower left and the bright star Pollux (the brighter of the twin stars in the constellation Gemini, the twins) 3 degrees to the upper left of the Moon. The brightest planet visible will be Venus at 29 degrees above the southwestern horizon, with the planet Saturn (fourth brightest) 6 degrees to the upper left of Venus. The second brightest planet, Jupiter, will be 47 degrees above the eastern horizon. The bright star closest to overhead will be Capella at 50 degrees above the east-northeastern horizon. Capella is the 6th brightest star in our night sky and the brightest star in the constellation Auriga (the charioteer). Although we see Capella as a single star it is actually four stars (two pairs of stars orbiting each other). Capella is about 43 light years from us.
      As this lunar cycle progresses, the planets and the background of stars will appear to rotate westward around the pole star Polaris each evening, with Venus initially shifting the other direction. Mars will be at its closest and brightest on January 15. Venus and Saturn will appear closest to each other on January 18. Mars and Pollux will appear nearest each other on January 22 and 23. Venus will appear at its highest above the horizon (as twilight ends) on January 27, after which it will start shifting toward the horizon again. Jupiter and Aldebaran will appear at their closest on January 31. The waxing Moon will pass by Saturn on January 31; Venus on February 1; the Pleiades star cluster on February 5; and Mars and Pollux on February 10.
      By the evening of Wednesday, February 12 (the evening of the full Moon after next), as twilight ends (at 6:41 p.m. EST), the rising Moon will be 7 degrees above the east-northeastern horizon with the bright star Regulus 2 degrees to the right. The brightest planet in the sky will be Venus at 28 degrees above the west-southwestern horizon, appearing as a crescent through a telescope. Next in brightness will be Jupiter at 71 degrees above the south-southeastern horizon. Third in brightness will be Mars at 48 degrees above the eastern horizon. Saturn will be 11 degrees above the west-southwestern horizon. Uranus, on the edge of what is visible under extremely clear, dark skies, will be 68 degrees above the south-southwestern horizon. The bright star closest to overhead will still be Capella at 75 degrees above the northeastern horizon.
      Also high in the sky will be the constellation Orion, easily identifiable because of the three stars that form Orion’s Belt. This time of year, we see many bright stars in the sky at evening twilight, with bright stars scattered from the south-southeast toward the northwest. We see more stars in this direction because we are looking toward the Local Arm of our home galaxy (also called the Orion Arm, Orion-Cygnus Arm, or Orion Bridge). This arm is about 3,500 light years across and 10,000 light years long. Some of the bright stars we see from this arm are the three stars of Orion’s Belt, as well as Rigel (860 light years from Earth), Betelgeuse (548 light years), Polaris (about 400 light years), and Deneb (about 2,600 light years).
      Facing toward the south from the northern hemisphere, to the upper left of Orion’s Belt is the bright star Betelgeuse (be careful not to say this name three times). About the same distance to the lower right is the bright star Rigel. Orion’s belt appears to point down and to the left about seven belt lengths to the bright star Sirius, the brightest star in the night sky. Below Sirius is the bright star Adara. To the upper right of Orion’s Belt (at about the same distance from Orion as Sirius) is the bright star Aldebaran. Nearly overhead is the bright star Capella. To the left (east) of Betelgeuse is the bright star Procyon. The two stars above Procyon are Castor and Pollux, the twin stars of the constellation Gemini (Pollux is the brighter of the two). The bright star Regulus appears farther to the left (east) of Pollux near the eastern horizon. Very few places on the East Coast are dark enough to see the Milky Way (our home galaxy), but if you could see it, it would appear to stretch overhead from the southeast to the northwest. Since we are seeing our galaxy from the inside, the combined light from its 100 billion to 400 billion stars make it appear as a band surrounding the Earth.
      Morning Sky Highlights
      On the morning of Monday, Jan. 13, 2025 (the morning of the full Moon), as twilight begins (at 6:23 a.m. EST), the setting full Moon will be 11 degrees above the west-northwestern horizon. This will be the last morning the planet Mercury will rise before morning twilight begins, although it will be bright enough to see in the glow of dawn after it rises for another week or so. This will leave Mars at 18 degrees above the west-northwestern horizon as the only planet in the sky. The bright star appearing closest to overhead will be Arcturus at 69 degrees above the south-southeastern horizon. Arcturus is the brightest star in the constellation Boötes (the herdsman or plowman) and the 4th brightest star in our night sky. It is 36.7 light years from us. While it has about the same mass as our Sun, it is about 2.6 billion years older and has used up its core hydrogen, becoming a red giant 25 times the size and 170 times the brightness of our Sun. One way to identify Arcturus in the night sky is to start at the Big Dipper, then follow the arc of the dipper’s handle as it “arcs toward Arcturus.”
      As this lunar cycle progresses Mars and the background of stars will appear to rotate westward around the pole star Polaris by about 1 degree each morning. The waning Moon will appear near Mars and Pollux on January 13 and 14, Regulus on January 16, Spica on January 21, Antares on January 24 and 25, and (rising after morning twilight begins) Mercury on January 28. January 22 will be the last morning the planet Mercury will be above the horizon 30 minutes before sunrise. Mars and Pollux will be near their closest to each other the morning of January 23. February 4 will be the last morning the planet Mars will be above the northwestern horizon as morning twilight begins. The waxing Moon will appear near Pollux on February 9 (setting before twilight begins) and 10.
      By the morning of Wednesday, February 12 (the morning of the full Moon after next), as twilight begins (at 6:04 a.m. EST), the setting full Moon will be 13 degrees above the western horizon. No planets will appear in the sky. The bright star appearing closest to overhead will still be Arcturus at 65 degrees above the southeastern horizon.
      Detailed Daily Guide
      Here is a day-by-day listing of celestial events between now and the full Moon on Feb. 12, 2025. The times and angles are based on the location of NASA Headquarters in Washington, D.C., and some of these details may differ for where you are (I use parentheses to indicate times specific to the D.C. area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app set for your location or a star-watching guide from a local observatory, news outlet, or astronomy club.
      Tuesday evening, January 7 At 7:07 p.m. EST, the Moon will be at perigee, its closest to the Earth for this orbit.
      Thursday evening, January 9 The waxing gibbous Moon will pass in front of the Pleiades star cluster. This may be viewed best with binoculars, as the brightness of the Moon will make it hard to see the stars in this star cluster. As evening twilight ends at 6:07 p.m. EST, the Pleiades will appear 1 degree to the lower left of the full Moon. Over the next few hours, including as the Moon reaches its highest for the night at 8:37 p.m., the Moon will pass in front of the Pleiades, blocking many of these stars from view. By about midnight the Pleiades will appear about 1 degree below the Moon, and the Moon and the Pleiades will separate as Friday morning progresses.
      Also on Thursday night, January 9, the planet Venus will reach its greatest angular separation from the Sun as seen from the Earth for this apparition (called greatest elongation). Because the angle between the line from the Sun to Venus and the line of the horizon changes with the seasons, the date when Venus and the Sun appear farthest apart as seen from Earth is not always the same as when it appears highest above the west-southwestern horizon as evening twilight ends, which occurs on January 27.
      Friday evening, January 10 The bright planet Jupiter will appear near the waxing gibbous Moon. As evening twilight ends at 6:08 p.m. EST, Jupiter will be 5 degrees to the lower right. As the Moon reaches its highest for the night at 9:37 p.m., Jupiter will be 6 degrees below the Moon. The pair will continue to separate until Jupiter sets Saturday morning at 4:45 a.m.
      Sunday afternoon, January 12 There is a slight chance that the sungrazing comet, C/2024 G3 (ATLAS) might be visible near the setting Sun. Most likely, this comet will not be bright enough to see in the daytime or will break up and vanish from view like comet C/2024 S1 (ATLAS) did in October. The odds are low, but if the sky is clear, find an object to block direct sunlight (the farther away the object the better) so you can safely look about 5 degrees to the upper right of the Sun. If the west-southwestern horizon is clear, your best chance might be after sunset at 5:07 p.m. EST, but before the comet sets about 10 minutes later. This will only be visible from the Northern Hemisphere. Southern Hemisphere viewers may be able to see this comet from mid-January on immediately after sunset (dimming each evening as it moves away from us).
      Monday morning, January 13 This is the morning of the full Moon. It will be the last morning Mercury will rise before morning twilight begins, although it will be bright enough to see in the glow of dawn after it rises for another week or so.
      The Moon will be full Monday evening at 5:27 p.m. EST. This will be on Tuesday from the South Africa and Eastern European time zones eastward across the rest of Africa, Europe, Asia, Australia, etc., to the International Date Line in the mid-Pacific. The Moon will appear full for about three days around this time, from Sunday evening (and possibly the last part of Sunday morning) into Wednesday morning.
      On Monday night the full Moon will appear near and pass in front of the bright planet Mars, with the bright star Pollux above the pair. As evening twilight ends at 6:11 p.m. EST, the three will form a triangle, with Mars 2 degrees to the lower left and Pollux 3 degrees to the upper left of the Moon. For most of the continental USA as well as parts of Africa, Canada, and Mexico, the Moon will pass in front of Mars. Times will vary for other locations, but for NASA Headquarters in Washington, D.C., Mars will vanish behind the bottom of the Moon at about 9:16 p.m. and reappear from behind the upper right of the Moon at about 10:31 p.m. By the time the Moon reaches its highest for the night early on Tuesday morning at 12:37 a.m., Mars will be 1 degree to the right of the Moon and Pollux 5 degrees to the upper right. As morning twilight begins at 6:23 a.m., Mars will be 4 degrees and Pollux 8 degrees to the lower right of the Moon.
      Wednesday night January 15 The planet Mars will be at opposition, so called because it will be opposite the Earth from the Sun, effectively a “full” Mars. Near opposition Mars will be at its closest and brightest for the year. On Wednesday night, as evening twilight ends at 6:13 p.m. EST, Mars will be 14 degrees above the east-northeastern horizon. Mars will reach its highest in the sky early Thursday morning at 12:21 a.m., and will be 15 degrees above the west-northwestern horizon as morning twilight begins at 6:23 a.m. Only planets that orbit farther from the Sun than the Earth can be seen at opposition from the Earth.
      Wednesday night into Thursday morning, January 15 to 16 The bright star Regulus will appear near the waning gibbous Moon. As Regulus rises on the east-northeastern horizon at 7:52 p.m. EST, it will be more than 8 degrees below the Moon. By the time the Moon reaches its highest for the night on Thursday morning at 2:17 a.m. Regulus will be 5.5 degrees to the lower left of the Moon. As morning twilight begins at 6:23 a.m. Regulus will be 4 degrees to the left of the Moon.
      Saturday evening, January 18 Venus and Saturn will appear nearest to each other. As evening twilight ends at 6:15 p.m. EST, Venus will be 30 degrees above the southwestern horizon with Saturn 2.2 degrees to the lower left. Saturn will set first on the western horizon almost 3 hours later at 9:04 p.m.
      Monday night, January 20 At 11:53 p.m. EST, the Moon will be at apogee, its farthest from the Earth for this orbit.
      Tuesday morning, January 21 The bright star Spica will appear near the waning gibbous Moon. As the Moon rises on the east-southeastern horizon at 12:11 a.m. EST Spica will be 1 degree above the Moon. By the time the Moon reaches its highest for the night at 5:41 a.m., Spica will be 3.5 degrees to the upper right, with morning twilight beginning 40 minutes later at 6:21 a.m. For parts of Western Africa and the Atlantic Ocean the Moon will pass in front of Spica.
      Tuesday afternoon, the waning Moon will appear half-full as it reaches its last quarter at 3:31 p.m. EST (when we can’t see it).
      Wednesday morning, January 22 This will be the last morning Mercury will be above the horizon 30 minutes before sunrise, an approximation of the last morning it might be visible in the glow of dawn.
      Throughout this lunar cycle, Mars and the bright star Pollux will appear near each other, with Wednesday night into Thursday morning and Thursday night into Friday morning (January 22, 23, and 24) the nights when they will be at their closest, 2.5 degrees apart. They will be up all night for both nights, with Mars at its highest on Wednesday night at 11:41 p.m. EST, and Thursday night at 11:36 p.m.
      Friday morning, January 24 The bright star Antares will appear to the lower left of the waning crescent Moon. As Antares rises on the southeastern horizon at 3:54 a.m. EST, it will be 8 degrees from the Moon. By the time morning twilight begins less than 2.5 hours later at 6:19 a.m., Antares will be 6.5 degrees from the Moon. For part of the Indian Ocean the Moon will actually pass in front of Pollux.
      Saturday morning, January 25 The Moon will have shifted to the other side of Antares. As the Moon rises at 4:20 a.m. EST, Antares will be 6 degrees to the upper right of the Moon. By the time morning twilight begins 2 hours later at 6:19 a.m., Antares will be 7 degrees from the Moon.
      Monday evening, January 27 Venus will be at its highest above the west-southwestern horizon (31 degrees) as evening twilight ends at 6:25 p.m. EST, appearing as a 41% illuminated crescent through a telescope.
      Wednesday morning, January 29 At 7:36 a.m. EST there will be a new Moon, when the Moon passes between the Earth and the Sun, and the Moon will not be visible from the Earth. The day of, or the day after, the New Moon marks the start of the new month for most lunisolar calendars. The first month of the Chinese calendar starts on Wednesday, January 29, making this Chinese New Year, the start of the Year of the Snake! Chinese New Year and related celebrations throughout much of Asia and in areas with significant Chinese populations celebrate the end of winter and start of spring. Traditional festivities start on the eve of Chinese New Year and continue until the Lantern Festival on the 15th day of the first lunar month.
      Sundown on Wednesday, January 29 This marks the start of Shevat in the Hebrew calendar.
      Sundown on Thursday, January 30 In the Islamic calendar, the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Thursday, January 30, will probably mark the beginning of Shaʿbān, the eighth month of the Islamic year and the month before Ramadan.
      Friday evening, January 31 Saturn will appear 4 degrees to the upper left of the waxing crescent Moon. The Moon will be 17 degrees above the west-southwestern horizon as evening twilight ends at 6:29 p.m. EST, and will set on the western horizon 99 minutes later at 8:08 p.m. For part of Asia the Moon will actually pass in front of Saturn.
      Throughout this lunar cycle the bright star Aldebaran will appear below the bright planet Jupiter, with Friday, January 31 the evening they appear at their closest, about 5 degrees apart. As evening twilight ends at 6:29 p.m. EST, Jupiter will be 65 degrees above the southeastern horizon with Aldebaran to the lower right. Jupiter will reach its highest for the night, 73 degrees above the southern horizon at 8:01 p.m., with Aldebaran below Jupiter. As Aldebaran sets on the west-northwestern horizon almost 7 hours after that at 2:56 a.m. it will be to the lower left of the Moon.
      Saturday evening, February 1 Venus will appear near the waxing crescent Moon. The Moon will be 30 degrees above the west-southwestern horizon as evening twilight ends at 6:30 p.m. EST, with Venus 2.5 degrees to the upper right. Venus will be 2.5 degrees to the lower right as it sets first on the western horizon 2.75 hours later at 9:15 p.m.
      Saturday night, at 9:38 p.m. EST, the Moon will be at perigee, its closest to the Earth for this orbit.
      Saturday also is Imbolc or Imbolg, and the next day (Sunday, February 2) is Candlemas or Groundhog’s Day. We currently divide the year into four seasons based upon the solstices and equinoxes, with spring starting on the vernal equinox. This approximates winter as the quarter of the year with the coldest temperatures. Much of pre-Christian northern Europe celebrated “cross-quarter days” halfway between the solstices and equinoxes, dividing the seasons on these days. Using this definition, winter was the quarter of the year with the shortest daily periods of daylight, and spring started on Imbolc (the middle of our winter).
      The tradition in some European countries was to leave Christmas decorations up until February 1st, the eve of Candlemas, and it was considered bad luck to leave decorations up past this date. Robert Herrick (1591-1674) starts his poem “Ceremonies for Candlemas Eve” with “Down with the rosemary and bays, down with the mistletoe; Instead of holly, now up-raise the greener box (for show).”
      We have a tradition in the United States that winter will end on Groundhog Day if the groundhog sees its shadow. If not, winter will last six weeks more (ending around the time of the spring equinox). Groundhog Day appears to tie back to European lore about whether or not badgers, wolves, or bears (instead of groundhogs) see their shadows. Many believe that these Groundhog Day and Candlemas traditions tie back to these earlier celebrations for the start of spring. It seems plausible to me that it was confusing to have two competing dates for the end of winter. Perhaps it was best to let a natural event such as an animal’s shadow decide which definition to use, rather than arguing with your neighbors for the next six weeks.
      Tuesday morning, February 4 This will be the last morning Mars will be above the northwestern horizon as morning twilight begins.
      Wednesday morning, February 5 The Moon will appear half-full as it reaches its first quarter at 3:02 a.m. EST (when we can’t see it).
      Wednesday evening the waxing gibbous Moon will appear near the Pleiades star cluster. As evening twilight ends at 6:34 p.m. EST, this star cluster will be 5 degrees to the upper left of the Moon. The Pleiades will shift closer toward the Moon until the Moon sets on the west-northwestern horizon less than 8 hours later at 2:16 a.m. Some North American locations farther west will actually see the Moon pass in front of some of the stars in the Pleiades.
      Sunday morning, February 9 Mars will appear to the upper left of the waxing gibbous Moon. In the early morning at about 2 a.m. EST, Mars will be 8 degrees from the Moon. By the time the Moon sets on the northwestern horizon at 5:58 a.m., Mars will have shifted to 6 degrees from the Moon. For parts of Asia and Northern Europe the Moon will pass in front of Mars.
      Also Sunday morning, Mercury will be passing on the far side of the Sun as seen from the Earth, called superior conjunction. Because Mercury orbits inside of the orbit of Earth it will be shifting from the morning sky to the evening sky and will begin emerging from the glow of dusk on the west-southwestern horizon after about February 17 (depending upon viewing conditions).
      Sunday evening into Monday morning, February 9 to 10 The waxing gibbous Moon will have shifted to the other side of Mars (having passed in front of Mars in the afternoon when we could not see them). As evening twilight ends at 6:38 p.m. EST, the Moon will be between Mars and the bright star Pollux, with Mars 3 degrees to the upper right and Pollux 3 degrees to the lower left. By the time the Moon reaches its highest for the night at 10:27 p.m., Mars will be 4.5 degrees to the right of the Moon and Pollux 2.5 degrees to the upper left of the Moon. Mars will set first on the northwestern horizon Monday morning at 5:44 a.m. just 22 minutes before morning twilight begins at 6:06 a.m.
      Wednesday morning, February 12 The full Moon after next will be at 8:53 a.m. EST, with the bright star Regulus nearby. This will be on Thursday morning from Australian Central Time eastward to the International Date Line in the mid-Pacific. The Moon will appear full for about three days around this time, from Monday night into early Thursday evening.
      Keep Exploring Discover More Topics From NASA
      Skywatching



      Solar System Exploration



      Planets



      Asteroids, Comets & Meteors


      View the full article
  • Check out these Videos

×
×
  • Create New...