Members Can Post Anonymously On This Site
NASA-Funded Study Assesses Pollution Near Los Angeles-Area Warehouses
-
Similar Topics
-
Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacioBy NASA
NASA Read this story in English here.
La Estación Espacial Internacional es el hogar de la humanidad en el espacio y una estación de investigación que gira en órbita sobre la Tierra a unos 400 kilómetros (250 millas) de altura. La NASA y sus socios internacionales han mantenido una presencia humana continua a bordo de la estación espacial durante más de 24 años, haciendo investigaciones que no es posible realizar en la Tierra.
La gente que vive y trabaja a bordo de este laboratorio en microgravedad también forma parte de las investigaciones que se llevan a cabo, y ellos ayudan a abordar complejos problemas de la salud humana en la Tierra y preparan a la humanidad para viajar más lejos que nunca, incluyendo la Luna y Marte.
Estas son algunas de las preguntas frecuentes sobre cómo la NASA y su equipo de médicos, psicólogos, nutricionistas, científicos del ejercicio y otros profesionales especializados garantizan la salud y la condición física de los astronautas a bordo del laboratorio orbital.
¿Cuánto dura una estadía típica a bordo de la Estación Espacial Internacional?
Una misión típica a la Estación Espacial Internacional dura unos seis meses, pero puede variar en función del calendario de visitas de naves espaciales, las prioridades de la misión y otros factores. Los astronautas de la NASA también han permanecido a bordo de la estación espacial durante períodos de tiempo más largos. Estas se conocen como misiones de larga duración, y misiones anteriores de este tipo han proporcionado a la NASA cuantiosos datos sobre los vuelos espaciales a largo plazo y sus efectos en el cuerpo humano, los cuales la agencia aplica a cualquier misión tripulada.
Durante las misiones de larga duración, el equipo de profesionales médicos de la NASA se centra en optimizar la salud física y conductual de los astronautas y su desempeño, para ayudar a garantizar el éxito de la misión. Estos esfuerzos también ayudan a la NASA a prepararse para futuras misiones humanas a la Luna, Marte y más allá.
¿Cómo mantiene la NASA saludables a los astronautas mientras están en el espacio?
La NASA tiene un equipo de médicos, psicólogos y otros especialistas en tierra que se dedican a dar apoyo a la salud y el bienestar de los astronautas antes, durante y después de cada misión espacial. La NASA asigna a cada tripulación médicos con formación especializada en medicina espacial, denominados médicos de la tripulación de vuelo, una vez que la tripulación ha sido seleccionada para una misión. Los médicos de la tripulación de vuelo supervisan la atención de salud y la capacitación médica mientras los miembros de la tripulación se preparan para su misión, y monitorean la salud de la tripulación antes, durante y después de su misión a la estación espacial.
¿Cómo apoya la NASA el bienestar mental y emocional de sus astronautas mientras están en el espacio?
El equipo de salud conductual de la NASA proporciona servicios de apoyo psicológico determinados de manera individual para los miembros de la tripulación y sus familias durante cada misión. Garantizar que los astronautas puedan mantener su vitalidad en entornos extremos comienza tan pronto se inicia el proceso de selección de astronautas, en el que los candidatos son evaluados en capacidades como su adaptabilidad y resiliencia. Los astronautas reciben una formación exhaustiva que les ayuda a utilizar herramientas y tratamientos de autoevaluación para gestionar su salud conductual. La NASA también ofrece capacitación en destrezas expedicionarias a fin de preparar a cada astronauta para las misiones en capacidades importantes, como los cuidados personales y el cuidado del equipo, las comunicaciones y las destrezas de liderazgo y colaboración.
Para ayudar a mantener la motivación y la moral a bordo de la estación espacial, los astronautas pueden enviar correos electrónicos, hacer llamadas y videoconferencias con sus familiares y amigos, recibir paquetes personales enviados a bordo de las misiones de reabastecimiento de carga de la NASA y sostener teleconferencias con un psicólogo, si es necesario.
¿Cómo afecta la microgravedad a la salud física de los astronautas?
En microgravedad, sin la carga continua de la gravedad de la Tierra, se producen muchos cambios en el cuerpo humano. La NASA entiende muchas de las respuestas del sistema humano al entorno espacial, entre las que se cuentan las adaptaciones a la densidad ósea, la salud muscular, sensitivomotora y cardiovascular, pero todavía queda mucho por aprender. Estos efectos de los vuelos espaciales varían de uno a otro astronauta, por lo que los médicos de la tripulación de vuelo de la NASA monitorean regularmente la salud de cada miembro de la tripulación durante una misión e individualizan las rutinas de dieta y acondicionamiento físico para dar prioridad a la salud y el estado físico durante su permanencia en el espacio.
¿Por qué los astronautas hacen ejercicio en el espacio?
Todos los astronautas a bordo del laboratorio en órbita participan en planes de ejercicio específicamente diseñados y similares a los de la Tierra. Para mantener su fuerza y resistencia, los miembros de la tripulación tienen programadas dos horas y media de ejercicio diario para sustentar su salud muscular, ósea, aeróbica y sensitivomotora. El equipo actual a bordo de la estación espacial incluye el Dispositivo Avanzado de Ejercicio Resistivo (ARED, por sus siglas en inglés), que imita el levantamiento de pesas; una cinta de correr, llamada T2; y el Cicloergómetro con Sistema de Aislamiento y Estabilización de Vibraciones (CEVIS, por sus siglas en inglés) para el ejercicio cardiovascular.
¿Qué función cumplen la alimentación y la nutrición en el apoyo a la salud de los astronautas?
La nutrición desempeña un papel fundamental en el mantenimiento de la salud y el rendimiento óptimo de un astronauta antes, durante y después de su misión. La alimentación también cumple un rol psicosocial durante la prolongada estancia de un astronauta a bordo de la estación espacial. Los expertos que trabajan en el Laboratorio de Sistemas de Alimentación Espacial de la NASA en el Centro Johnson en Houston desarrollan alimentos nutritivos y apetitosos. Los miembros de la tripulación tienen pueden complementar las opciones del menú estándar con sus platos favoritos personales, que pueden brindar un sabor hogareño.
NASA ¿Cómo sabe la NASA si los astronautas están recibiendo los nutrientes adecuados?
Los nutricionistas y científicos de bioquímica nutricional de la NASA determinan los nutrientes (vitaminas, minerales, calorías) que los astronautas necesitan mientras están en el espacio. Este equipo lleva el registro de lo que come cada miembro de la tripulación mediante un programa de seguimiento basado en computadoras de tableta, que cada astronauta completa a diario. Los datos de la aplicación se envían semanalmente a los nutricionistas para controlar la ingesta dietética. El análisis de las muestras de sangre y orina de los astronautas que son tomadas antes, durante y después de las misiones espaciales es una parte crucial del estudio de cómo responden sus cuerpos a las condiciones únicas de los vuelos espaciales. Estas muestras proporcionan información valiosa sobre cómo cada astronauta se adapta a la microgravedad, la radiación y otros factores que afectan la fisiología humana en el espacio.
¿Cómo se entrenan los astronautas para trabajar juntos mientras están en el espacio?
Además de su capacitación técnica, los astronautas participan en la formación de destrezas de trabajo en equipo. Aprenden destrezas eficaces para la vida en grupo y cómo cuidarse y apoyarse unos a otros. Debido a su naturaleza remota y aislada, los vuelos espaciales de larga duración pueden dificultar el trabajo en equipo. Los astronautas deben mantener la conciencia situacional e implementar el programa de vuelo en un entorno en constante cambio. Por lo tanto, la comunicación efectiva es fundamental cuando se trabaja en equipo a bordo de la estación y con diferentes equipos de soporte en tierra. Los astronautas también deben ser capaces de comunicar información compleja a personas con diferente formación profesional. En última instancia, los astronautas son personas que viven y trabajan juntas a bordo de la estación y deben ser capaces de llevar a cabo un trabajo altamente técnico y resolver cualquier problema interpersonal que pueda surgir.
¿Qué sucede si hay una emergencia médica a bordo de la estación espacial?
Todos los astronautas reciben capacitación médica y tienen contacto regular con un equipo de médicos que vigilan de cerca su salud desde tierra. La NASA también mantiene una farmacia bien surtida y un conjunto de equipamientos médicos a bordo de la estación espacial para atender diversas afecciones y lesiones. Si una emergencia médica requiere volver a la Tierra, la tripulación regresará en la nave espacial que fue llevada a bordo para recibir atención médica urgente en tierra.
NASA/Bill Ingalls Puedes obtener más información sobre la Dirección de Salud y Desempeño Humano de la NASA (en inglés) en:
www.nasa.gov/hhp
View the full article
-
By NASA
Peru’s Vice Minister of Defense Policies for Ministry of Defense César Medardo Torres Vega, NASA Administrator Bill Nelson, and Director of Peru’s National Commission for Aerospace Research and Development (CONIDA) Maj. Gen. Roberto Melgar Sheen meet in Lima, Peru, Nov. 14, 2024, where the U.S. and Peru signed a memorandum of understanding agreeing to study a potential sounding rocket campaign.Credit: U.S. Embassy Peru NASA and Peru’s National Commission for Aerospace Research and Development (CONIDA) laid the groundwork for a potential multi-year scientific rocket launch campaign in the South American country.
Both countries signed a non-binding memorandum of understanding Thursday that includes safety training, a joint feasibility study for the potential campaign, and technical assistance for CONIDA on sounding rocket launches. Sounding rockets are small, low-cost rockets that provide suborbital access to space.
“We are excited to look at the possibility of once again launching sounding rockets from Peru,” said NASA Administrator Bill Nelson, who signed on behalf of the United States. “This agreement deepens our international partnership with Peru and the scientific research we conduct because of the country’s location along the magnetic equator. Together we will go farther.”
Maj. Gen. Roberto Melgar Sheen, head of CONIDA, signed on behalf of Peru. Brian Nichols, assistant secretary for Western Hemisphere Affairs for the U.S. State Department, and Stephanie Syptak-Ramnath, U.S. ambassador to Peru, also participated, among other Peruvian officials. The event took place during the week of the Asia-Pacific Economic Cooperation forum beginning Nov. 9 in Lima.
During his visit to Peru, Nelson also discussed the importance of international partnerships and collaboration in space and celebrated Peru’s signing of the Artemis Accords earlier this year.
The United States and Peru have a long history of space cooperation. NASA conducted sounding rocket campaigns at CONIDA’s Punta Lobos launch base in 1975 and 1983.
NASA uses sounding rockets to carry scientific instruments into space on suborbital flights to collect important science data and test prototype instruments. They yield invaluable data that enhance our understanding of Earth’s atmosphere and weather, our solar system, and the universe, and test equipment for deeper space travel.
Understanding our Earth’s atmosphere and how it is influenced by the Sun is crucial to protecting ground and space-based assets that we rely on every day, from the power grid to weather data and even navigation.
For more information about NASA’s international partnerships, visit:
https://www.nasa.gov/oiir
-end-
Meira Bernstein / Elizabeth Shaw
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated Nov 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Office of International and Interagency Relations (OIIR) Sounding Rockets View the full article
-
By NASA
2 min read
NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
NASA-supported scientists have developed a new method to compute how tides affect the interiors of planets and moons. Importantly, the new study looks at the effects of body tides on objects that don’t have a perfectly spherical interior structure, which is an assumption of most previous models.
The puzzling, fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA’s Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon’s surface at the highest resolution. NASA/JPL-Caltech/SETI Institute Body tides refer to the deformations experienced by celestial bodies when they gravitationally interact with other objects. Think of how the powerful gravity of Jupiter tugs on its moon Europa. Because Europa’s orbit isn’t circular, the crushing squeeze of Jupiter’s gravity on the moon varies as it travels along its orbit. When Europa is at its closest to Jupiter, the planet’s gravity is felt the most. The energy of this deformation is what heats up Europa’s interior, allowing an ocean of liquid water to exist beneath the moon’s icy surface.
“The same is true for Saturn’s moon Enceladus.” says co-author Alexander Berne of CalTech in Pasadena and an affiliate at NASA’s Jet Propulsion Laboratory in Southern California. “Enceladus has an ice shell that is expected to be much more non-spherically symmetric than that of Europa.”
The body tides experienced by celestial bodies can affect how the worlds evolve over time and, in cases like Europa and Enceladus, their potential habitability for life as we know it. The new study provides a means to more accurately estimate how tidal forces affect planetary interiors.
In this movie Europa is seen in a cutaway view through two cycles of its 3.5 day orbit about the giant planet Jupiter. Like Earth, Europa is thought to have an iron core, a rocky mantle and a surface ocean of salty water. Unlike on Earth, however, this ocean is deep enough to cover the whole moon, and being far from the sun, the ocean surface is globally frozen over. Europa’s orbit is eccentric, which means as it travels around Jupiter, large tides, raised by Jupiter, rise and fall. Jupiter’s position relative to Europa is also seen to librate, or wobble, with the same period. This tidal kneading causes frictional heating within Europa, much in the same way a paper clip bent back and forth can get hot to the touch, as illustrated by the red glow in the interior of Europa’s rocky mantle and in the lower, warmer part of its ice shell. This tidal heating is what keeps Europa’s ocean liquid and could prove critical to the survival of simple organisms within the ocean, if they exist. The giant planet Jupiter is now shown to be rotating from west to east, though more slowly than its actual rate. NASA/JPL-Caltech The paper also discusses how the results of the study could help scientists interpret observations made by missions to a variety of different worlds, ranging from Mercury to the Moon to the outer planets of our solar system.
The study, “A Spectral Method to Compute the Tides of Laterally Heterogeneous Bodies,” was published in The Planetary Science Journal.
For more information on NASA’s Astrobiology Program, visit:
https://science.nasa.gov/astrobiology
-end-
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Explore More
2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
Article
6 days ago
5 min read NASA: New Insights into How Mars Became Uninhabitable
Article
1 month ago
14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece
Article
2 months ago
Share
Details
Last Updated Nov 07, 2024 Related Terms
Astrobiology View the full article
-
By USH
While observing the Orion Nebula with his 12-inch Dobsonian telescope, a sky-watcher noticed an unusual flashing object. As stars appeared to drift due to Earth's rotation, this particular object while flashing approximately every 20 seconds clearly travels through deep space.
The observer wonders whether it might be a rotating satellite or not. However, this isn’t the first sighting of cigar-shaped UFOs or other mysterious objects traveling through space near the Orion Nebula, so it is quite possible that it could be an interstellar craft.
Over the years, I have shared several articles, complete with images and videos, documenting similar UFO sightings around the Orion Nebula. You can explore these under the tag: Orion Nebula.
Interestingly, these sightings have all occurred between November and February, suggesting there may be a seasonal pattern to these observations.
View the full article
-
By NASA
On Nov. 3, 1994, space shuttle Atlantis took to the skies on its 13th trip into space. During the 11-day mission, the STS-66 crew of Commander Donald R. McMonagle, Pilot Curtis L. Brown, Payload Commander Ellen Ochoa, and Mission Specialists Joseph R. Tanner, Scott E. Parazynski, and French astronaut Jean-François Clervoy representing the European Space Agency (ESA) operated the third Atmospheric Laboratory for Applications and Sciences (ATLAS-3), and deployed and retrieved the U.S.-German Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS), as part of NASA’s Mission to Planet Earth. The remote sensing instruments studied the Sun’s energy output, the atmosphere’s chemical composition, and how these affect global ozone levels, adding to the knowledge gained during the ATLAS-1 and ATLAS-2 missions.
Left: Official photo of the STS-68 crew of Jean-François Clervoy, left, Scott E. Parazynski, Curtis L. Brown, Joseph R. Tanner, Donald R. McMonagle, and Ellen Ochoa. Middle: The STS-66 crew patch. Right: The ATLAS-3 payload patch.
In August 1993, NASA named Ochoa as the ATLAS-3 payload commander, and in January 1994, named the rest of the STS-66 crew. For McMonagle, selected as an astronaut in 1987, ATLAS-3 marked his third trip into space, having flown on STS-39 and STS-54. Brown, also from the class of 1987, previously flew on STS 47, while Ochoa, selected in 1990, flew as a mission specialist on STS-56, the ATLAS-2 mission. For Tanner, Parazynski, and Clervoy, all from the Class of 1992 – the French space agency CNES previously selected Clervoy as one of its astronauts in 1985 before he joined the ESA astronaut cadre in 1992 – STS-66 marked their first spaceflight.
Left: Schematic illustration of ATLAS-3 and its instruments. Right: Schematic illustration of CRISTA-SPAS retrievable satellite and its instruments.
The ATLAS-3 payload consisted of six instruments on a Spacelab pallet and one mounted on the payload bay sidewall. The pallet mounted instruments included Atmospheric Trace Molecule Spectroscopy (ATMOS), Millimeter-Wave Atmospheric Sounder (MAS), Active Cavity Radiometer Irradiance Monitor (ACRIM), Measurement of the Solar Constant (SOLCON), Solar Spectrum Measurement from 1,800 to 3,200 nanometers (SOLSCAN), and Solar Ultraviolet Spectral Irradiance Monitor (SUSIM).
The Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument constituted the payload bay sidewall mounted experiment. While the instruments previously flew on the ATLAS-1 and ATLAS-2 missions, both those flights took place during the northern hemisphere spring. Data from the ATLAS-3’s mission in the fall complemented results from the earlier missions. The CRISTA-SPAS satellite included two instruments, the CRISTA and the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI).
Left: Space shuttle Atlantis at Launch Pad 39B at NASA’s Kennedy Space Center in Florida. Middle: Liftoff of Atlantis on STS-66. Right: Atlantis rises into the sky.
Following its previous flight, STS-46 in August 1992, Atlantis spent one and a half years at the Rockwell plant in Palmdale, California, undergoing major modifications before arriving back at KSC on May 29, 1994. During the modification period, workers installed cables and wiring for a docking system for Atlantis to use during the first Shuttle-Mir docking mission in 1995 and equipment to allow it to fly Extended Duration Orbiter missions of two weeks or longer. Atlantis also underwent structural inspections and systems upgrades including improved nose wheel steering and a new reusable drag chute. Workers in KSC’s Orbiter Processing Facility installed the ATLAS-3 and CRISTA-SPAS payloads and rolled Atlantis over to the Vehicle Assembly Building on Oct. 4 for mating with its External Tank and Solid Rocket Boosters. Atlantis rolled out to Launch Pad 39B six days later. The six-person STS-66 crew traveled to KSC to participate in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the launch countdown, on Oct. 18.
They returned to KSC on Oct. 31, the same day the final countdown began. Following a smooth countdown leading to a planned 11:56 a.m. EST liftoff on Nov. 3, 1994, Atlantis took off three minutes late, the delay resulting from high winds at one of the Transatlantic Abort sites. The liftoff marked the third shuttle launch in 55 days, missing a record set in 1985 by one day. Eight and a half minutes later, Atlantis delivered its crew and payloads to space. Thirty minutes later, a firing of the shuttle’s Orbiter Maneuvering System (OMS) engines placed them in a 190-mile orbit inclined 57 degrees to the equator. The astronauts opened the payload bay doors, deploying the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight.
Left: Atlantis’ payload bay, showing the ATLAS-3 payload and the CRISTA-SPAS deployable satellite behind it. Middle: European Space Agency astronaut Jean-François Clervoy uses the shuttle’s Remote Manipulator System (RMS) to grapple the CRISTA-SPAS prior to its release. Right: Clervoy about to release CRISTA-SPAS from the RMS.
The astronauts began to convert their vehicle into a science platform, and that included breaking up into two teams to enable 24-hour-a-day operations. McMonagle, Ochoa, and Tanner made up the Red Team while Brown, Parazynski, and Clervoy made up the Blue Team. Within five hours of liftoff, the Blue Team began their sleep period while the Red Team started their first on orbit shift by activating the ATLAS-3 instruments, the CRISTA-SPAS deployable satellite, and the Remote Manipulator System (RMS) or robotic arm in the payload bay and some of the middeck experiments. The next day, Clervoy, operating the RMS, grappled CRISTA-SPAS, lifted it from its cradle in the payload bay, and while Atlantis flew over Germany, deployed it for its eight-day free flight. McMonagle fired Atlantis’ thrusters to separate from the satellite.
Left: Ellen Ochoa and Donald R. McMonagle on the shuttle’s flight deck. Middle: European Space Agency astronaut Jean-François Clervoy in the commander’s seat during the mission. Right: Scott E. Parazynski operates a protein crystallization experiment in the shuttle middeck.
Left: Joseph R. Tanner operates a protein crystallization experiment. Middle: Curtis L. Brown operates a microgravity acceleration measurement system. Right: Ellen Ochoa uses the shuttle’s Remote Manipulator System to grapple CRISTA-SPAS following its eight-day free flight.
For the next eight days, the two teams of astronauts continued work with the ATLAS instruments and several middeck and payload bay experiments such as protein crystal growth, measuring the shuttle microgravity acceleration environment, evaluating heat pipe performance, and a student experiment to study the Sun that complemented the ATLAS instruments. On November 12, the mission’s 10th day, the astronauts prepared to retrieve the CRISTA-SPAS satellite. For the retrieval, McMonagle and Brown used a novel rendezvous profile unlike previous ones used in the shuttle program. Instead of making the final approach from in front of the satellite, called the V-bar approach, Atlantis approached from below in the so-called R-bar approach. This is the profile Atlantis planned to use on its next mission, the first rendezvous and docking with the Mir space station. It not only saved fuel but also prevented contamination of the station’s delicate sensors and solar arrays. Once within 40 feet of CRISTA-SPAS, Ochoa reached out with the RMS, grappled the satellite, and then berthed it back in the payload bay.
A selection from the 6,000 STS-66 crew Earth observation photographs. Left: Deforestation in the Brazilian Amazon. Middle left: Hurricane Florence in the North Atlantic. Middle right: The Ganges River delta. Right: The Sakurajima Volcano in southern Japan.
As a Mission to Planet Earth, the STS-66 astronauts spent considerable time looking out the window, capturing 6,000 images of their home world. Their high inclination orbit enabled views of parts of the planet not seen during typical shuttle missions.
Left: The inflight STS-66 crew photo. Right: Donald R. McMonagle, left, and Curtis R. Brown prepare for Atlantis’ deorbit and reentry.
On flight day 11, with most of the onboard film exposed and consumables running low, the astronauts prepared for their return to Earth the following day. McMonagle and Brown tested Atlantis’ reaction control system thrusters and aerodynamic surfaces in preparation for deorbit and descent through the atmosphere, while the rest of the crew busied themselves with shutting down experiments and stowing away unneeded equipment.
Left: Atlantis makes a perfect touchdown at California’s Edwards Air Force Base. Middle: Atlantis deploys the first reusable space shuttle drag chute. Right: Mounted atop a Shuttle Carrier Aircraft, Atlantis departs Edwards for the cross-country trip to NASA’s Kennedy Space Center in Florida.
On Nov. 14, the astronauts closed Atlantis’ payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Tropical Storm Gordon near the KSC primary landing site forced a diversion to Edwards Air Force Base (AFB) in California. The crew fired Atlantis’ OMS engines to drop out of orbit. McMonagle piloted Atlantis to a smooth landing at Edwards, ending the 10-day 22-hour 34-minute flight, Atlantis’ longest flight up to that time. The crew had orbited the Earth 174 times. Workers at Edwards safed the vehicle and placed it atop a Shuttle Carrier Aircraft for the ferry flight back to KSC. The duo left Edwards on Nov. 21, and after stops at Kelly Field in San Antonio and Eglin AFB in the Florida panhandle, arrived at KSC the next day. Workers there began preparing Atlantis for its next flight, STS-71 in June 1995, the first Shuttle-Mir docking mission. Meanwhile, a Gulfstream jet flew the astronauts back to Ellington Field in Houston for reunions with their families. As it turned out, STS-66 flew Atlantis’ last solo flight until STS-125 in 2009, the final Hubble Servicing Mission. The 16 intervening flights, and the three that followed, all docked with either Mir or the International Space Station.
“The mission not only met all our expectations, but all our hopes and dreams as well,” said Mission Scientist Timothy L. Miller of NASA’s Marshall Space Flight Center in Huntsville, Alabama. “One of its high points was our ability to receive and process so much data in real time, enhancing our ability to carry out some new and unprecedented cooperative experiments.” McMonagle said of STS-66, “We are very proud of the mission we have just accomplished. If there’s any one thing we all have an interest in, it’s the health of our planet.”
Enjoy the crew narrate a video about the STS-66 mission.
Explore More
3 min read Halloween on the International Space Station
Article 4 days ago 9 min read 60 Years Ago: The First Flight of the Lunar Landing Research Vehicle
Article 5 days ago 11 min read 35 Years Ago: STS-34 Sends Galileo on its Way to Jupiter
Article 2 weeks ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.