Jump to content

NASA-Funded Study Assesses Pollution Near Los Angeles-Area Warehouses


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Southern California warehouses
A recent NASA-funded study quantified higher levels of fine particulate air pollution near Southern California warehouses, a result of emissions from diesel trucks that transport goods to and from such facilities. Inhalation of these tiny particles can cause serious health problems.
Adobe Stock/Matt Gush

Satellite-based data offers a broad view of particulate air pollution patterns across a major West Coast e-commerce hub.

As goods of all shapes and sizes journey from factory to doorstep, chances are they’ve stopped at a warehouse along the way — likely several of them. The sprawling structures are waypoints in the logistics networks that make e-commerce possible. Yet the convenience comes with tradeoffs, as illustrated in a recent NASA-funded study.

Published in the journal GeoHealth, the research analyzes patterns of particulate pollution in Southern California and found that ZIP codes with more or larger warehouses had higher levels of contaminants over time than those with fewer or smaller warehouses. Researchers focused on particulate pollution, choosing Southern California because it is a major distribution hub for goods: Its ports handle 40% of cargo containers entering the country.

The buildings themselves are not the major particulate sources. Rather, it’s the diesel trucks that pick up and drop off goods, emitting exhaust containing toxic particles called PM2.5. At 2.5 micrometers or less, these pollutants can be inhaled into the lungs and absorbed into the bloodstream. Although atmospheric concentrations are typically so small they’re measured in millionths of a gram per cubic meter, the authors caution that there’s no safe exposure level for PM2.5.

“Any increase in concentration causes some health damage,” said co-author Yang Liu, an environmental health researcher at Emory University in Atlanta. “But if you can curb pollution, there will be a measurable health benefit.”

A data visualization shows the average concentration of PM2.5 particulate pollution in the Los Angeles region from 2000 to 2018
A data visualization shows the average concentration of PM2.5 particulate pollution in the Los Angeles region from 2000 to 2018, along with the locations of nearly 11,000 warehouses. Darker red indicates higher concentration of these toxic particles; small black circles represent warehouse locations.
NASA Earth Observatory

Growing Air Quality Research

Particulate pollution has been linked to respiratory and cardiovascular diseases, some cancers, and adverse birth outcomes, including premature birth and low infant birth weight.

The new study is part of a broader effort funded by the NASA Health and Air Quality Applied Sciences Team to use satellite data to understand how air pollution disproportionately affects underserved communities.

As the e-commerce boom of recent decades has spurred warehouse construction, pollution in nearby neighborhoods has become a growing area for research. New structures have often sprouted on relatively inexpensive land, which tends to be home to low-income or minority populations who bear the brunt of the poor air quality, Liu said.

Another recent NASA-funded study analyzed satellite-derived nitrogen dioxide (NO2) measurements around 150,000 United States warehouses. It found that concentrations of the gas, which is a diesel byproduct and respiratory irritant, were about 20% higher near warehouses.

Distribution Hub

For the GeoHealth paper, scientists drew on previously generated datasets of PM2.5 from 2000 to 2018 and elemental carbon, a type of PM2.5 in diesel emissions, from 2000 to 2019. The data came from models based on satellite observations, including some from NASA’s MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) instruments.

The researchers also mined a real estate database for the square footage as well as the number of loading docks and parking spaces at nearly 11,000 warehouses across portions of Los Angeles, Riverside, and San Bernardino counties, and all of Orange County.

They found that warehouse capacity correlated with pollution. ZIP codes in the 75th percentile of warehouse square footage had 0.16 micrograms per cubic meter more PM2.5 and 0.021 micrograms per cubic meter more elemental carbon than those in the 25th percentile.

Similarly, ZIP codes in the 75th percentile of number of loading docks had 0.10 micrograms per cubic meter more PM2.5 and 0.014 micrograms per cubic meter more elemental carbon than those in the 25th percentile. And ZIP codes in the 75th percentile of truck parking spaces had 0.21 micrograms per cubic meter more PM2.5 and 0.021 micrograms per cubic meter more elemental carbon than those in the 25th percentile.

“We found that warehouses are associated with PM2.5 and elemental carbon,” said lead author Binyu Yang, an Emory environmental health doctoral student.

Although particulate pollution fell from 2000 to 2019 due to stricter emissions standards, the concentrations in ZIP codes with warehouses remained consistently higher than for other areas.

Researchers also found that the gaps widened in the holiday shopping season, up to 4 micrograms per cubic meter — “a significant difference,” Liu said.

Satellites Provide Big Picture

Satellite observations, the researchers said, were essential because they provided a continuous map of pollution, including pockets not covered by ground-based instruments.

It’s the same motivation behind NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission, which launched in April 2023 and measures air pollution hourly during daylight over North America. The release of TEMPO’s first maps showed higher concentrations of NO2 around cities and highways.

Meanwhile, NASA and the Italian Space Agency are collaborating to launch the MAIA (Multi-Angle Imager for Aerosols) in 2026. It will be the first NASA satellite mission whose primary goal is to study health effects of particulate pollution while distinguishing between PM2.5 types.
“This mission will help air quality managers and policymakers conceive more targeted pollution strategies,” said Sina Hasheminassab, a co-author and science systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. Hasheminassab, like Liu, is a member of the MAIA science team.

News Media Contacts

Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

2024-134

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researcher Ann Raiho measures sunlight interacting with yellow Coreopsis gigantea flowers during field work in the Jack and Laura Dangermond Preserve in California’s Santa Barbara County in 2022.NASA/Yoseline Angel For many plant species, flowering is biologically synced with the seasons. Scientists are clocking blooms to understand our ever-changing planet.
      NASA research is revealing there’s more to flowers than meets the human eye. A recent analysis of wildflowers in California shows how aircraft- and space-based instruments can use color to track seasonal flower cycles. The results suggest a potential new tool for farmers and natural-resource managers who rely on flowering plants.
      In their study, the scientists surveyed thousands of acres of nature preserve using a technology built by NASA’s Jet Propulsion Laboratory in Southern California. The instrument — an imaging spectrometer — mapped the landscape in hundreds of wavelengths of light, capturing flowers as they blossomed and aged over the course of months.
      It was the first time the instrument had been deployed to track vegetation steadily through the growing season, making this a “first-of-a-kind study,” said David Schimel, a research scientist at JPL.
      In this illustration, an imaging spectrometer aboard a research plane measures sunlight reflecting off California coastal scrub. In the data cube below, the top panel shows the true-color view of the area. Lower panels depict the spectral fingerprint for every point in the image, capturing the visible range of light (blue, green, and red wavelengths) to the near-infrared (NIR) and beyond. Spatial resolution is around 16 feet (5 meters).NASA For many plant species from crops to cacti, flowering is timed to seasonal swings in temperature, daylight, and precipitation. Scientists are taking a closer look at the relationship between plant life and seasons — known as vegetation phenology — to understand how rising temperatures and changing rainfall patterns may be impacting ecosystems.
      Typically, wildflower surveys rely on boots-on-the-ground observations and tools such as time-lapse photography. But these approaches cannot capture broader changes that may be happening in different ecosystems around the globe, said lead author Yoseline Angel, a scientist at the University of Maryland-College Park and NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      “One challenge is that compared to leaves or other parts of a plant, flowers can be pretty ephemeral,” she said. “They may last only a few weeks.”
      To track blooms on a large scale, Angel and other NASA scientists are looking to one of the signature qualities of flowers: color.
      NASA’s AVIRIS sensors have been used to study wildfires, World Trade Center wreckage, and critical minerals, among numerous airborne missions over the years. AVIRIS-3 is seen here on a field campaign in Panama, where it helped analyze vegetation in many wavelengths of light not visible to human eyes.NASA/Shawn Serbin Mapping Native Shrubs
      Flower pigments fall into three major groups: carotenoids and betalains (associated with yellow, orange, and red colors), and anthocyanins (responsible for many deep reds, violets, and blues). The different chemical structures of the pigments reflect and absorb light in unique patterns.
      Spectrometers allow scientists to analyze the patterns and catalog plant species by their chemical “fingerprint.” As all molecules reflect and absorb a unique pattern of light, spectrometers can identify a wide range of biological substances, minerals, and gases.
      Handheld devices are used to analyze samples in the field or lab. To survey moons and planets, including Earth, NASA has developed increasingly powerful imaging spectrometers over the past 45 years.
      One such instrument is called AVIRIS-NG (short for Airborne Visible/InfraRed Imaging Spectrometer-Next Generation), which was built by JPL to fly on aircraft. In 2022 it was used in a large ecology field campaign to survey vegetation in the Jack and Laura Dangermond Preserve and the Sedgwick Reserve, both in Santa Barbara County. Among the plants observed were two native shrub species — Coreopsis gigantea and Artemisia californica — from February to June.
      The scientists developed a method to tease out the spectral fingerprint of the flowers from other landscape features that crowded their image pixels. In fact, they were able to capture 97% of the subtle spectral differences among flowers, leaves, and background cover (soil and shadows) and identify different flowering stages with 80% certainty.
      Predicting Superblooms
      The results open the door to more air- and space-based studies of flowering plants, which represent about 90% of all plant species on land. One of the ultimate goals, Angel said, would be to support farmers and natural resource managers who depend on these species along with insects and other pollinators in their midst. Fruit, nuts, many medicines, and cotton are a few of the commodities produced from flowering plants.
      Angel is working with new data collected by AVIRIS’ sister spectrometer that orbits on the International Space Station. Called EMIT (Earth Surface Mineral Dust Source Investigation), it was designed to map minerals around Earth’s arid regions. Combining its data with other environmental observations could help scientists study superblooms, a phenomenon where vast patches of desert flowers bloom after heavy rains.
      One of the delights of researching flowers, Angel said, is the enthusiasm from citizen scientists. “I have social media alerts on my phone,” she added, noting one way she stays on top of wildflower activity around the world.
      The wildflower study was supported as part of the Surface Biology and Geology High-Frequency Time Series (SHIFT) campaign. An airborne and field research effort, SHIFT was jointly led by the Nature Conservancy, the University of California, Santa Barbara, and JPL. Caltech, in Pasadena, manages JPL for NASA.
      The AVIRIS instrument was originally developed through funding from NASA’s Earth Science Technology Office.
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      Written by Sally Younger
      2025-041
      Share
      Details
      Last Updated Mar 24, 2025 Related Terms
      Earth Earth Science Jet Propulsion Laboratory Explore More
      11 min read The Earth Observer Editor’s Corner: January–March 2025
      NASA’s Earth Observing fleet continues to age gracefully. While several new missions have joined the…
      Article 4 days ago 5 min read Celebrating 25 Years of Terra
      Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer On December 18, 2024,…
      Article 4 days ago 2 min read The FireSense Project
      Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer Wind is a major…
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Although NASA’s Lucy spacecraft’s upcoming encounter with the asteroid Donaldjohanson is primarily a mission rehearsal for later asteroid encounters, a new paper suggests that this small, main belt asteroid may have some surprises of its own. New modeling indicates that Donaldjohanson may have been formed about 150 million years ago when a larger parent asteroid broke apart; its orbit and spin properties have undergone significant evolution since.
      This artist’s concept compares the approximate size of Lucy’s next asteroid target, Donaldjohanson, to the smallest main belt asteroids previously visited by spacecraft — Dinkinesh, visited by Lucy in November 2023, and Steins — as well as two recently explored near-Earth asteroids, Bennu and Ryugu. Credits: SwRI/ESA/OSIRIS/NASA/Goddard/Johns Hopkins APL/NOIRLab/University of Arizona/JAXA/University of Tokyo & Collaborators When the Lucy spacecraft flies by this approximately three-mile-wide space rock on April 20, 2025, the data collected could provide independent insights on such processes based on its shape, surface geology and cratering history.
      “Based on ground-based observations, Donaldjohanson appears to be a peculiar object,” said Simone Marchi, deputy principal investigator for Lucy of Southwest Research Institute in Boulder, Colorado and lead author of the research published in The Planetary Science Journal. “Understanding the formation of Donaldjohanson could help explain its peculiarities.”
      “Data indicates that it could be quite elongated and a slow rotator, possibly due to thermal torques that have slowed its spin over time,” added David Vokrouhlický, a professor at the Charles University, Prague, and co-author of the research.
      Lucy’s target is a common type of asteroid, composed of silicate rocks and perhaps containing clays and organic matter. The new paper indicates that Donaldjohanson is a likely member of the Erigone collisional asteroid family, a group of asteroids on similar orbits that was created when a larger parent asteroid broke apart. The family originated in the inner main belt not very far from the source regions of the near-Earth asteroids Bennu and Ryugu, recently visited respectively by NASA’s OSIRIS-REx and JAXA’s (Japan Aerospace Exploration Agency’s) Hayabusa2 missions.
      “We can hardly wait for the flyby because, as of now, Donaldjohanson’s characteristics appear very distinct from Bennu and Ryugu. Yet, we may uncover unexpected connections,” added Marchi.
      “It’s exciting to put together what we’ve been able to glean about this asteroid,” said Keith Noll, Lucy project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But Earth-based observing and theoretical models can only take us so far – to validate these models and get to the next level of detail we need close-up data. Lucy’s upcoming flyby will give us that.”
      Donaldjohanson is named for the paleontologist who discovered Lucy, the fossilized skeleton of an early hominin found in Ethiopia in 1974, which is how the Lucy mission got its name. Just as the Lucy fossil provided unique insights into the origin of humanity, the Lucy mission promises to revolutionize our knowledge of the origin of humanity’s home world. Donaldjohanson is the only named asteroid so far to be visited while its namesake is still living.
      “Lucy is an ambitious NASA mission, with plans to visit 11 asteroids in its 12-year mission to tour the Trojan asteroids that are located in two swarms leading and trailing Jupiter,” said SwRI’s Dr. Hal Levison, mission principal investigator at the Boulder, Colorado branch of Southwest Research Institute in San Antonio, Texas. “Encounters with main belt asteroids not only provide a close-up view of those bodies but also allow us to perform engineering tests of the spacecraft’s innovative navigation system before the main event to study the Trojans. These relics are effectively fossils of the planet formation process, holding vital clues to deciphering the history of our solar system.”
      Lucy’s principal investigator is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program for the agency’s Science Mission Directorate in Washington.
      By Deb Schmid and Katherine Kretke, Southwest Research Institute
      Media Contact:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Mar 17, 2025 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Space Flight Center Lucy Missions Planetary Science Planetary Science Division Explore More
      3 min read NASA’s Lucy Spacecraft Takes Its 1st Images of Asteroid Donaldjohanson
      Article 3 weeks ago 3 min read NASA’s Lucy Asteroid Target Gets a Name
      Article 2 years ago 4 min read NASA Lucy Images Reveal Asteroid Dinkinesh to be Surprisingly Complex
      Article 10 months ago View the full article
    • By NASA
      A SpaceX Falcon 9 rocket lifts off from Vandenberg Space Force Base, carrying NASA’s EZIE spacecraft into orbit. SpaceX Under the nighttime California sky, NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission launched aboard a SpaceX Falcon 9 rocket at 11:43 p.m. PDT on March 14.
      Taking off from Vandenberg Space Force Base near Santa Barbara, the EZIE mission’s trio of small satellites will fly in a pearls-on-a-string configuration approximately 260 to 370 miles above Earth’s surface to map the auroral electrojets, powerful electric currents that flow through our upper atmosphere in the polar regions where auroras glow in the sky.
      At approximately 2 a.m. PDT on March 15, the EZIE satellites were successfully deployed. Within the next 10 days, the spacecraft will send signals to verify they are in good health and ready to embark on their 18-month mission.
      “NASA has leaned into small missions that can provide compelling science while accepting more risk. EZIE represents excellent science being executed by an excellent team, and it is delivering exactly what NASA is looking for,” said Jared Leisner, program executive for EZIE at NASA Headquarters in Washington.
      The electrojets — and their visible counterparts, theauroras — are generated duringsolar storms when tremendous amounts of energy get transferred into Earth’s upper atmosphere from the solar wind. Each of the EZIE spacecraft will map the electrojets, advancing our understanding of the physics of how Earth interacts with its surrounding space. This understanding will apply not only to our own planet but also to any magnetized planet in our solar system and beyond. The mission will also help scientists create models for predicting space weather to mitigate its disruptive impacts on our society.
      “It is truly incredible to see our spacecraft flying and making critical measurements, marking the start of an exciting new chapter for the EZIE mission,” said Nelli Mosavi-Hoyer, project manager for EZIE at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “I am very proud of the dedication and hard work of our team. This achievement is a testament to the team’s perseverance and expertise, and I look forward to the valuable insights EZIE will bring to our understanding of Earth’s electrojets and space weather.”
      Instead of using propulsion to control their polar orbit, the spacecraft will actively use drag experienced while flying through the upper atmosphere to individually tune their spacing. Each successive spacecraft will fly over the same region 2 to 10 minutes after the former.
      “Missions have studied these currents before, but typically either at the very large or very small scales,” said Larry Kepko, EZIE mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “EZIE will help us understand how these currents form and evolve, at scales we’ve never probed.”
      The mission team is also working to distribute magnetometer kits called EZIE-Mag, which are available to teachers, students, and science enthusiasts who want to take their own measurements of the Earth-space electrical current system. EZIE-Mag data will be combined with EZIE measurements made from space to assemble a clear picture of this vast electrical current circuit.
      The EZIE mission is funded by the Heliophysics Division within NASA’s Science Mission Directorate and is managed by the Explorers Program Office at NASA Goddard. The Johns Hopkins Applied Physics Laboratory leads the mission for NASA. Blue Canyon Technologies in Boulder, Colorado, built the CubeSats, and NASA’s Jet Propulsion Laboratory in Southern California built the Microwave Electrojet Magnetogram, which will map the electrojets, for each of the three satellites.
      For the latest mission updates, follow NASA’s EZIE blog.
      By Brett Molina
      Johns Hopkins Applied Physics Laboratory
      Share








      Details
      Last Updated Mar 15, 2025 Editor Vanessa Thomas Contact Sarah Frazier sarah.frazier@nasa.gov Location Goddard Space Flight Center Related Terms
      Heliophysics Auroras CubeSats EZIE (Electrojet Zeeman Imaging Explorer) Goddard Space Flight Center Heliophysics Division Missions Small Satellite Missions The Sun Explore More
      5 min read NASA’s EZIE Launching to Study Magnetic Fingerprints of Earth’s Aurora


      Article


      3 weeks ago
      5 min read NASA Rockets to Fly Through Flickering, Vanishing Auroras


      Article


      2 months ago
      5 min read How NASA Tracked the Most Intense Solar Storm in Decades


      Article


      10 months ago
      View the full article
    • By NASA
      Earth (ESD) Earth Explore Explore Earth Science Climate Change Air Quality Science in Action Multimedia Image Collections Videos Data For Researchers About Us 8 Min Read NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture
      Florida’s coastal wetlands are a complex patchwork of ecosystem — consisting of sawgrass marshland, hardwood hammocks, freshwater swamps, and mangrove forests. Credits:
      NASA/ Nathan Marder Across the street from the Flamingo Visitor’s Center at the foot of Florida’s Everglades National Park, there was once a thriving mangrove population — part of the largest stand of mangroves in the Western Hemisphere. Now, the skeletal remains of the trees form one of the Everglades’ largest ghost forests.
      When Hurricane Irma made landfall in September 2017 as a category 4 storm, violent winds battered the shore and a storm surge swept across the coast, decimating large swaths of mangrove forest. Seven years later, most of the mangroves here haven’t seen any new growth. “At this point, I doubt they’ll recover,” said David Lagomasino, a professor of coastal studies at East Carolina University.
      Lagomasino was in the Everglades conducting fieldwork as part of NASA’s BlueFlux Campaign, a three-year project that aims to study how sub-tropical wetlands influence atmospheric levels of carbon dioxide (CO2) and methane. Both gases absorb solar radiation and have a warming effect on Earth’s atmosphere.
      A mangrove “ghost forest” near Florida’s southernmost coast houses the remains of a once-thriving mangrove stand. NASA/Nathan Marder The campaign is led by Ben Poulter, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who studies the way human activity and climate change affect the carbon cycle. As wetland vegetation responds to increasing temperatures, rising sea levels, and severe weather, Poulter’s team is trying to determine how much carbon dioxide wetland vegetation removes from the atmosphere and how much methane it produces. Ultimately this research will help scientists develop models to estimate and monitor greenhouse gas concentrations in coastal areas around the globe.
      Although coastal wetlands account for less than 2% of the planet’s land-surface area, they remove a significant amount of carbon dioxide from the atmosphere. Florida’s coastal wetlands alone remove an estimated 31.8 million metric tons each year. A commercial aircraft would have to circle the globe more than 26,000 times to produce the same amount of carbon dioxide. Coastal wetlands also store carbon in marine sediments, keeping it underground — and out of the atmosphere — for thousands of years. This carbon storage capacity of oceans and wetlands is so robust that it has its own name: blue carbon.
      “We’re worried about losing that stored carbon,” Poulter said. “But blue carbon also offers tremendous opportunities for climate mitigation if conservation and restoration are properly supported by science.”
      The one-meter core samples collected by Lagomasino will be used to identify historic rates of blue carbon development in mangrove forests and to evaluate how rates of carbon storage respond to specific environmental pressures, like sea level rise or the increasing frequency of tropical cyclones.
      Early findings from space-based flux data confirm that, in addition to acting as a sink of carbon dioxide, tropical wetlands are a significant source of methane — a greenhouse gas that traps heat roughly 80 times more efficiently than carbon dioxide. In fact, researchers estimate that Florida’s entire wetland expanse produces enough methane to offset the benefits of wetland carbon removal by about 5%.
      Everglades peat contains history of captured carbon
      During his most recent fieldwork deployment, Lagomasino used a small skiff to taxi from one research site to the next; many parts of the Everglades are virtually unreachable on foot. At each site, he opened a broad, black case and removed a metallic peat auger, which resembles a giant letter opener. The instrument is designed to extract core samples from soft soils. Everglades peat — which is composed almost entirely of the carbon-rich, partially decomposed roots, stems, and leaves of mangroves — offers a perfect study subject.
      Lagomasino plunged the auger into the soil, using his body weight to push the instrument into the ground. Once the sample was secured, he freed the tool from the Earth, presenting a half-cylinder of soil. Each sample was sealed and shipped back to the lab — where they are sliced horizontally into flat discs and analyzed for their age and carbon content.
      East Carolina University professor of coastal studies David Lagomasino (right) and his doctoral student Daystar Babanawo explore the Everglades by boat. The plant life here consists almost entirely of mangroves, which can withstand the saltwater tides that characterize coastal wetlands. Scientific studies of Florida’s coastal ecosystems have historically been limited by the relative inaccessibility of the region. NASA/Nathan Marder Everglades peat forms quickly. In Florida’s mangrove forests, around 2 to 10 millimeters of soil are added to the forest floor each year, building up over time like sand filling an hourglass. Much like an ice core, sediment cores offer a window into Earth’s past. The deeper the core, the further into the past one can see. By looking closely at the contents of the soil, researchers can uncover information about the climate conditions from the time the soil formed.
      In some parts of the Everglades, soil deposits can reach depths of up to 3 meters (10 feet), where one meter might represent close to 100 years of peat accumulation, Lagomasino said. Deep in the Amazon rainforest, by comparison, a similarly sized, one-meter deposit could take more than 1,000 years to develop. This is important in the context of restoration efforts: in coastal wetlands, peat losses can be restored up to 10 times faster than they might be in other forest types.
      Lagomasino holds a sample of peat soil collected from the forest floor. The source of the soil’s elevated carbon content — evident from its coarse, fibrous texture — is primarily the thread-like root hairs routinely recycled by the surrounding mangroves. The presence of water slows the decomposition of this organic material, which is why wetlands can lock carbon away and prevent it from escaping into the atmosphere for thousands of years. NASA/Nathan Marder “There are also significant differences in fluxes between healthy mangroves and degraded ones,” said Lola Fatoyinbo, a research scientist in the Biospheric Sciences Laboratory at NASA’s Goddard Space Flight Center. In areas where mangrove forests are suffering, for example, after a major hurricane, “you end up with more greenhouse gases in the atmosphere,” she said. As wetland ecology responds to intensifying natural and human pressures, the data product will help researchers precisely monitor the impact of ecological changes on global carbon dioxide and methane levels.
      Wetland methane: A naturally occurring but potent greenhouse gas
      Methane is naturally produced by microbes that live in wetland soils. But as wetland conditions change, the growth rate of methane-producing microbes can spike, releasing the gas into the atmosphere at prodigious rates.
      Since methane is a significantly more potent greenhouse gas than carbon dioxide, possessing a warming potential 84 times greater over a 25-year period, methane emissions undermine some of the beneficial services that blue carbon ecosystems provide as natural sinks for atmospheric carbon dioxide.
      While Lagomasino studied the soil to understand long-term storage of greenhouse gases, Lola Fatoyinbo, a research scientist in NASA’s Biospheric Sciences Lab, and Peter Raymond, an ecologist at Yale University’s School of the Environment, measured the rate at which these gases are exchanged between wetland vegetation and the atmosphere. This metric is known as gaseous flux.
      Lagomasino holds a sample of peat soil collected from the forest floor. The presence of water slows the decomposition of this organic material, which is why wetlands can lock carbon away and prevent it from escaping into the atmosphere for thousands of years. NASA/Nathan Marder NASA/Nathan Marder The scientists measure flux using chambers designed to adhere neatly to points where significant rates of gas exchange occur. They secure box-like chambers to above-ground roots and branches while domed chambers measure gas escaping from the forest floor. The concentration of gases trapped in each chamber is measured over time.
      In general, as the health of wetland ecology declines, less carbon dioxide is removed, and more methane is released. But the exact nature of the relationship between wetland health and gaseous flux is not well understood. What does flux look like in ghost forests, for example? And how do more subtle changes in variables like canopy coverage or species distribution influence levels of carbon dioxide sequestration or methane production?
      “We’re especially interested in the methane part,” Fatoyinbo said. “It’s the least understood, and there’s a lot more of it than we previously thought.”
      Based on data collected during BlueFlux fieldwork, “we’re finding that coastal wetlands remove massive amounts of carbon dioxide and produce substantial amounts of methane,” Poulter said. “But overall, these ecosystems appear to provide a net climate benefit, removing more greenhouse gases than they produce.” That could change as Florida’s wetlands respond to continued climate disturbances.
      The future of South Florida’s ecology
      Florida’s wetlands are roughly 5,000 years old. But in just the past century, more than half of the state’s original wetland coverage has been lost as vegetation was cleared and water was drained to accommodate the growing population. The Everglades system now contains 65% less peat and 77% less stored carbon than it did prior to drainage. The future of the ecosystem — which is not only an important reservoir for atmospheric carbon, but a source of drinking water for more than 7 million Floridians and a home to flora and fauna found nowhere else on Earth — is uncertain.
      Scientists who have dedicated their careers to understanding and restoring South Florida’s ecology are hopeful. “Nature and people can coexist,” said Meenakshi Chabba, an ecologist and resilience scientist at the Everglades Foundation in Florida’s Miami-Dade County. “But we need good science and good management to reach that goal.”
      The next step for NASA’s BlueFlux campaign is the development of a satellite-based data product that can help regional stakeholders evaluate in real-time how Florida’s wetlands are responding to restoration efforts designed to protect one of the state’s most precious natural resources — and all those who depend on it.
      By Nathan Marder
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      About the Author
      Nathan Marder

      Share








      Details
      Last Updated Mar 13, 2025 Editor Jenny Marder Contact Nathan Marder Related Terms
      Earth Climate Change Earth’s Atmosphere Greenhouse Gases Explore More
      5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10


      Article


      22 hours ago
      2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds


      Article


      1 week ago
      1 min read An Ocean in Motion: NASA’s Mesmerizing View of Earth’s Underwater Highways
      This data visualization showing ocean currents around the world uses data from NASA’s Estimating the…


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.

      View the full article
    • By NASA
      NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) observatory and PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites lift off on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California on March 11, 2025.Credit: SpaceX NASA’s newest astrophysics observatory, SPHEREx, is on its way to study the origins of our universe and the history of galaxies, and to search for the ingredients of life in our galaxy. Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx lifted off at 8:10 p.m. PDT on March 11 aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
      Riding with SPHEREx aboard the Falcon 9 were four small satellites that make up the agency’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will study how the Sun’s outer atmosphere becomes the solar wind.
      “Everything in NASA science is interconnected, and sending both SPHEREx and PUNCH up on a single rocket doubles the opportunities to do incredible science in space,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Congratulations to both mission teams as they explore the cosmos from far-out galaxies to our neighborhood star. I am excited to see the data returned in the years to come.”
      Ground controllers at NASA’s Jet Propulsion Laboratory in Southern California, which manages SPHEREx, established communications with the space observatory at 9:31 p.m. PDT. The observatory will begin its two-year prime mission after a roughly one-month checkout period, during which engineers and scientists will make sure the spacecraft is working properly.
      “The fact our amazing SPHEREx team kept this mission on track even as the Southern California wildfires swept through our community is a testament to their remarkable commitment to deepening humanity’s understanding of our universe,” said Laurie Leshin, director, NASA JPL. “We now eagerly await the scientific breakthroughs from SPHEREx’s all-sky survey — including insights into how the universe began and where the ingredients of life reside.”
      The PUNCH satellites successfully separated about 53 minutes after launch, and ground controllers have established communication with all four PUNCH spacecraft. Now, PUNCH begins a 90-day commissioning period where the four satellites will enter the correct orbital formation, and the instruments will be calibrated as a single “virtual instrument” before the scientists start to analyze images of the solar wind.
      The two missions are designed to operate in a low Earth, Sun-synchronous orbit over the day-night line (also known as the terminator) so the Sun always remains in the same position relative to the spacecraft. This is essential for SPHEREx to keep its telescope shielded from the Sun’s light and heat (both would inhibit its observations) and for PUNCH to have a clear view in all directions around the Sun.
      To achieve its wide-ranging science goals, SPHEREx will create a 3D map of the entire celestial sky every six months, providing a wide perspective to complement the work of space telescopes that observe smaller sections of the sky in more detail, such as NASA’s James Webb Space Telescope and Hubble Space Telescope.
      The mission will use a technique called spectroscopy to measure the distance to 450 million galaxies in the nearby universe. Their large-scale distribution was subtly influenced by an event that took place almost 14 billion years ago known as inflation, which caused the universe to expand in size a trillion-trillionfold in a fraction of a second after the big bang. The mission also will measure the total collective glow of all the galaxies in the universe, providing new insights about how galaxies have formed and evolved over cosmic time.
      Spectroscopy also can reveal the composition of cosmic objects, and SPHEREx will survey our home galaxy for hidden reservoirs of frozen water ice and other molecules, like carbon dioxide, that are essential to life as we know it.
      “Questions like ‘How did we get here?’ and ‘Are we alone?’ have been asked by humans for all of history,” said James Fanson, SPHEREx project manager at JPL. “I think it’s incredible that we are alive at a time when we have the scientific tools to actually start to answer them.”
      NASA’s PUNCH will make global, 3D observations of the inner solar system and the Sun’s outer atmosphere, the corona, to learn how its mass and energy become the solar wind, a stream of charged particles blowing outward from the Sun in all directions. The mission will explore the formation and evolution of space weather events such as coronal mass ejections, which can create storms of energetic particle radiation that can endanger spacecraft and astronauts.
      “The space between planets is not an empty void. It’s full of turbulent solar wind that washes over Earth,” said Craig DeForest, the mission’s principal investigator, at the Southwest Research Institute. “The PUNCH mission is designed to answer basic questions about how stars like our Sun produce stellar winds, and how they give rise to dangerous space weather events right here on Earth.”

      More About SPHEREx, PUNCH
      The SPHEREx mission is managed by NASA JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive.
      Southwest Research Institute (SwRI) leads the PUNCH mission and built the four spacecraft and Wide Field Imager instruments at its headquarters in San Antonio, Texas. The Narrow Field Imager instrument was built by the Naval Research Laboratory in Washington. The mission is operated from SwRI’s offices in Boulder, Colorado, and is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. 
      NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, provided the launch service for SPHEREx and PUNCH.
      For more about NASA’s science missions, visit:
      http://science.nasa.gov
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Calla Cofield – SPHEREx
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Sarah Frazier – PUNCH
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Share
      Details
      Last Updated Mar 12, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Heliophysics Launch Services Program Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...