Members Can Post Anonymously On This Site
Sols 4325-4326: (Not Quite) Dipping Our Toes in the Sand
-
Similar Topics
-
By NASA
At NASA, high-end computing is essential for many agency missions. This technology helps us advance our understanding of the universe – from our planet to the farthest reaches of the cosmos. Supercomputers enable projects across diverse research, such as making discoveries about the Sun’s activity that affects technologies in space and life on Earth, building artificial intelligence-based models for innovative weather and climate science, and helping redesign the launch pad that will send astronauts to space with Artemis II.
These projects are just a sample of the many on display in NASA’s exhibit during the International Conference for High Performance Computing, Networking, Storage and Analysis, or SC24. NASA’s Dr. Nicola “Nicky” Fox, associate administrator for the agency’s Science Mission Directorate, will deliver the keynote address, “NASA’s Vision for High Impact Science and Exploration,” on Tuesday, Nov. 19, where she’ll share more about the ways NASA uses supercomputing to explore the universe for the benefit of all. Here’s a little more about the work NASA will share at the conference:
1. Simulations Help in Redesign of the Artemis Launch Environment
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This simulation of the Artemis I launch shows how the Space Launch System rocket's exhaust plumes interact with the air, water, and the launchpad. Colors on surfaces indicate pressure levels—red for high pressure and blue for low pressure. The teal contours illustrate where water is present. NASA/Chris DeGrendele, Timothy Sandstrom Researchers at NASA Ames are helping ensure astronauts launch safely on the Artemis II test flight, the first crewed mission of the Space Launch System (SLS) rocket and Orion spacecraft, scheduled for 2025. Using the Launch Ascent and Vehicle Aerodynamics software, they simulated the complex interactions between the rocket plume and the water-based sound suppression system used during the Artemis I launch, which resulted in damage to the mobile launcher platform that supported the rocket before liftoff.
Comparing simulations with and without the water systems activated revealed that the sound suppression system effectively reduces pressure waves, but exhaust gases can redirect water and cause significant pressure increases.
The simulations, run on the Aitken supercomputer at the NASA Advanced Supercomputing facility at Ames, generated about 400 terabytes of data. This data was provided to aerospace engineers at NASA’s Kennedy Space Center in Florida, who are redesigning the flame deflector and mobile launcher for the Artemis II launch.
2. Airplane Design Optimization for Fuel Efficiency
In this comparison of aircraft designs, the left wing models the aircraft’s initial geometry, while the right wing models an optimized shape. The surface is colored by the air pressure on the aircraft, with orange surfaces representing shock waves in the airflow. The optimized design modeled on the right wing reduces drag by 4% compared to the original, leading to improved fuel efficiency. NASA/Brandon Lowe To help make commercial flight more efficient and sustainable, researchers and engineers at NASA’s Ames Research Center in California’s Silicon Valley are working to refine aircraft designs to reduce air resistance, or drag, by fine-tuning the shape of wings, fuselages, and other aircraft structural components. These changes would lower the energy required for flight and reduce the amount of fuel needed, produce fewer emissions, enhance overall performance of aircraft, and could help reduce noise levels around airports.
Using NASA’s Launch, Ascent, and Vehicle Aerodynamics computational modeling software, developed at Ames, researchers are leveraging the power of agency supercomputers to run hundreds of simulations to explore a variety of design possibilities – on existing aircraft and future vehicle concepts. Their work has shown the potential to reduce drag on an existing commercial aircraft design by 4%, translating to significant fuel savings in real-world applications.
3. Applying AI to Weather and Climate
This visualization compares the track of the Category 4 hurricane, Ida, from MERRA-2 reanalysis data (left) with a prediction made without specific training, from NASA and IBM’s Prithvi WxC foundation model (right). Both models were initialized at 00 UTC on 2021-08-27.The University of Alabama in Huntsville/Ankur Kumar; NASA/Sujit Roy Traditional weather and climate models produce global and regional results by solving mathematical equations for millions of small areas (grid boxes) across Earth’s atmosphere and oceans. NASA and partners are now exploring newer approaches using artificial intelligence (AI) techniques to train a foundation model.
Foundation models are developed using large, unlabeled datasets so researchers can fine-tune results for different applications, such as creating forecasts or predicting weather patterns or climate changes, independently with minimal additional training.
NASA developed the open source, publicly available Prithvi Weather-Climate foundation model (Prithvi WxC), in collaboration with IBM Research. Prithvi WxC was pretrained using 160 variables from NASA’s Modern-era Retrospective analysis for Research and Applications (MERRA-2) dataset on the newest NVIDIA A100 GPUs at the NASA Advanced Supercomputing facility.
Armed with 2.3 billion parameters, Prithvi WxC can model a variety of weather and climate phenomena – such as hurricane tracks – at fine resolutions. Applications include targeted weather prediction and climate projection, as well as representing physical processes like gravity waves.
4. Simulations and AI Reveal the Fascinating World of Neutron Stars
3D simulation of pulsar magnetospheres, run on NASA’s Aitken supercomputer using data from the agency‘s Fermi space telescope. The red arrow shows the direction of the star’s magnetic field. Blue lines trace high-energy particles, producing gamma rays, in yellow. Green lines represent light particles hitting the observer’s plane, illustrating how Fermi detects pulsar gamma rays. NASA/Constantinos Kalapotharakos To explore the extreme conditions inside neutron stars, researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are using a blend of simulation, observation, and AI to unravel the mysteries of these extraordinary cosmic objects. Neutron stars are the dead cores of stars that have exploded and represent some of the densest objects in the universe.
Cutting-edge simulations, run on supercomputers at the NASA Advanced Supercomputing facility, help explain phenomena observed by NASA’s Fermi Gamma-ray Space Telescope and Neutron star Interior Composition Explorer (NICER) observatory. These phenomena include the rapidly spinning, highly magnetized neutron stars known as pulsars, whose detailed physical mechanisms have remained mysterious since their discovery. By applying AI tools such as deep neural networks, the scientists can infer the stars’ mass, radius, magnetic field structure, and other properties from data obtained by the NICER and Fermi observatories.
The simulations’ unprecedented results will guide similar studies of black holes and other space environments, as well as play a pivotal role in shaping future scientific space missions and mission concepts.
5. Modeling the Sun in Action – From Tiny to Large Scales
Image from a 3D simulation showing the evolution of flows in the upper layers of the Sun, with the most vigorous motions shown in red. These turbulent flows can generate magnetic fields and excite sound waves, shock waves, and eruptions. NASA/Irina Kitiashvili and Timothy A. Sandstrom The Sun’s activity, producing events such as solar flares and coronal mass ejections, influences the space environment and cause space weather disturbances that can interfere with satellite electronics, radio communications, GPS signals, and power grids on Earth. Scientists at NASA Ames produced highly realistic 3D models that – for the first time – allow them to examine the physics of solar plasma in action, from very small to very large scales. These models help interpret observations from NASA spacecraft like the Solar Dynamics Observatory (SDO).
Using NASA’s StellarBox code on supercomputers at NASA’s Advanced Supercomputing facility, the scientists improved our understanding of the origins of solar jets and tornadoes – bursts of extremely hot, charged plasma in the solar atmosphere. These models allow the science community to address long-standing questions of solar magnetic activity and how it affects space weather.
6. Scientific Visualization Makes NASA Data Understandable
This global map is a frame from an animation showing how wind patterns and atmospheric circulation moved carbon dioxide through Earth’s atmosphere from January to March 2020. The DYAMOND model’s high resolution shows unique sources of carbon dioxide emissions and how they spread across continents and oceans.NASA/Scientific Visualization Studio NASA simulations and observations can yield petabytes of data that are difficult to comprehend in their original form. The Scientific Visualization Studio (SVS), based at NASA Goddard, turns data into insight by collaborating closely with scientists to create cinematic, high-fidelity visualizations.
Key infrastructure for these SVS creations includes the NASA Center for Climate Simulation’s Discover supercomputer at Goddard, which hosts a variety of simulations and provides data analysis and image-rendering capabilities. Recent data-driven visualizations show a coronal mass ejection from the Sun hitting Earth’s magnetosphere using the Multiscale Atmosphere-Geospace Environment (MAGE) model; global carbon dioxide emissions circling the planet in the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) model; and representations of La Niña and El Niño weather patterns using the El Niño-Southern Oscillation (ENSO) model.
For more information about NASA’s virtual exhibit at the International Conference for High Performance Computing, Networking, Storage and Analysis, being held in Atlanta, Nov. 17-22, 2024, visit:
https://www.nas.nasa.gov/SC24
For more information about supercomputers run by NASA High-End Computing, visit:
https://hec.nasa.gov
For news media:
Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
Authors: Jill Dunbar, Michelle Moyer, and Katie Pitta, NASA’s Ames Research Center; and Jarrett Cohen, NASA’s Goddard Space Flight Center
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Sols 4362-4363: Plates and Polygons
NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI) on Nov. 11, 2024 – sol 4360, or Martian day 4,360 of the Mars Science Laboratory Mission – at 00:06:13 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Nov. 11, 2024
After a successful 23-meter (about 75 feet) drive today in pre-planning we found ourselves in front of some rocks with a curious dark, platy topping. This is similar to material we have seen previously including over the weekend where MAHLI imaged “Buttress Tree.” This beautiful hand-lens image is shown above, where you can see this more resistant platy texture at the top of the layered rock. Unfortunately it was deemed too unsafe to move the arm today, so no contact science observations were made on this dark material, but a plethora of remote science made up for it!
A curious curved fracture along a rock in the workspace became the target of our ChemCam LIBS laser shots called “Pioneer Basin.” ChemCam will then take a long-distance RMI looking back at Gediz Vallis channel, which we have been driving away from. Mastcam is focusing on taking two mosaics of areas of rocks that exhibit light- and dark-toned bands from orbit. We previously drove across these bands in January before we crossed the Gediz Vallis channel. Now that we are over the channel, we are about to drive on the dark, banded material once again. Mastcam is also imaging some interesting polygonal textures we see in a few rocks around the rover. To keep it simple, the science team named all four targets of polygonal rocks “Acrodectes Peak.”
As Curiosity drives further away from the Gediz Vallis channel, the exploration of the sulfate unit continues. Although the driving is tough at times, the beautiful discoveries and amazing geology make the tough times worth it. Let’s hope we can get some contact science activities safe and sound in the next plan.
Written by Emma Harris, Graduate Student at Natural History Museum, London
Share
Details
Last Updated Nov 13, 2024 Related Terms
Blogs Explore More
3 min read Peculiar Pale Pebbles
During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…
Article
14 hours ago
2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!
Article
1 day ago
4 min read Sols 4357–4358: Turning West
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!
NASA’s Mars rover Curiosity acquired this image of its workspace, which includes several targets for investigation — “Buttress Tree,” “Forester Pass,” “Crater Mountain,” “Mahogany Creek,” and “Filly Lake.” Curiosity used its Left Navigation Camera on Nov. 8, 2024 — sol 4357, or Martian day 4.357, of the Mars Science Laboratory mission — at 00:06:17 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 8, 2024
After the excitement of Wednesday’s plan, it was a relief to come in today to hear that the drive toward our exit from Gediz Vallis completed successfully and that we weren’t perched on any rocks or in any other precarious position. This made for a very smooth planning morning, which is always nice on a Friday after a long week.
But that isn’t to say that Curiosity will be taking it easy for the weekend. Smooth planning means we have lots of time to pack in as much science as we can fit. Today, this meant that the geology group (GEO) got to name eight new targets, and the environmental group (ENV) got to spend some extra time contemplating the atmosphere. Reading through the list of target names from GEO felt a bit like reading a travel guide — top rocks to visit when you’re exiting Gediz Vallis!
If you look to the front of your rover, what we refer to as the “workspace” (and which you can see part of in the image above), you’ll see an array of rocks. Take in the polygonal fractures of “Colosseum Mountain” and be amazed by the structures of “Tyndall Creek” and “Cascade Valley.” Get up close and personal with our contact science targets, “Mahogany Creek,” “Forester Pass,” and “Buttress Tree.” Our workspace has something for everyone, including the laser spectrometers in the family, who will find plenty to explore with “Filly Lake” and “Crater Mountain.” We have old favorites too, like the upper Gediz Vallis Ridge and the Texoli outcrop.
After a busy day sightseeing, why not kick back with ENV and take a deep breath? APXS and ChemCam have you covered, watching the changing atmospheric composition. Look up with Navcam and you may see clouds drifting by, or spend some time looking for dust devils in the distance. Want to check the weather before planning your road trip? Our weather station REMS works around the clock, and Mastcam and Navcam are both keeping an eye on how dusty the crater is.
All good vacations must come to an end, but know that when it’s time to drive away there will be many more thrilling sights to come!
Written by Alex Innanen, Atmospheric Scientist at York University
Share
Details
Last Updated Nov 11, 2024 Related Terms
Blogs Explore More
4 min read Sols 4357–4358: Turning West
Article
3 days ago
2 min read Mars 2020 Perseverance Joins NASA’s Here to Observe Program
The Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program,…
Article
5 days ago
3 min read Sols 4355-4356: Weekend Success Brings Monday Best
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
Sols 4357–4358: Turning West
NASA’s Mars rover Curiosity acquired this image of its middle and right-rear wheels, using its Left Navigation Camera (Navcam). The difference in elevation between these two wheels at this location caused the drive planned on Monday, Nov. 4, 2024, to end early. Curiosity captured the image on Nov. 5, 2024, on sol 4355 — Martian day 4,355 of the Mars Science Laboratory mission — at 23:35:56 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Nov. 6, 2024
Sols 4357–4358: Turning West
If you’ve ever driven down a road that’s in need of repaving, you’ll know that it can be an uncomfortable experience. The same is true on Mars: even at our carefully slow driving speed, the rough, rocky terrain that we’ve found ourselves in since entering Gediz Vallis many months ago continues to present challenges for our intrepid rover.
Planning today began with the news that Curiosity only made it about halfway to its intended destination from Monday. The drive terminated early after the rover exceeded one of its “suspension limits.” This refers to our “rocker-bogie” suspension system, which allows the rover to drive over obstacles while minimizing the motion experienced by the rover body. In this case, our right middle wheel is down in a trough while the right rear wheel is perched on a rock, causing the angle of the “bogie” connecting the two wheels to exceed the maximum allowed value (Those maximums are set with a healthy amount of safety margin, so we’re not in any danger!). You can see the state of the bogie in the image above. On top of that, ending the drive early also meant that we didn’t have the images that we usually use to determine if the rover is stable enough to unstow the arm, so some creative work was necessary to determine whether or not we could. Unsurprisingly, the verdict was that we shouldn’t do so while in this awkward-looking position.
As always, the team was quick to pivot to a remote sensing plan. The focus today was on getting any last-minute remote observations of the Gediz Vallis channel. This was because we decided that, rather than continuing to drive north, we would be starting our western turn toward the exit out of Gediz Vallis.
The first sol of today’s plan contains a hefty two hours of science activities. These include LIBS observations of a bedrock target “North Dome” and a pair of ChemCam passive rasters of “Jewelry Lake” and “Merced River,” two smaller rocks near the rover, the latter of which appears to have been broken open as the rover drove over it. Mastcam will then take a documentation image of North Dome, as well as a mosaic of some more bedrock at “Earthquake Dome.” This first sol also includes a set of environmental science observations, including a lengthy 30-minute dust devil movie, just over 10 minutes of Navcam cloud movies, and some Navcam monitoring of dust and sand on the rover deck. We also sneak in a Navcam line-of-sight mosaic of the north crater rim, to measure the amount of dust in the air after our drive.
The second sol is a fairly typical post-drive sol, beginning with a standard ChemCam AEGIS activity to let the rover autonomously select a LIBS target. The rest of the science time this sol is dedicated to environmental monitoring, including a Mastcam tau observation to monitor dust, some more Navcam deck monitoring, another Navcam cloud movie, and a 360-degree Navcam dust devil survey. No arm activities means the second sol also includes a Navcam shunt prevention activity (SPENDI) to burn off some extra power while also looking for clouds and dust devils. As always, REMS, RAD, and DAN will continue their standard activities throughout this plan.
When I joined the mission back in 2020, I would occasionally look at Gediz Vallis on our HiRISE maps and imagine what the view would be like between those tall, steep channel walls. So it seems almost unbelievable that we will soon be leaving Gediz Vallis behind us as we continue our trek up Mount Sharp. It will probably still be a few more weeks before we can say that we’ve officially exited Gediz Vallis, but I don’t think anyone will be saying they were disappointed with what we accomplished during this long-anticipated phase of the mission.
Onwards and upwards!
Written by Conor Hayes, graduate student at York University
Share
Details
Last Updated Nov 08, 2024 Related Terms
Blogs Explore More
2 min read Mars 2020 Perseverance Joins NASA’s Here to Observe Program
The Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program,…
Article
2 days ago
3 min read Sols 4355-4356: Weekend Success Brings Monday Best
Article
3 days ago
3 min read Sols 4352-4354: Halloween Fright Night on Mars
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
Sols 4355-4356: Weekend Success Brings Monday Best
NASA’s Mars rover Curiosity acquired this image of the contact science target “Black Bear Lake” from about 7 centimeters away (about 3 inches), using its Mars Hand Lens Imager (MAHLI). The MAHLI, located on the turret at the end of the rover’s robotic arm, used an onboard focusing process to merge multiple images of the same target into a composite image, on Nov. 3, 2024 – sol 4353, or Martian day 4,353 of the Mars Science Laboratory Mission – at 21:36:01 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Nov. 4, 2024
After a spooky week last week, it’s great to see all our weekend plans succeed as planned! We don’t take success for granted as a rover going on 13 years. With all of the science at our fingertips and all the battery power we could need, the team took right advantage of this two-sol touch-and-go Monday plan. We have a bedrock DRT target for APXS and MAHLI named “Epidote Peak” and a MAHLI-only target of a crushed rock we drove over named “Milly’s Foot Path.”
APXS data is better when it’s cold, so we’ve planned the DRT brushing and APXS to start our first sol about 11:14 local Gale time. MAHLI images are usually better in the afternoon lighting, so we’ll leave the arm unstowed and spend some remote science time beforehand, about 12:15 local time. ChemCam starts that off with a LIBS raster over a bedrock block with some interesting light and dark layering, named “Albanita Meadows” and seen here in the the upper-right-ish of this Navcam workspace frame. ChemCam will then take a long-distance RMI mosaic of a portion of the upper Gediz Vallis ridge to the north. Mastcam continues the remote science with an Albanita Meadows documentation image, a 21-frame stereo mosaic of some dark-toned upturned blocks about 5 meters away (about 16 feet), a four-frame stereo mosaic of some polygonal fracture patterns about 20 meters away (about 66 feet), and a mega 44-frame stereo mosaic of Wilkerson butte, upper Gediz Vallis ridge, “Fascination Turret,” and “Pinnacle Ridge” in the distance. That’s a total of 138 Mastcam images! With remote sensing complete, the RSM will stow itself about 14:00 local time to make time for MAHLI imaging.
Between about 14:15 and 14:30 local time, MAHLI will take approximately 64 images of Epidote Peak and Milly’s Foot Path. Most of the images are being acquired in full shadow, so there is uniform lighting and saturation in the images. We’ll stow the arm at about 14:50 and begin our drive! This time we have an approximately 34-meter drive to the northwest (about 112 feet), bringing us almost all the way to the next dark-toned band in the sulfate unit. But no matter what happens with the drive, we’ll still do some remote science on the second sol including a Mastcam tau observation, a ChemCam LIBS in-the-blind (a.k.a AEGIS: Autonomous Exploration for Gathering Increased Science), and some Navcam movies of the sky and terrain.
Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
Share
Details
Last Updated Nov 06, 2024 Related Terms
Blogs Explore More
3 min read Sols 4352-4354: Halloween Fright Night on Mars
Article
1 day ago
2 min read Sols 4350-4351: A Whole Team Effort
Article
5 days ago
2 min read Sols 4348-4349: Smoke on the Water
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.