Members Can Post Anonymously On This Site
Hera asteroid mission - launch highlights
-
Similar Topics
-
By NASA
An interesting fact about Johnson Space Center’s Anika Isaac, MS, LPC, LMFT, LCDC, CEAP, NCC, is that there are more letters following her name than there are in it.
A licensed professional counselor, marriage and family therapist, and chemical dependency counselor with several other certifications, Isaac has been a fixture of Johnson’s Employee Assistance Program for the last 13 years. She provides confidential counseling and assessment, crisis response, referrals to community providers, and debriefing and support to Johnson’s workforce. Additionally, Isaac leads assertiveness skills training for employees, provides management consults, and presents on various mental health topics by request. She also coordinates the center’s Autism Support Group, which convenes monthly to offer networking, resource sharing, and support for caregivers of those with autism.
Official portrait of Anika Isaac.NASA Isaac’s invaluable counsel earned her a Silver Snoopy Award in 2022. Presented by Johnson Director Vanessa Wyche and NASA astronaut Jessica Meir, the award recognized Isaac’s exceptional efforts to support NASA’s ability to execute the tasks necessary for safe human spaceflight. “I taught, modeled, and empowered thousands to address critical issues and topics in the workplace, directly impacting mission success and safety,” she said.
Anika Isaac (center) receives a Silver Snoopy Award from Johnson Space Center Director Vanessa Wyche (left) and NASA astronaut Jessica Meir. NASA Isaac has also proudly participated in transparent, authentic conversations about personal and socially significant questions raised by the Johnson community, by leading panel discussions during center events and more. “Having those brave and bold conversations are necessary to foster a compassionate workplace culture that we emphasize through the Johnson Expected Behaviors,” she said.
Isaac said her work experiences prior to joining NASA not only affected her personally but also shaped her professionally. “The most troublesome challenges have been dealing with colleagues whom I saw be divisive in their comments and manipulative in their actions,” she said. “I overcame those challenges with faith, time, and talking to mentors and my trusted support system for perspective and guidance.”
Isaac’s career has also taught her to trust herself and give herself some grace. “In each moment I have everything I need to be successful and keep learning when I fall short of my expectations,” she said. She has come to appreciate the value of her unique experience and skillset, as well. “In an agency with so many experts in so many disciplines, in my respective discipline my expertise is as necessary and essential to the success of NASA’s mission,” she said. “I have also learned to stay persistent with my goals, since there are enough people to help me achieve them along the way.”
Johnson’s Employee Assistance Program (EAP) received a Group Achievement Award for the team’s support of the Johnson community following Hurricane Harvey in 2017 and the Santa Fe High School shooting in 2018. From left: Vanessa Wyche, Anika Isaac, EAP Executive Director Jackie Reese, EAP Counselor Daisy Wei, and Mark Geyer, who was Johnson’s director at the time.NASA Isaac looks forward to a future of space exploration that combines the best of the commercial sector, international partnerships, and NASA’s strengths with incredible advances in artificial intelligence and other technologies to ensure crew safety while propelling humanity further into the cosmos. She also celebrates the different backgrounds and cultures of today’s astronaut corps. “We are seeing a level of diversity in the faces of space explorers that has never existed before in the history of the space program,” she said.
Isaac encourages the Artemis Generation to learn and incorporate key aspects of NASA and space exploration history into their work while building their own culture and valuing their unique perspectives. “Trust yourself! Have you not usually recovered from setbacks? Those that came before you made similar mistakes,” she said. “Pay attention and learn from them. And build those crucial, reciprocal mentor and social relationships to enhance your ongoing personal and work journey.”
View the full article
-
By NASA
The first shuttle mission of 1995, STS-63 included several historic firsts. As part of Phase 1 of the International Space Station program, space shuttle Discovery’s 20th flight conducted the first shuttle rendezvous with the Mir space station, in preparation for future dockings. The six-person crew included Commander James Wetherbee, Pilot Eileen Collins – the first woman to pilot a space shuttle mission – Payload Commander Bernard Harris, and Mission Specialists Michael Foale, Janice Voss, and Vladimir Titov. The spacewalk conducted during the mission included the first African American and the first British born astronauts to walk in space. The crew conducted 20 science and technology experiments aboard the third flight of the Spacehab module. The astronauts deployed and retrieved the SPARTAN-204 satellite that during its two-day free flight carried out observations of galactic objects using an ultraviolet instrument.
The STS-63 crew patch. The STS-63 crew of Janice Voss, front row left, Eileen Collins, James Wetherbee, and Vladimir Titov; Bernard Harris, back row left, and Michael Foale. The Shuttle-Mir program patch. NASA announced the six-person STS-63 crew in September 1993 for a mission then expected to fly in May 1994. Wetherbee, selected by NASA in 1984, had already flown twice in space, as pilot on STS-32 and commander of STS-52. For Collins, selected in the class of 1990 as the first woman shuttle pilot, STS-63 marked her first spaceflight. Also selected in 1990, Harris had flown previously on STS-55 and Voss on STS-57. Foale, selected as an astronaut in 1987, had flown previously on STS-45 and STS-56. Titov, selected as a cosmonaut in 1976, had flown two previous spaceflights – a two-day aborted docking mission to Salyut-7 and the first year-long mission to Mir – and survived a launch pad abort. He served as backup to Sergei Krikalev on STS-60, who now served as Titov’s backup.
Space shuttle Discovery rolls out to Launch Pad 39B. The STS-63 crew during the Terminal Countdown Demonstration Test in the White Room of Launch Pad 39B. The STS-63 astronauts walk out of crew quarters for the van ride out to the launch pad. Space shuttle Discovery arrived back at NASA’s Kennedy Space Center in Florida on Sept. 27, 1994, after a ferry flight from California following its previous mission, STS-64. Workers towed it to the Orbiter Processing Facility the next day. Following installation of the Spacehab, SPARTAN, and other payloads, on Jan. 5, 1995, workers rolled Discovery from the processing facility to the Vehicle Assembly Building for mating with an external tank and twin solid rocket boosters. Rollout to Launch Pad 39B took place on Jan. 10. On Jan. 17-18, teams conducted the Terminal Countdown Demonstration Test, a dress rehearsal for the countdown to launch planned for Feb. 2, with the astronaut crew participating in the final few hours as they would on launch day. They returned to Kennedy on Jan. 29 for final pre-launch preparations. On Feb. 2, launch teams called a 24-hour scrub to allow time to replace a failed inertial measurement unit aboard Discovery.
Launch of space shuttle Discovery on mission STS-63. STS-63 Commander James Wetherbee on Discovery’s flight deck. STS-63 Pilot Eileen Collins on Discovery’s flight deck. On Feb. 3, Discovery and its six-person crew lifted off from Launch Pad 39B at 12:22 a.m. EST, the time dictated by orbital mechanics – Discovery had to launch into the plane of Mir’s orbit. Within 8.5 minutes, Discovery had reached orbit, for the first time in shuttle history at an inclination of 51.6 degrees, again to match Mir’s trajectory. Early in the mission, one of Discovery’s 44 attitude control thrusters failed and two others developed minor but persistent leaks, threatening the Mir rendezvous.
View of the Spacehab module in Discovery’s payload bay. The SPARTAN-204 satellite attached to the remote manipulator system or robotic arm during the flight day two operations. On the mission’s first day in space, Harris and Titov activated the Spacehab module and several of its experiments. Wetherbee and Collins performed the first of five maneuvers to bring Discovery within 46 miles of Mir for the final rendezvous on flight day four. Teams on the ground worked with the astronauts to resolve the troublesome thruster problems to ensure a safe approach to the planned 33 feet. On flight day 2, as those activities continued, Titov grappled the SPARTAN satellite with the shuttle’s robotic arm and lifted it out of the payload bay. Scientists used the ultraviolet instrument aboard SPARTAN to investigate the ultraviolet glow around the orbiter and the aftereffects of thruster firings. The tests complete, Titov placed SPARTAN back in the payload bay.
The Mir space station as seen from Discovery during the rendezvous. Space shuttle Discovery as seen from Mir during the rendezvous. Mir during Discovery’s flyaround. On flight day three, the astronauts continued working on science experiments while Wetherbee and Collins completed several more burns for the rendezvous on flight day four, the thruster issues resolved to allow the close approach to 33 feet. Flying Discovery manually from the aft flight deck, and assisted by his crew mates, Wetherbee slowly brought the shuttle to within 33 feet of the Kristall module of the space station. The STS-63 crew communicated with the Mir-17 crew of Aleksandr Viktorenko, Elena Kondakova, and Valeri Polyakov via VHF radio, and the crews could see each other through their respective spacecraft windows. After station-keeping for about 10 minutes, Wetherbee slowly backed Discovery away from Mir to a distance of 450 feet. He flew a complete circle around Mir before conducting a final separation maneuver.
The SPARTAN-204 satellite as it begins its free flight on flight day five. STS-63 crew member Vladimir Titov works on an experiment in the Spacehab module. On the mission’s fifth day, Titov once again grappled SPARTAN with the robotic arm, but this time after raising it above the payload bay, he released the satellite to begin its two-day free flight. Wetherbee steered Discovery away from the departing satellite. During its free flight, the far ultraviolet imaging spectrograph aboard SPARTAN recorded about 40 hours of observations of galactic dust clouds. During this time, the astronauts aboard the shuttle continued work on the 20 experiments in Spacehab and prepared for the upcoming spacewalk.
STS-63 crew member Janice Voss operates the remote manipulator system during the retrieval of the SPARTAN-204 satellite. STS-63 astronauts Bernard Harris, left, and Michael Foale at the start of their spacewalk. Wetherbee and the crew flew the second rendezvous of the mission on flight day seven to retrieve SPARTAN. Voss operated the robotic arm to capture and stow the satellite in the payload bay following its 43-hour free flight. Meanwhile, Foale and Harris suited up in the shuttle’s airlock and spent four hours breathing pure oxygen to rid their bodies of nitrogen to prevent decompression sickness, also known as the bends, when they reduced their spacesuit pressures for the spacewalk.
Astronauts Bernard Harris, left, and Michael Foale during the spacesuit thermal testing part of their spacewalk. Foale, left, and Harris during the mass handling part of their spacewalk. Foale and Harris exited the airlock minutes after Voss safely stowed SPARTAN. With Titov operating the robotic arm, Harris and Foale climbed aboard its foot restraint to begin the first phase of the spacewalk, testing modifications to the spacesuits for their thermal characteristics. Titov lifted them well above the payload bay and the two spacewalkers stopped moving for about 15 minutes, until their hands and feet got cold. The spacewalk then continued into its second portion, the mass handling activity. Titov steered Foale above the SPARTAN where he lifted the satellite up and handed it off to Harris anchored in the payload bay. Harris then moved it around in different directions to characterize handling of the 2,600-pound satellite. Foale and Harris returned to the airlock after a spacewalk lasting 4 hours 39 minutes.
The STS-63 astronauts pose for their inflight crew photo. Discovery makes a successful landing at NASA’s Kennedy Space Center in Florida. The day following the spacewalk, the STS-63 crew finished the science experiments, closed down the Spacehab module, and held a news conference with reporters on the ground. Wetherbee and Collins tested Discovery’s thrusters and aerodynamic surfaces in preparation for the following day’s reentry and landing. The next day, on Feb. 11, they closed Discovery’s payload bay doors and put on their launch and entry suits. Wetherbee guided Discovery to a smooth landing on Kennedy’s Shuttle Landing Facility, ending the historic mission after eight days, six hours, and 28 minutes. They orbited the Earth 129 times. The mission paved the way for nine shuttle dockings with Mir beginning with STS-71, and 37 with the International Space Station. Workers at Kennedy towed Discovery to the processing facility to prepare it for its next mission, STS-70 in July 1995.
Over the next three years, Wetherbee, Collins, Foale, and Titov all returned to Mir during visiting shuttle flights, with Foale staying aboard as the NASA-5 long-duration crew member. Between 2001 and 2005, Wetherbee, Collins, and Foale also visited the International Space Station. Wetherbee commanded two assembly flights, Collins commanded the return to flight mission after the Columbia accident, and Foale commanded Expedition 8.
Enjoy the crew narrate a video about their STS-63 mission.
Explore More
9 min read 30 Years Ago: STS-60, the First Shuttle-Mir Mission
Article 1 year ago 7 min read Space Station 20th: STS-71, First Shuttle-Mir Docking
Article 5 years ago 11 min read Space Station 20th: Launch of Mir 18 Crew
Article 5 years ago View the full article
-
By NASA
NASA Science Live: Asteroid Bennu Originated from World with Ingredients and Conditions for Life
-
By NASA
In this video frame, Jason Dworkin holds up a vial that contains part of the sample from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission in 2023. Dworkin is the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.Credit: NASA/James Tralie Studies of rock and dust from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security–Regolith Explorer) spacecraft have revealed molecules that, on our planet, are key to life, as well as a history of saltwater that could have served as the “broth” for these compounds to interact and combine.
The findings do not show evidence for life itself, but they do suggest the conditions necessary for the emergence of life were widespread across the early solar system, increasing the odds life could have formed on other planets and moons.
“NASA’s OSIRIS-REx mission already is rewriting the textbook on what we understand about the beginnings of our solar system,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Asteroids provide a time capsule into our home planet’s history, and Bennu’s samples are pivotal in our understanding of what ingredients in our solar system existed before life started on Earth.”
In research papers published Wednesday in the journals Nature and Nature Astronomy, scientists from NASA and other institutions shared results of the first in-depth analyses of the minerals and molecules in the Bennu samples, which OSIRIS-REx delivered to Earth in 2023.
Detailed in the Nature Astronomy paper, among the most compelling detections were amino acids – 14 of the 20 that life on Earth uses to make proteins – and all five nucleobases that life on Earth uses to store and transmit genetic instructions in more complex terrestrial biomolecules, such as DNA and RNA, including how to arrange amino acids into proteins.
Scientists also described exceptionally high abundances of ammonia in the Bennu samples. Ammonia is important to biology because it can react with formaldehyde, which also was detected in the samples, to form complex molecules, such as amino acids – given the right conditions. When amino acids link up into long chains, they make proteins, which go on to power nearly every biological function.
These building blocks for life detected in the Bennu samples have been found before in extraterrestrial rocks. However, identifying them in a pristine sample collected in space supports the idea that objects that formed far from the Sun could have been an important source of the raw precursor ingredients for life throughout the solar system.
“The clues we’re looking for are so minuscule and so easily destroyed or altered from exposure to Earth’s environment,” said Danny Glavin, a senior sample scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-lead author of the Nature Astronomy paper. “That’s why some of these new discoveries would not be possible without a sample-return mission, meticulous contamination-control measures, and careful curation and storage of this precious material from Bennu.”
While Glavin’s team analyzed the Bennu samples for hints of life-related compounds, their colleagues, led by Tim McCoy, curator of meteorites at the Smithsonian’s National Museum of Natural History in Washington, and Sara Russell, cosmic mineralogist at the Natural History Museum in London, looked for clues to the environment these molecules would have formed. Reporting in the journal Nature, scientists further describe evidence of an ancient environment well-suited to kickstart the chemistry of life.
Ranging from calcite to halite and sylvite, scientists identified traces of 11 minerals in the Bennu sample that form as water containing dissolved salts evaporates over long periods of time, leaving behind the salts as solid crystals.
Similar brines have been detected or suggested across the solar system, including at the dwarf planet Ceres and Saturn’s moon Enceladus.
Although scientists have previously detected several evaporites in meteorites that fall to Earth’s surface, they have never seen a complete set that preserves an evaporation process that could have lasted thousands of years or more. Some minerals found in Bennu, such as trona, were discovered for the first time in extraterrestrial samples.
“These papers really go hand in hand in trying to explain how life’s ingredients actually came together to make what we see on this aqueously altered asteroid,” said McCoy.
For all the answers the Bennu sample has provided, several questions remain. Many amino acids can be created in two mirror-image versions, like a pair of left and right hands. Life on Earth almost exclusively produces the left-handed variety, but the Bennu samples contain an equal mixture of both. This means that on early Earth, amino acids may have started out in an equal mixture, as well. The reason life “turned left” instead of right remains a mystery.
“OSIRIS-REx has been a highly successful mission,” said Jason Dworkin, OSIRIS-REx project scientist at NASA Goddard and co-lead author on the Nature Astronomy paper. “Data from OSIRIS-REx adds major brushstrokes to a picture of a solar system teeming with the potential for life. Why we, so far, only see life on Earth and not elsewhere, that’s the truly tantalizing question.”
NASA Goddard provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. NASA Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
For more information on the OSIRIS-REx mission, visit:
https://www.nasa.gov/osiris-rex
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Rani Gran
Goddard Space Flight Center, Greenbelt, Maryland
301-286-2483
rani.c.gran@nasa.gov
Share
Details
Last Updated Jan 29, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Asteroids Bennu Goddard Space Flight Center Science Mission Directorate
View the full article
-
By European Space Agency
The European Space Agency (ESA) Planetary Defence Office is closely monitoring the recently discovered asteroid 2024 YR4, which has a very small chance of impacting Earth in 2032.
This page was last updated on 29 January 2025.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.