Jump to content

Tech Today: Spraying for Food Safety


NASA

Recommended Posts

  • Publishers

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Astronaut Kayla Barron looks at chile peppers growing in the Advanced Plant Habitat aboard the International Space Station.
Astronaut Kayla Barron looks at chile peppers growing in the Advanced Plant Habitat aboard the International Space Station. Determining the best ways to water plants in space resulted in the development of a new electrostatic spray nozzle, now licensed to industry.
Credit: NASA

Whether protecting crops from diseases and pests or sanitizing contaminated surfaces, the ability to spray protective chemicals over important resources is key to several industries. Electrostatic Spraying Systems Inc. (ESS) of Watkinsville, Georgia, manufactures electrostatic sprayers and equipment that make this possible. By licensing NASA electrostatic technology, originally made to water plants in space, ESS’s improved spray nozzles efficiently use basic laws of electricity to achieve complete coverage on targeted surfaces. 

ESS traces its origins to research done at the University of Georgia in the 1970s and ’80s. An electrostatic sprayer works by inducing an electric charge onto atomized droplets. Much like an inflated balloon sticking to a wall when it’s gained a charge of static electricity, the droplets then stick to targeted surfaces.

NASA’s interest in this technology originated with astronauts’ need for an easy way to support plant-growth experiments in space. On the International Space Station, watering plants without the help of gravity isn’t as easy as using a garden hose on Earth. In the future, using a system like an electrostatic sprayer on the space station or other orbiting destination could help the water droplets stick to the plants with uniform coverage. However, most spraying systems require large sources of water and air to properly aerosolize fluids.

An ESS mister nozzle
An ESS mister nozzle undergoes testing at Kennedy Space Center. The design was improved through collaboration between the company and NASA.
Credit: NASA

As both air and water are precious resources in space, NASA needed an easier way to make these incredibly small droplets. Charles Buhler and Jerry Wang of NASA’s Kennedy Space Center in Florida led the efforts to develop this capability, with Edward Law of the University of Georgia as a consulting expert. Eventually, the NASA team developed a new design by learning from existing technology called a mister nozzle. The benefit of a mister is that even though the interior volume of the nozzle is small, the pressure inside never builds up, which makes it perfect for enclosed small spaces like the space station.

As the sprayer industry is a tight-knit group, technology transfer professionals at NASA reached out to the companies that could use a nozzle like this on Earth. Electrostatic Spraying Systems responded and later licensed the sprayer design from the agency and incorporated it into the company’s Maxcharge product lines.

Share

Details

Last Updated
Oct 07, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
      The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
      Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      NASA Headquarters, Washington
      202-358-1600
      tiernan.p.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By Space Force
      SecAF Kendall delivered a speech to USAFA cadets about the qualities necessary for strong leadership and why capable, insightful, moral leaders are more essential than ever in defense of the nation.

      View the full article
    • By European Space Agency
      Video: 00:02:18 At ESA, through the Advanced Research in Telecommunications Systems programme, we’re addressing solutions for when safety and security of communication services cannot be guaranteed by the terrestrial networks alone. With our programme Space systems for Safety and Security, or 4S, we are pioneering cutting-edge development of secure and resilient satellite communication systems, technologies and services to improve life on Earth. 
      Picture a world where our critical infrastructure is protected from cyber threats, and where communication links work when the world around them doesn't. A transportation network where safety is not just a priority, but a guarantee. Where air traffic flows completely efficiently, reliable and connected. Railways operate without interruption, and shipping can navigate safely and securely.
      Imagine that our first responders are coordinating via seamless communications, and institutional agencies are acting rapidly and decisively when there's a crisis. All thanks to secure and safe satellite communication systems, orbiting above the planet. This is the future we're building with the 4S programme. A future where space systems safeguard our security, making sure that connectivity remains our greatest strength. Join us as we continue to push the boundaries of innovation.
       
      View the full article
    • By NASA
      In the unforgiving lunar environment, the possibility of an astronaut crewmember becoming incapacitated due to unforeseen circumstances (injury, medical emergency, or a mission-related accident) is a critical concern, starting with the upcoming Artemis III mission, where two astronaut crewmembers will explore the Lunar South Pole. The Moon’s surface is littered with rocks ranging from 0.15 to 20 meters in diameter and craters spanning 1 to 30 meters wide, making navigation challenging even under optimal conditions. The low gravity, unique lighting conditions, extreme temperatures, and availability of only one person to perform the rescue, further complicate any rescue efforts. Among the critical concerns is the safety of astronauts during Extravehicular Activities (EVAs). If an astronaut crewmember becomes incapacitated during a mission, the ability to return them safely and promptly to the human landing system is essential. A single crew member should be able to transport an incapacitated crew member distances up to 2 km and a slope of up to 20 degrees on the lunar terrain without the assistance of a lunar rover. This pressing issue opens the door for innovative solutions. We are looking for a cutting-edge design that is low in mass and easy to deploy, enabling one astronaut crewmember to safely transport their suited (343 kg (~755lb)) and fully incapacitated partner back to the human landing system. The solution must perform effectively in the Moon’s extreme South Pole environment and operate independently of a lunar rover. Your creativity and expertise could bridge this critical gap, enhancing the safety measures for future lunar explorers. By addressing this challenge, you have the opportunity to contribute to the next “giant leap” in human space exploration.
      Award: $45,000 in total prizes
      Open Date: November 14, 2024
      Close Date: January 23, 2025
      For more information, visit: https://www.herox.com/NASASouthPoleSafety
      View the full article
    • By NASA
      5 Min Read Wearable Tech for Space Station Research
      A wearable monitoring device is visible on the left wrist of NASA astronaut Jeanette Epps. Credits: NASA Science in Space Nov 2024
      Many of us wear devices that count our steps, measure our heart rate, track sleep patterns, and more. This information can help us make healthy decisions – research shows the devices encourage people to move more, for example – and could flag possible problems, such as an irregular heartbeat.
      Wearable monitors also have become common tools for research on human health, including studies on the International Space Station. Astronauts have worn special watches, headbands, vests, and other devices to help scientists examine sleep quality, effectiveness of exercise, heart health, and more.
      Warm to the core
      Spaceflight can affect body temperature regulation and daily rhythms due to factors such as the absence of convection (a natural process that transfers heat away from the body) and changes in the cardiovascular and metabolic systems.
      A current investigation from ESA (European Space Agency), Thermo-Mini or T-Mini examines how the body regulates its core temperature during spaceflight. The study uses a non-invasive headband monitor that astronauts can wear for hours at a time. Data from the monitor allow researchers to determine the effect on body temperature from environmental and physiological factors such as room temperature and humidity, time of day, and physical stress. The same type of sensor already is used on Earth for research in clinical environments, such as improving incubators, and studies of how hotter environments affect human health.
      Thermolab, an earlier ESA investigation, examined thermoregulatory and cardiovascular adaptations during rest and exercise in microgravity. Researchers found that core body temperature rises higher and faster during exercise in space than on Earth and that the increase was sustained during rest, a phenomenon that could affect the health of crew members on long-term spaceflight. The finding also raises questions about the thermoregulatory set point humans are assumed to have as well as our ability to adapt to climate change on Earth.
      NASA astronaut Nick Hague wears the T-mini device while exercising.NASA To sleep, perchance to dream
      Spaceflight is known to disrupt sleep-wake patterns. Actiwatch Spectrum, a device worn on the wrist, contains an accelerometer to measure motion and photodetectors to monitor ambient lighting. It is an upgrade of previous technology used on the space station to monitor the length and quality of crew member sleep. Data from earlier missions show that crew members slept significantly less during spaceflight than before and after. The Actiwatch Sleep-Long investigation used an earlier version of the device to examine how ambient light affects the sleep-wake cycle and found an association between sleep deficiency and changes during spaceflight in circadian patterns, or the body’s response to a normal 24-hour light and dark cycle. Follow up studies are testing lighting systems to address these effects and help astronauts maintain healthy circadian rhythms.
      NASA astronaut Sunita Williams wears an Actiwatch as she conducts research.NASA Wearable Monitoring tested a lightweight vest with embedded sensors to monitor heart rate and breathing patterns during sleep and help determine whether changes in heart activity affect sleep quality. The technology offers a significant advantage by monitoring heart activity without waking the test subject and could help patients on Earth with sleep disorders. Researchers reported positive performance and good quality of recorded signals, suggesting that the vest can contribute to comprehensive monitoring of individual health on future spaceflight and in some settings on Earth as well.
      These and other studies support development of countermeasures to improve sleep for crew members, helping to maintain alertness and lessen fatigue during missions.
      (Not) waiting to exhale
      Humans exhale carbon dioxide and too much of it can build up in closed environments, causing headaches, dizziness, and other symptoms. Spacecraft have systems to remove this substance from cabin air, but pockets of carbon dioxide can form and be difficult to detect and remove. Personal CO2 Monitor tested specially designed sensors attached to clothing to monitor the wearer’s immediate surroundings. Researchers reported that the devices functioned adequately as either crew-worn or static monitors, an important step toward using them to determine how carbon dioxide behaves in enclosed systems like spacecraft.
      One of the wearable carbon dioxide monitors clipped to the wall near a crew sleeping compartment. Radiation in real time
      EVARM, an investigation from CSA (Canadian Space Agency), used small wireless dosimeters carried in a pocket to measure radiation exposure during spacewalks. The data showed that this method is a feasible way to measure radiation exposure, which could help focus routine dosage monitoring where it is most needed. Any shielding and countermeasures developed also could help protect people who work in high-radiation areas on Earth.
      ESA’s Active Dosimeter tested a radiation dosimeter worn by crew members to measure changes in their exposure over time based on the space station’s orbit and altitude, the solar cycle, and solar flares. Measurements from the device allowed researchers to analyze radiation dosage across an entire space mission.
      ESA astronaut Thomas Pesquet holds one of the mobile units for the Active Dosimeter study.NASA The Active Dosimeter also was among the instruments used to measure radiation on NASA’s Orion spacecraft during its 25.5-day uncrewed Artemis I mission around the Moon and back in 2022.
      Another device tested on the space station and then on Artemis I, AstroRad Vest is designed to protect astronauts from solar particle events. Researchers used these and other radiation measuring devices to show that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions.
      The International Space Station serves as an important testbed for these technologies and many others being developed for future missions to the Moon and beyond.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Humans In Space
      Space Station Technology Demonstration
      Space Station Research and Technology
      Station Science 101: Human Research
      View the full article
  • Check out these Videos

×
×
  • Create New...