Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Sols 4323-4324: Surfin’ Our Way out of the Channel

A grayscale image of the Martian surface shows undulating, windswept dunes of dark gray soil dominating the foreground in front of the rover, covering most of the frame from the upper left to lower right.
An image from NASA’s Mars rover Curiosity, looking back at the western edge of the Gediz Vallis deposit (top left) and the channel wall in the sulfate unit with unconsolidated sand/soil deposits in the foreground. This image was taken by Curiosity’s Left Navigation Camera on Sol 4321 — Martian day 4,321 of the Mars Science Laboratory mission — on Oct. 2, 2024, at 02:13:27 UTC.
NASA/JPL-Caltech

Earth planning date: Wednesday, Oct. 2, 2024

As a member of the group tasked with organizing our campaign to investigate the Gediz Vallis channel and deposit (informally known as the Channel Surfers), I was a little sad this morning to see that our drive had successfully taken us out of the channel, back onto the magnesium sulfate-bearing unit, into which the channel is incised. Our long-anticipated investigation of the channel has proven fruitful: Curiosity made the first definitive detection of elemental sulfur on Mars, and we have examined a variety of intriguing lithologies and relationships within the deposit over the last 4.5 months. It has been an exciting time, and I have particularly enjoyed riding this wave with my fellow Channel Surfers — a great team! Now to make sense of all the fantastic data we have collected.

We are not completely done looking at the channel and deposits though. We will be driving parallel to the western margin for a while to facilitate comparisons with what we observed from the east. Tosol we will image two areas of interest within the Gediz Vallis channel from our current vantage point with Mastcam and ChemCam long-distance RMI. But back to the sulfate unit — the team planned a number of activities to document the return to the sulfate unit. These include APXS and MAHLI of the nodular bedrock immediately in front of the rover (“Sub Dome”), ChemCam LIBS and Mastcam of another bedrock block (“Vert Lost Grove”), and Mastcam of the resistant bedrock ridge immediately adjacent to the Gediz Vallis channel (“Muah Mountain”).

Once the drive of about 25 meters (about 82 feet) hopefully executes successfully, Curiosity will look down and image the terrain between her front wheels with MARDI, acquire ChemCam LIBS on an autonomously selected target in the workspace, and then perform a series of atmospheric and environmental observations. These include a Mastcam tau to measure dust in the atmosphere, Navcam dust devil and suprahorizon movies, and a Navcam line-of-sight observation. The plan is rounded out with DAN, RAD, and REMS activities.

Written by Lucy Thompson, Planetary Geologist at University of New Brunswick

Share

Details

Last Updated
Oct 03, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      A study using data from ESA’s Swarm mission suggests that faint magnetic signatures created by Earth’s tides can help us determine magma distribution under the seabed and could even give us insights into long-term trends in global ocean temperatures and salinity.
      View the full article
    • By NASA
      On Jan. 19, 1965, Gemini 2 successfully completed the second of two uncrewed test flights of the spacecraft and its Titan II booster, clearing the way for the first crewed mission. The 18-minute suborbital mission achieved the primary goals of flight qualifying the Gemini spacecraft, especially its heat shield during a stressful reentry. Recovery forces retrieved the capsule following its splashdown, allowing engineers to evaluate how its systems fared during the flight. The success of Gemini 2 enabled the first crewed mission to fly two months later, beginning a series of 10 flights over the following 20 months. The astronauts who flew these missions demonstrated the rendezvous and docking techniques necessary to implement the Lunar Orbit Rendezvous method NASA chose for the Moon landing mission. They also proved that astronauts could work outside their spacecraft during spacewalks and that spacecraft and astronauts could function for at least eight days, the minimum time for a roundtrip lunar mission. The Gemini program proved critical to fulfill President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. 
      Cutaway diagram of the Gemini spacecraft. Workers at Launch Pad 19 lift Gemini 2 to mate it with its Titan II rocket. At Pad 19, engineers verify the flight simulators inside Gemini 2. Following the success of Gemini 1 in April 1964, NASA had hoped to fly the second mission before the end of the year and the first crewed mission by January 1965. The two stages of the Titan II rocket arrived at Cape Kennedy from the Martin Marietta factory in Baltimore on July 11, and workers erected it on Launch Pad 19 five days later. A lightning strike at the pad on Aug. 17 invalidated all previous testing and required replacement of some pad equipment. A series of three hurricanes in August and September forced workers to partially or totally unstack the vehicle before stacking it for the final time on Sept. 14. The Gemini 2 spacecraft arrived at Cape Kennedy from its builder, the McDonnell Company in St. Louis, on Sept. 21, and workers hoisted it to the top of the Titan II on Oct. 18. Technical issues delayed the spacecraft’s physical mating to the rocket until Nov. 5. These accumulated delays pushed the launch date back to Dec. 9. 

      The launch abort on Dec. 9, 1964. Liftoff of Gemini 2 from Launch Pad 19 on Jan. 19, 1965. Engineers in the blockhouse monitor the progress of the Titan II during the ascent. Fueling of the rocket began late on Dec. 8, and following three brief holds in the countdown, the Titan’s two first stage engines ignited at 11:41 a.m. EST on Dec. 9. and promptly shut down one second later. Engineers later determined that a cracked valve resulted in loss of hydraulic pressure, causing the malfunction detection system to switch to its backup mode, forcing a shutdown of the engines. Repairs meant a delay into the new year. On Jan. 19, 1965, following a mostly smooth countdown, Gemini 2 lifted off from Pad 19 at 9:04 a.m. EST. 

      The Mission Control Center (MCC) at NASA’s Kennedy Space Center in Florida. In the MCC, astronauts Eugene Cernan, left, Walter Schirra, Gordon Cooper, Donald “Deke” Slayton, and Virgil “Gus” Grissom monitor the Gemini 2 flight. In the Gemini Mission Control Center at NASA’s Kennedy Space Center in Florida, Flight Director Christopher C. Kraft led a team of flight controllers that monitored all aspects of the flight. At the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, a team of controllers led by Flight Director John Hodge passively monitored the flight from the newly built Mission Control Center. They would act as observers for this flight and Gemini 3, the first crewed mission, before taking over full control with Gemini IV, and control all subsequent American human spaceflights. The Titan rocket’s two stages placed Gemini 2 into a suborbital trajectory, reaching a maximum altitude of 98.9 miles, with the vehicle attaining a maximum velocity of 16,709 miles per hour. Within a minute after separating from the Titan’s second stage, Gemini 2 executed a maneuver to orient its heat shield in the direction of flight to prepare for reentry. Flight simulators installed where the astronauts normally would sit controlled the maneuvers. About seven minutes after liftoff, Gemini 2 jettisoned its equipment section, followed by firing of the retrorockets, and then separation of the retrorocket section, exposing the spacecraft’s heat shield. 

      View from a camera mounted on a cockpit window during Gemini 2’s reentry. View from the cockpit window during Gemini 2’s descent on its parachute. Gemini 2 then began its reentry, the heat shield protecting the spacecraft from the 2,000-degree heat generated by friction with the Earth’s upper atmosphere. A pilot parachute pulled away the rendezvous and recovery section. At 10,000 feet, the main parachute deployed, and Gemini 2 descended to a splashdown 2,127 miles from its launch pad, after a flight of 18 minutes 16 seconds. The splashdown took place in the Atlantic Ocean about 800 miles east of San Juan, Puerto Rico, and 25 miles from the prime recovery ship, the U.S.S. Lake Champlain (CVS-39). 

      A U.S. Navy helicopter hovers over the Gemini 2 capsule following its splashdown as a diver jumps into the water. Sailors hoist Gemini 2 aboard the U.S.S. Lake Champlain. U.S. Navy helicopters delivered divers to the splashdown area, who installed a flotation collar around the spacecraft. The Lake Champlain pulled alongside, and sailors hoisted the capsule onto the carrier, securing it on deck one hour forty minutes after liftoff. The spacecraft appeared to be in good condition and arrived back at Cape Kennedy on Jan. 22 for a thorough inspection. As an added bonus, sailors recovered the rendezvous and recovery section. Astronaut Virgil “Gus” Grissom, whom along with John Young NASA had selected to fly the first crewed Gemini mission, said after the splashdown, “We now see the road clear to our flight, and we’re looking forward to it.” Flight Director Kraft called it “very successful.” Gemini Program Manager Charles Matthews predicted the first crewed mission could occur within three months. Gemini 3 actually launched on March 23. 
      Enjoy this NASA video of the Gemini 2 mission. 
      Postscript 
      The Gemini-B capsule and a Manned Orbiting Laboratory (MOL) mockup atop a Titan-IIIC rocket in 1966. The flown Gemini-B capsule on display at the Cape Canaveral Space Force Museum in Florida. Former MOL and NASA astronaut Robert Crippen stands beside the only flown Gemini-B capsule – note the hatch in the heat shield at top. Gemini 2 not only cleared the way for the first crewed Gemini mission and the rest of the program, it also took on a second life as a test vehicle for the U.S. Air Force’s Manned Orbiting Laboratory (MOL). The Air Force modified the spacecraft, including cutting a hatch through its heat shield, renamed it Gemini-B, and launched it on Nov. 3, 1966, atop a Titan IIIC rocket. The test flight successfully demonstrated the hatch in the heat shield design during the capsule’s reentry after a 33-minute suborbital flight. Recovery forces retrieved the Gemini-B capsule in the South Atlantic Ocean and returned it to the Air Force for postflight inspection. This marked the only repeat flight of an American spacecraft intended for human spaceflight until the advent of the space shuttle. Visitors can view Gemini 2/Gemini-B on display at the Cape Canaveral Space Force Museum.  
      View the full article
    • By European Space Agency
      Video: 00:02:05 This is a new artist’s animation of our galaxy, the Milky Way, based on data from ESA’s Gaia space telescope.
      Gaia has changed our impression of the Milky Way. Even seemingly simple ideas about the nature of our galaxy’s central bar and the spiral arms have been overturned. Gaia has shown us that it has more than two spiral arms and that they are less prominent than we previously thought. In addition, Gaia has shown that its central bar is more inclined with respect to the Sun.
      No spacecraft can travel beyond our galaxy, so we can’t take a selfie, but Gaia is giving us the best insight yet of what our home galaxy looks like. Once all of Gaia’s observations collected over the past decade are made available in two upcoming data releases, we can expect an even sharper view of the Milky Way.
      Click here to download the still image of the Milky Way.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4416-4417: New Year, New Clouds
      NASA’s Mars rover Curiosity captured this image of noctilucent clouds using its Right Navigation Camera on sol 4401 — or Martian day 4,401 of the Mars Science Laboratory mission — on Dec. 23, 2024, at 08:57:15 UTC. NASA/JPL-Caltech Earth planning date: Monday, Jan. 6, 2025
      After our marathon holiday plan, we’re easing back into the new year with a standard two-sol plan. We did arrive today to the news that the drive hadn’t made it as far as we wanted, but luckily the rover planners determined that we were still in a good position to do contact science on two wintry targets — “Snow Creek” and “Winter Creek.” We also packed in lots of remote science with ChemCam using LIBS on “Grapevine” and “Skull Rock,” and we are doing long-distance imaging of the Texoli and Wilkerson buttes, and Gould Mesa. Mastcam will be imaging a number of targets near and far as well including “Red Box”’ “Point Mugu,” “Stone Canyon,” “Pine Cove,” and “Hummingbird Sage,” which will examine various structures in the bedrock. We can’t forget about the atmosphere either — we have a couple dust-devil surveys to look for dust lifting, but the real star of the show (at least for me) is the cloud imaging.
      While we’re just into 2025 here on Earth, we’re also near the start of a new year on Mars! A Mars year starts at the northern vernal equinox (or the start of autumn in the southern hemisphere, where Curiosity is), and Mars year 38 started on Nov. 12.
      We’re about a third of the way through autumn on Mars now, and the southern Martian autumn and winter bring one thing — clouds! Near the start of the Martian year we start seeing clouds around sunset. These are noctilucent (meaning “night illuminated”) clouds. Even though the sun has set in Gale Crater, the clouds are high enough in the atmosphere that the sun still shines on them, making them seem to almost glow in the sky. You can see this with clouds on Earth, too, around twilight! Mars year 38 will be our fourth year capturing these twilight clouds, and the Navcam images (one of which you can see above) already show it’s shaping up to be another year of spectacular clouds!
      Written by Alex Innanen, Atmospheric Scientist at York University
      Share








      Details
      Last Updated Jan 08, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4402-4415: Rover Decks and Sequence Calls for the Holidays


      Article


      1 week ago
      4 min read Sols 4398-4401: Holidays Ahead, Rocks Under the Wheels


      Article


      3 weeks ago
      3 min read Perseverance Blasts Past the Top of Jezero Crater Rim


      Article


      3 weeks ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4402-4415: Rover Decks and Sequence Calls for the Holidays
      An image under the left-front wheel of NASA’s Mars rover Curiosity shows a block that Curiosity drove over and possibly broke in half. The rover acquired this image using its Mars Descent Imager (MARDI) on sol 4396 — Martian day 4,396 of the Mars Science Laboratory mission — on Dec. 18, 2024 at 06:03:35 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Friday, Dec. 20, 2024
      Welcome to the 2024 holiday plan for Curiosity! This year we’re spanning 14 sols to last us through the Earth new year. And this is my fourth year operating Mastcam during the holidays (throwback to 2023 Marsmas!). I already knew to expect a long day, so I got my lunch prepared — blew Mars a kiss in the pre-dawn sky — and headed to work at 0600 Pacific time to start planning prep. Luckily my team got a head start on Mastcam images by including a full 360-degree panorama, post-drive, last plan, so I just had to fill in some gaps and cover some buttes with our higher-resolution camera. In total we’re only planning about 438 images this holiday, which is a pretty light haul if you can believe it! We also didn’t pass SRAP to unstow the arm (again) today, which is a bummer for science but usually makes my job easier since Mastcam doesn’t have to worry about where the arm might be during our imaging. One instrument’s coal is another instrument’s present!
      So we’re doing things a little funky this holiday. We’re planning science on the first, seventh, 13th, and 14th sols — with a drive and a soliday! The hardest part of this plan was keeping it all straight in our heads.
      Without any contact science planned, MAHLI went on holiday early (actually, she’s been out all week!) and APXS only had to babysit an atmospheric integration, which doesn’t require any arm motion. ChemCam has three LIBS and four RMI mosaics planned, which is definitely more than usual. But actually, the highest sequence count for today goes to Mastcam! Our usual limit is around 20 sequences for complexity reasons, but today I delivered 34 total sequences. Of those 34 sequences, 10 are for tracking surface changes from wind, seven are for measuring the atmospheric opacity, three are ChemCam LIBS documentations, three are for documenting our location post-drive, two are large mosaics of Texoli and Wilkerson buttes, and two are for noctilucent cloud searching (our first attempts to find clouds this Martian winter!).
      With any luck, we’ll start passing SRAP again in 2025 after another approximately 58-meter drive (about 190 feet). Until then, Earthlings — Merry Marsmas and Happy Earth New Year!
      Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Share








      Details
      Last Updated Dec 30, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4398-4401: Holidays Ahead, Rocks Under the Wheels


      Article


      2 weeks ago
      3 min read Perseverance Blasts Past the Top of Jezero Crater Rim


      Article


      2 weeks ago
      3 min read Sols 4396-4397: Roving in a Martian Wonderland


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...