Jump to content

Commercial and Intellectual Property Law


NASA

Recommended Posts

  • Publishers

About

The Commercial and Intellectual Property Law Practice Group is responsible for providing Agency-wide legal advice for negotiating, drafting, and interpreting Space Act Agreements; for partnering arrangements with commercial organizations; and, for commercialization of NASA activities.  The Practice Group also provides advice and counsel in patents, copyrights, and trade secrets.

  • Intellectual Property Group: For the area of patents, the Practice Group has an Intellectual Property division devoted to providing functional guidance with respect to patent solicitation to ensure application of uniform criteria Agency-wide. In addition, the division supports the implementation of policies and procedures related to patent and copyright licensing and supports the U.S. Department of Justice in patent infringement-related claims.

Contacts

Associate General Counsel:
Karen Reilley

Agency Counsel for Intellectual Property:
Trent Roche

Paralegal Specialist:
Ruth Catan

Attorney Staff: 
Merideth Bentley
Joe Fleishman
Jeffrey Heninger
Margaret Roberts
Olivia Scheuer

OGC Disclaimer: The materials within this website do not constitute legal advice. For details read our disclaimer.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Delta 8 recently partnered with the JCO cell integrate Space Cockpit-customized dashboards into their COP on their operations floors providing them a tailored approach to domain awareness and to set specific alert parameters to bring their attention quickly to an asset that may be at risk.

      View the full article
    • By NASA
      Credit: NASA NASA has selected eight companies for a new award to help acquire Earth observation data and provide related services for the agency.
      The Commercial SmallSat Data Acquisition Program On-Ramp1 Multiple Award contract is a firm-fixed-price indefinite-delivery/indefinite-quantity multiple-award contract with a maximum value of $476 million, cumulatively amongst all the selected contractors, and a performance period through Nov. 15, 2028.
      The selectees are:
      BlackSky Geospatial Solutions, Inc. in Herndon, Virginia ICEYE US Inc. in Irvine, California MDA Geospatial Service Inc. in Richmond, British Columbia, Canada Pixxel Space Technologies, Inc in El Segundo, California Planet Labs Federal, Inc. in Arlington, Virginia Satellogic Federal, LLC in Davidson, North Carolina Teledyne Brown Engineering, Inc. in Huntsville, Alabama The Tomorrow Companies Inc. in Boston Under the contract, the recipients will be responsible for acquiring observation data from commercial sources that support NASA’s Earth science research and application activities that help improve life on the planet. The goal of the awards is to give NASA a cost-effective way to augment or complement the Earth observations acquired by the agency and other U.S. government and international agencies for the benefit of all.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      SmallSats Program Earth Earth Observatory NASA Headquarters Planetary Science Division Science Mission Directorate View the full article
    • By NASA
      A pair of CubeSats from NASA’s Pathfinder Technology Demonstrator series launched on SpaceX’s Transporter-11 rideshare mission at 11:56 a.m. PDT Friday, August 16, from Vandenburg Space Force Base in California. Photo credit: SpaceX A pair of CubeSats from NASA’s Pathfinder Technology Demonstrator, or PTD, series lifted off on SpaceX’s Transporter-11 rideshare mission at 11:56 a.m. PDT Friday, August 16, from Vandenburg Space Force Base in California. The two small satellites, PTD-4 and PTD-R, will help advance NASA’s efforts to validate novel technologies and increase small spacecraft capabilities in order to shape the future of space exploration and technology.
      PTD-4 will demonstrate a high-power, low-volume deployable solar array with an integrated antenna, while PTD-R will focus on testing simultaneous ultraviolet and short-wave infrared optical sensing from space for the first time via two 85-mm aperture monolithic telescopes mounted side-by-side. The two CubeSats use a six-unit (6U) spacecraft, named Triumph, common to all PTD satellites.
      L2 Solutions DBA SEOPS LLC secured the launch of the two CubeSats for NASA as part of an award on the agency’s VADR (Venture-class Acquisition of Dedicated and Rideshare) contract. This is part of an effort to embrace more commercial practices to achieve lower launch costs, which provide new opportunities for these small but highly capable small satellites to find a ride to space. These highly flexible contracts help broaden access to space through lower launch costs and serve as an ideal platform for contributing to NASA’s science research and technology development.
      Learn more about the PTD missions at: https://www.nasa.gov/smallspacecraft/pathfinder-technology-demonstrator/
      View the full article
    • By NASA
      NASA’s Northrop Grumman 21st commercial resupply mission will launch on a SpaceX Falcon 9 rocket to deliver research and supplies to the International Space Station.NASA NASA’s Northrop Grumman 21st commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.NASA NASA, Northrop Grumman, and SpaceX are targeting no earlier than 11:28 a.m. EDT on Saturday, Aug. 3, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station. Filled with more than 8,200 pounds of supplies, the Cygnus cargo spacecraft, carried on the SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This launch is the 21st Northrop Grumman commercial resupply services mission to the orbital laboratory for the agency.
      Live launch coverage will begin at 11:10 a.m. and stream on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms.
      Learn more at: www.nasa.gov/northropgrumman
      Northrop Grumman S.S. Richard “Dick” Scobee
      NASA selected Richard Scobee as an astronaut in 1978. Scobee flew as a pilot of STS 41-C and was the commander of STS 51-L. The STS 51-L crew, including Scobee, died on January 28, 1986, when space shuttle Challenger exploded after launch.NASA Arrival & Departure
      The Cygnus spacecraft will arrive at the orbiting laboratory on Monday, Aug. 5, filled with supplies, hardware, and critical materials to directly support dozens of scientific and research investigations during Expeditions 71 and 72. NASA astronaut Matthew Dominick will capture Cygnus using the station’s robotic arm, and NASA astronaut Jeanette Epps will act as backup.
      After capture, the spacecraft will be installed on the Unity module’s Earth-facing port and will spend almost six months connected to the orbiting laboratory before departing in January 2025. Cygnus also provides the operational capability to reboost the station’s orbit.
      Live coverage of Cygnus’ arrival will begin at 2:30 a.m. Aug. 5 on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.
      NASA astronauts Matthew Dominick and Jeanette Epps will be on duty during the Cygnus spacecraft’s approach and rendezvous. Dominick will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as Epps monitors the vehicle’s arrival.NASA Research Highlights
      Scientific investigations traveling in the Cygnus spacecraft include tests of water recovery technology and a process to produce blood and immune stem cells in microgravity, studies of the effects of spaceflight on engineered liver tissue and microorganism DNA, and live science demonstrations for students.
      Gravitational Effects on Filtration Systems
      The Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles.NASA The Packed Bed Reactor Experiment: Water Recovery Series investigates how gravity affects two-phase flow or simultaneous movement of gas and liquid through porous media. Teams will evaluate eight different test articles representing components found in the space station’s water processor or urine processor to understand two-phase flows for both liquid and gas in microgravity.
      Packed bed reactors are structures that use “packing” of objects, usually pellet-like catalysts, of various shapes and materials to increase contact between different phases of fluids. These systems are used for a variety of applications such as water recovery, thermal management, and fuel cells, and the experiment develops a set of guidelines and tools to optimize their design and operation for water filtration and other systems in microgravity and on the Moon and Mars. Insights from the investigation also could lead to improvements in this technology for applications on Earth such as water purification and heating and cooling systems.
      Balloon Sounds in Space
      The Office of STEM Engagement’s Next Gen STEM Project, STEMonstrations, that will demonstration the effects centripetal force has on sounds during spaceflight.NASA’s Office of STEM Engagement STEMonstrations, as part of NASA’s Next Gen STEM (science, technology, engineering, and mathematics) Project, are performed and recorded by astronauts on the space station. Each NASA STEMonstration illustrates a different scientific concept, such as centripetal force, and includes resources to help teachers further explore the topics with their students.
      Astronauts will demonstrate centripetal force on the space station using a penny, a hexnut, and two clear balloons. The penny and the hexnut are whirled inside of the inflated balloon to compare the sounds made in a microgravity environment.
      Cell Production on Station
      The production of blood and immune stem cells on the space station with the BioServe In-Space Cell Expansion Platform (BICEP).NASA In-Space Expansion of Hematopoietic Stem Cells for Clinical Application (InSPA-StemCellEX-H1) tests hardware to produce human hematopoietic stem cells (HSCs) in space. HSCs give rise to blood and immune cells and are used in therapies for patients with certain blood diseases, autoimmune disorders, and cancers.
      Researchers use BioServe In-Space Cell Expansion Platform, a stem cell expansion bioreactor designed to expand the stem cells three hundredfold without the need to change or add new growth media.
      Someone in the United States is diagnosed with a blood cancer about every three minutes. Treating patients with transplanted stem cells requires a donor-recipient match and long-term repopulation of transplanted stem cells. This investigation demonstrates whether expanding stem cells in microgravity could generate far more continuously renewing stem cells.
      Spaceflight Effects on DNA
      The Rotifer-B2 investigation on the Internation Space Station explores the effects of spaceflight on DNA (deoxyribonucleic acid) repair mechanisms.ESA (European Space Agency) Rotifer-B2, an ESA (European Space Agency) investigation, explores how spaceflight affects DNA (deoxyribonucleic acid) repair mechanisms in a microscopic organisms called bdelloid rotifer, or Adineta vaga. These tiny but complex organisms are known for their ability to withstand harsh conditions, including radiation doses 100 times higher than human cells can survive.
      Researchers culture rotifers, microorganisms that inhabit mainly freshwater aquatic environments, in an incubator facility on the space station. After exposure to microgravity conditions, the samples provide insights into how spaceflight affects the rotifer’s ability to repair sections of damaged DNA in a microgravity environment and could improve the general understanding of DNA damage and repair mechanisms for applications on Earth.
      Bioprinting Tissue
      The Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) investigation used to conduct bioprinting of tissue on the space station. NASA Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) examines engineered liver tissue constructs that contain blood vessels. Researchers aim to learn more about the progression of tissue and development of blood vessels in engineered tissues on the space station.
      The experiment observes how bioprinted liver tissue behaves in space and whether microgravity causes changes in cell shape, size, and volume. The formation of tissue structures and vascular linings also are studied to ensure proper structure generation in orbit. Bioprinting in microgravity may enable the manufacturing of high-quality tissues and organs that are difficult to maintain on the ground, which could help advance space-based production of tissues and functional organs to treat patients on Earth.
      Cargo Highlights
      SpaceX’s Falcon 9 rocket will launch the Northrop Grumman Cygnus spacecraft to the International Space Station.
      NASA’s Northrop Grumman 21st commercial resupply mission will carry more than 8,500 pounds (3,856 kilograms) of cargo to the International Space Station.NASA Hardware
      International Space Station Roll Out Solar Array Modification Kit 8 – This upgrade kit consists of power cables and large structural components such as a backbone, mounting brackets, and two sets of struts. This kit will support the installation of the eighth set of roll out solar arrays located on the S6 truss segment of orbiting laboratory in 2025. The new arrays are designed to augment the station’s original solar arrays which have degraded over time. The replacement solar arrays are installed on top of existing arrays to provide a net increase in power with each array generating more than 20 kilowatts of power.
      Plant Habitat Environmental Control System – The environmental control system is a component of the Advanced Plant Habitat and controls the temperature, humidity, and air flow in the growth chamber. The habitat is an enclosed, fully automated plant growth facility that will conduct plant bioscience research in orbit for up to 135 days and complete at least one year of continuous operation without maintenance.
      Rate Gyro Enclosure Assembly – The Rate Gyro Assembly determines the rate of angular motion of the space station. The assembly is integrated into the enclosure housing on ground to protect the hardware for launch and in-orbit storage. This unit will serve as an in-orbit spare.
      European Enhanced Exploration Exercise Device & Vibration Isolation and Stabilization System (E4D VIS) Assembly Kit – This assembly kit consists of fasteners, clips, and labels to be used during the in-orbit assembly projected to be completed in mid-2025. ESA and the Danish Aerospace Company developed the E4D to address the challenge of preventing muscle and bone deterioration during long space missions. Some key features of E4D are resistive exercise, cycling ergonomic exercise, rowing, and rope pulling.
      X-Y Rotation Axis Launch Configuration – This assembly consists of the X-Y-Rotational and Translational subassemblies in the flight configuration and adds the launch stabilization hardware to protect the various axes of motions for the transport to the space station. Once in orbit, the stabilizing hardware will be discarded, and the remaining assembly will then be installed into the Columbus module location with other subassemblies to provide a base for the E4D exercise device.
      Pressure Control and Pump Assembly – This assembly evacuates the Distillation Assembly at startup, periodically purges non-condensable gases and water vapor, and pumps them into the Separator Plumbing Assembly as part of the Urine Processing Assembly. This unit will serve as an in-orbit spare to ensure successful urine processing operation capability without interruption.
      Resupply Water Tanks – The resupply water tanks are cylindrical composite fibrewound pressure tanks that provide stored potable water for the space station.
      NORS (Nitrogen/Oxygen Recharge System) Maintenance Tank/Recharge Tank Assembly, Nitrogen – The NORS Maintenance Kit is comprised of two separate assemblies: the NORS Recharge Tank Assembly and the NORS Vehicle Interface Assembly. The recharge tank assembly will be pressurized for launch with Nitrogen gas. The vehicle interface assembly will protect the recharge tank assembly for launch and stowage aboard the space station.
      Tungsten Plates – A total of 14 tungsten plates will serve as the counter mass of the Vibration Isolation & Stabilization System designed to integrate with the European Enhanced Exercise Device.
      Watch and Engage
      Live coverage of the launch from Cape Canaveral Space Force Station will stream on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Coverage will begin at 11:10 a.m. on Aug. 3.
      Live coverage of Cygnus’ arrival at the space station will begin at 2:30 a.m. Aug. 5 on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.
      View the full article
    • By NASA
      Sierra Space’s LIFE habitat following a full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center in Huntsville, AlabamaSierra Space An element of a NASA-funded commercial space station, Orbital Reef, under development by Blue Origin and Sierra Space, recently completed a full-scale ultimate burst pressure test as part of the agency’s efforts for new destinations in low Earth orbit.
      NASA, Sierra Space, and ILC Dover teams conducting a full-scale ultimate burst pressure test on Sierra Space’s LIFE habitat structure using testing capabilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Video Credits: Sierra Space This milestone is part of a NASA Space Act Agreement awarded to Blue Origin in 2021. Orbital Reef includes elements provided by Sierra Space, including the LIFE (Large Integrated Flexible Environment) habitat structure.
      A close-up view of Sierra Space’s LIFE habitat, which is fabricated from high-strength webbings and fabric, after the pressurization to failure experienced during a burst test.Sierra Space Teams conducted the burst test on Sierra Space’s LIFE habitat structure using testing capabilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The inflatable habitat is fabricated from high-strength webbings and fabric that form a solid structure once pressurized. The multiple layers of soft goods materials that make up the shell are compactly stowed in a payload fairing and inflated when ready for use, enabling the habitat to launch on a single rocket.
      A close-up view of a detached blanking plate from the Sierra Space’s LIFE habitat structure following its full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The plate is used to test the concept of a habitat window.Sierra Space “This is an exciting test by Sierra Space for Orbital Reef, showing industry’s commitment and capability to develop innovative technologies and solutions for future commercial destinations,” said Angela Hart, manager of NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “Every successful development milestone by our partners is one more step to achieving our goal of enabling commercial low Earth orbit destinations and expanding the low Earth orbit marketplace.”
      Dr. Tom Marshburn, Sierra Space chief medical officer, speaks with members of the Sierra Space team following the burst test.Sierra Space The pressurization to failure during the test demonstrated the habitat’s capabilities and provided the companies with critical data supporting NASA’s inflatable softgoods certification guidelines, which recommend a progression of tests to evaluate these materials in relevant operational environments and understand the failure modes.
      Sierra Space’s LIFE habitat following a full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center in Huntsville, Alabama.Sierra Space Demonstrating the habitat’s ability to meet the recommended factor of safety through full-scale ultimate burst pressure testing is one of the primary structural requirements on a soft goods article, such as Sierra Space’s LIFE habitat, seeking flight certification.

      Prior to this recent test, Sierra Space conducted its first full-scale ultimate burst pressure test on the LIFE habitat at Marshall in December 2023. Additionally, Sierra Space previously completed subscale tests, first at NASA’s Johnson Space Center in Houston and then at Marshall as part of ongoing development and testing of inflatable habitation architecture.
      Sierra Space’s LIFE habitat on the test stand at NASA’s Marshall Space Flight Center ahead of a burst test. The LIFE habitat will be part of Blue Origin’s commercial destination, Orbital Reef.Sierra Space NASA supports the design and development of multiple commercial space stations, including Orbital Reef, through funded and unfunded agreements. The current design and development phase will be followed by the procurement of services from one or more companies.

      NASA’s goal is to achieve a strong economy in low Earth orbit where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/humans-in-space/commercial-space
      Keep Exploring Discover More Topics From NASA
      Commercial Destinations in Low Earth Orbit
      Low Earth Orbit Economy Latest News
      Humans In Space
      Marshall Space Flight Center
      View the full article
  • Check out these Videos

×
×
  • Create New...