Jump to content

Recommended Posts

  • Publishers
Posted

About

The Commercial and Intellectual Property Law Practice Group is responsible for providing Agency-wide legal advice for negotiating, drafting, and interpreting Space Act Agreements; for partnering arrangements with commercial organizations; and, for commercialization of NASA activities.  The Practice Group also provides advice and counsel in patents, copyrights, and trade secrets.

  • Intellectual Property Group: For the area of patents, the Practice Group has an Intellectual Property division devoted to providing functional guidance with respect to patent solicitation to ensure application of uniform criteria Agency-wide. In addition, the division supports the implementation of policies and procedures related to patent and copyright licensing and supports the U.S. Department of Justice in patent infringement-related claims.

Contacts

Associate General Counsel:
Karen Reilley

Agency Counsel for Intellectual Property:
Trent Roche

Paralegal Specialist:
Ruth Catan

Attorney Staff: 
Merideth Bentley
Joe Fleishman
Jeffrey Heninger
Margaret Roberts
Olivia Scheuer

OGC Disclaimer: The materials within this website do not constitute legal advice. For details read our disclaimer.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has selected multiple companies to expand the agency’s Near Space Network’s commercial direct-to-Earth capabilities services, which is a mission-critical communication capability that allows spacecraft to transmit data directly to ground stations on Earth.
      The work will be awarded under new Near Space Network services contracts that are firm-fixed-price, indefinite-delivery/indefinite-quantity contracts. Project timelines span from February 2025 to September 2029, with an additional five-year option period that could extend a contract through Sept. 30, 2034. The cumulative maximum value of all Near Space Network Services contracts is $4.82 billion.
      Some companies received multiple task orders for subcategories identified in their contracts. Awards are as follows:
      Intuitive Machines of Houston will receive two task order awards on its contract for Subcategory 1.2 GEO to Cislunar Direct to Earth (DTE) Services and Subcategory 1.3 xCislunar DTE Services to support NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network and to meet the mission requirements for unique, highly elliptical orbits. The company also previously received a task order award for Subcategory 2.2 GEO to Cislunar Relay Services. Kongsberg Satellite Services of Tromsø, Norway, will receive two task order awards on its contract for Subcategory 1.1 Earth Proximity DTE and Subcategory 1.2 to support science missions in low Earth orbit and NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network. SSC Space U.S. Inc. of Horsham, Pennsylvania, will receive two task order awards on its contract for Subcategories 1.1 and 1.3 to support science missions in low Earth orbit and to meet the mission requirements for unique, highly elliptical orbits. Viasat, Inc. of Duluth, Georgia, will be awarded a task order on its contract for Subcategory 1.1 to support science missions in low Earth orbit. The Near Space Network’s direct-to-Earth capability supports many of NASA’s missions ranging from climate studies on Earth to research on celestial objects. It also will play a role in NASA’s Artemis campaign, which calls for long-term exploration of the Moon.
      NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.
      These awards demonstrate NASA’s ongoing commitment to fostering strong partnerships with the commercial space sector, which plays an essential role in delivering the communications infrastructure critical to the agency’s science and exploration missions.
      As part of the agency’s SCaN (Space Communications and Navigation) Program, teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will carry out the work of the Near Space Network. The Near Space Network provides missions out to 1.2 million miles (2 million kilometers) with communications and navigation services, enabling spacecraft to exchange critical data with mission operators on Earth. Using space relays in geosynchronous orbit and a global system of government and commercial direct-to-Earth antennas on Earth, the network brings down terabytes of data each day.
      Learn more about NASA’s Near Space Network:
      https://www.nasa.gov/near-space-network
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Maryland
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The SpaceX Dragon Freedom spacecraft carrying NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov approaches the International Space Station as it orbited 261 miles above Ontario, Canada, near James Bay. NASA published a new report Thursday highlighting 17 agency mechanisms that have directly and indirectly supported the development and growth of the U.S. commercial space sector for the benefit of humanity.
      The report, titled Enabling America on the Space Frontier: The Evolution of NASA’s Commercial Space Development Toolkit, is available on the agency’s website.
      “This is the most extensive and comprehensive historical analysis produced by NASA on how it has contributed to commercial space development over the decades,” said Alex MacDonald, NASA chief economist. “These efforts have given NASA regular access to space with companies, such as SpaceX and Rocket Lab, modernizing our communications infrastructure, and even led to the first private lunar lander thanks to Intuitive Machines. With commercial space growth accelerating, this report can help agency leaders and stakeholders assess the numerous mechanisms that the agency uses to support this growth, both now and in the future.”
      Throughout its history, NASA has supported the development of the commercial space sector, not only leading the way in areas such as satellite communications, launch, and remote sensing, but also developing new contract and operational models to encourage commercial participation and growth. In the last three decades, NASA has seen the results of these efforts with commercial partners able to contribute more to missions across NASA domains, and increasingly innovative agency-led efforts to engage, nurture, and integrate these capabilities. These capabilities support the agency’s mission needs, and have seen a dramatic rise in importance, according to the report.
      NASA has nurtured technology, companies, people, and ideas in the commercial space sector, contributing to the U.S. and global economies, across four distinct periods in the agency’s history:
      1915–1960: NASA’s predecessor, the National Advisory Committee on Aeronautics (NACA), and NASA’s pre-Apollo years. 1961–1980: Apollo era. 1981–2010: Space shuttle era. 2011–present: Post-shuttle commercial era. Each of these time periods are defined by dominant technologies, programs, or economic trends further detailed in the report.
      Though some of these mechanisms are relatively recent, others have been used throughout the history of NASA and NACA, leading to some overlap. The 17 mechanisms are as follows:
      Contracts and Partnership Agreements Research and Technology Development (R&TD) Dissemination of Research and Scientific Data Education and Workforce Development Workforce External Engagement and Mobility Technology Transfer Technical Support Enabling Infrastructure Launch Direct In-Space Support Standards and Regulatory Framework Support Public Engagement Industry Engagement Venture Capital Engagement Market Stimulation Funding Economic Analysis and Due Diligence Capabilities Narrative Encouragement NASA supports commercial space development in everything from spaceflight to supply chains. Small satellite capabilities have inspired a new generation of space start-ups, while new, smaller rockets, as well as new programs are just starting. Examples include CLPS (Commercial Lunar Payload Services), commercial low Earth orbit destinations, human landing systems, commercial development of NASA spacesuits, and lunar terrain vehicles. The report also details many indirect ways the agency has contributed to the vibrance of commercial space, from economic analyses to student engagement.
      The agency’s use of commercial capabilities has progressed from being the exception to the default method for many of its missions. The current post-shuttle era of NASA-supported commercial space development has seen a level of technical development comparable to the Apollo era’s Space Race. Deploying the 17 commercial space development mechanisms in the future are part of NASA’s mission to continue encouraging commercial space activities.
      To learn more about NASA’s missions, please visit:
      https//:www.nasa.gov
      Share
      Details
      Last Updated Dec 19, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A digital rendering of the completed Axiom Station, which includes the Payload, Power, and Thermal Module, Habitat 1, an airlock, Habitat 2, and the Research and Manufacturing Facility.Credits: Axiom Space In coordination with NASA, Axiom Space modified its planned assembly sequence to accelerate its ability to operate as a viable free-flying space station and reduce International Space Station reliance during assembly.
      NASA awarded Axiom Space a firm-fixed price, indefinite-delivery, indefinite-quantity contract in January 2020, as the agency continues to open the space station for commercial use. The contract provides insight into the development of at least one habitable commercial module to be attached to the space station with the goal of becoming a free-flying destination in low Earth orbit prior to retirement of the orbiting laboratory in 2030.
      The initial Axiom Space plan was to launch and attach its first module, Habitat 1, to the space station, followed by three additional modules.
      Under the company’s new assembly sequence, the Payload, Power, and Thermal Module will launch to the orbiting laboratory first, allowing it to depart as early as 2028 and become a free-flying destination known as Axiom Station. In free-flight, Axiom Space will continue assembly of the commercial destination, adding the Habitat 1 module, an airlock, Habitat 2 module, and the Research and Manufacturing Facility.
      “The updated assembly sequence has been coordinated with NASA to support both NASA and Axiom Space needs and plans for a smooth transition in low Earth orbit,” said Angela Hart, manager, Commercial Low Earth Orbit Development Program at NASA’s Johnson Space Center in Houston. “The ongoing design and development of commercial destinations by our partners is critical to the agency’s plan to procure services in low Earth orbit to support our needs in microgravity.”
      The revised assembly sequence will enable an earlier departure from the space station, expedite Axiom Station’s ability to support free-flight operations, and ensure the orbiting laboratory remains prepared for the U.S. Deorbit Vehicle and end of operational life no earlier than 2030.
      “The International Space Station has provided a one-of-a-kind scientific platform for nearly 25 years,” said Dana Weigel, manager, International Space Station Program at NASA Johnson. “As we approach the end of space station’s operational life, it’s critically important that we look to the future of low Earth orbit and support these follow-on destinations to ensure we continue NASA’s presence in microgravity, which began through the International Space Station.”
      NASA is supporting the design and development of multiple commercial space stations, including Axiom Station, through funded and unfunded agreements. The current design and development phase will be followed by the procurement of services from one or more companies.
      NASA’s low Earth orbit microgravity strategy builds on the agency’s extensive human spaceflight experience to advance future scientific and exploration goals. As the International Space Station nears the end of operations, NASA plans to transition to a new low Earth orbit model to continue leveraging microgravity benefits. Through commercial partnerships, NASA aims to maintain its leadership in microgravity research and ensure continued benefits for humanity.
      Learn more about NASA’s low Earth orbit microgravity strategy at:
      https://www.nasa.gov/leomicrogravitystrategy
      News Media Contacts
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov

      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Keep Exploring Discover Related Topics
      Low Earth Orbit Economy
      Commercial Destinations in Low Earth Orbit
      Commercial Space
      International Space Station
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From left to right: Astrolab’s FLEX, Intuitive Machines’ Moon RACER, and Lunar Outpost’s Eagle lunar terrain vehicle at NASA’s Johnson Space Center. NASA/Bill Stafford Through NASA’s Artemis campaign, astronauts will land on the lunar surface and use a new generation of spacesuits and rovers as they live, work, and conduct science in the Moon’s South Pole region, exploring more of the lunar surface than ever before. Recently, the agency completed the first round of testing on three commercially owned and developed LTVs (Lunar Terrain Vehicle) from Intuitive Machines, Lunar Outpost, and Venturi Astrolab at NASA’s Johnson Space Center in Houston.
      As part of an ongoing year-long feasibility study, each company delivered a static mockup of their vehicle to Johnson at the end of September, initiated rover testing in October and completed the first round of testing in December inside the Active Response Gravity Offload System (ARGOS) test facility. Lunar surface gravity is one-sixth of what we experience here on Earth, so to mimic this, ARGOS offers an analog environment that can offload pressurized suited subjects for various reduced gravity simulations. 
      NASA astronauts Raja Chari (left) and Randy Bresnik (right) sit inside Lunar Outpost’s Eagle lunar terrain vehicle evaluating the seat configuration during testing at NASA’s Johnson Space Center. NASA/David DeHoyos NASA astronaut Jessica Meir grabs a lunar geology tool from a tool rack on Lunar Outpost’s Eagle lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/James Blair NASA astronaut Joe Acaba prepares to climb on top of Intuitive Machines’ Moon RACER lunar terrain vehicle to get to a science payload during testing at NASA’s Johnson Space Center.NASA/Josh Valcarcel NASA astronaut Jessica Meir puts a science sample inside of a storage box on Intuitive Machines’ Moon RACER lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/James Blair NASA astronaut Frank Rubio (left) and NASA spacesuit engineer Zach Tejral (right) sit inside Astrolab’s FLEX lunar terrain vehicle evaluating the display interfaces during testing at NASA’s Johnson Space Center.NASA/James Blair NASA astronaut Jessica Watkins stores science payloads on Astrolab’s FLEX lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/Robert Markowitz This is the first major test milestone within the Lunar Terrain Vehicle Services contract and to have actual rovers delivered only four months after these companies were awarded is remarkable.
      steve munday
      NASA's Lunar Terrain Vehicle Project Manager
      NASA’s engineering teams conducted tests where suited NASA astronauts and engineers performed tasks, maneuvers, and emergency drills on each rover. With astronauts acting as the test subjects, these human-in-the-loop tests are invaluable as crewmembers provide critical feedback on each rover’s design functionality, evaluate display interfaces and controls, and help identify potential safety concerns or design issues. This feedback is shared directly with each commercial provider, to incorporate changes based on lessons learned as they evolve their rover design.
      “We are excited to have mockups from all three LTV commercial providers here at Johnson Space Center,” said Steve Munday, LTV project manager. “This is the first major test milestone within the Lunar Terrain Vehicle Services contract and to have actual rovers delivered only four months after these companies were awarded is remarkable.” 
      NASA engineer Dave Coan (left) and NASA astronaut Jessica Watkins (right) sit inside from Intuitive Machines’ Moon RACER lunar terrain vehicle evaluating the crew compartment during testing at NASA’s Johnson Space Center.NASA/James Blair Testing consisted of NASA astronauts and engineers taking turns wearing both NASA’s Exploration Extravehicular Mobility Unit planetary prototype spacesuit as well as Axiom Space’s Axiom Extravehicular Mobility Unit lunar spacesuit. The test teams performed evaluations to understand the interactions between the crew, the spacesuits, and the LTV mockups. 
      While wearing NASA’s prototype spacesuit, crew members were suspended from ARGOS allowing teams to mimic theone-sixth gravitational field of the lunar surface. This allowed the crew members to conduct tasks on the outside of each rover, such as gathering or storing lunar geology tools, deploying science payloads, and handling cargo equipment, as if they are walking on the Moon.
      NASA astronaut Joe Acaba raises the solar array panel on Lunar Outpost’s Eagle lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/Robert Markowitz While wearing Axiom Space’s pressurized spacesuit, teams evaluated the level of ease or difficulty in mobility crewmembers experienced when entering and exiting the rovers, the crew compartment and design, and the functionality of interacting with display interfaces and hand controls while wearing thick spacesuit gloves.
      As part of testing, teams also conducted emergency drills, where engineers simulated rescuing an incapacitated crew member. As part of NASA’s requirements, each rover must have a design in place that enables an astronaut to single-handedly rescue their crewmates in the event of an emergency.
      NASA astronaut Jessica Watkins picks up a lunar geology tool from a stowage drawer on Astrolab’s FLEX lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/Robert Markowitz Since NASA selected the companies, Intuitive Machines, Lunar Outpost, and Venturi Astrolab have been working to meet NASA’s requirements through the preliminary design review. In 2025, the agency plans to issue a request for task order proposals to any eligible providers for a demonstration mission to continue developing the LTV, deliver it to the surface of the Moon, and validate its performance and safety ahead of Artemis V, when NASA intends to begin using the LTV for crewed operations.
      Through Artemis, NASA will send astronauts – including the next Americans, and the first international partner astronaut – to explore the Moon for scientific discovery, technology evolution, economic benefits, and to build the foundation for future crewed missions to Mars. 
      Learn about the rovers, suits, and tools that will help Artemis astronauts to explore more of the Moon: 
      https://go.nasa.gov/3MnEfrB
      Share
      Details
      Last Updated Dec 17, 2024 Related Terms
      Humans in Space Artemis Artemis 5 Exploration Systems Development Mission Directorate Johnson Space Center xEVA & Human Surface Mobility Explore More
      3 min read NASA Participates in Microgravity Science Summit
      Article 18 hours ago 5 min read Orion Spacecraft Tested in Ohio After Artemis I Mission
      Article 1 day ago 2 min read Station Science Top News: Dec. 13, 2024
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Human Landing System
      Commercial Space
      Orion Spacecraft
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A digital rendering of the Starlab, which includes a large habitation and laboratory module with a smaller service module for power and propulsion.Credits: Starlab A NASA-funded commercial space station, Starlab, recently completed four key developmental milestones, marking substantial progress in the station’s design and operational readiness.

      The four milestones are part of a NASA Space Act Agreement  awarded in 2021 and focused on reviews of the habitat structural test article preliminary design, systems integration, integrated operations, and a habitat structural test plan.

      “These milestone achievements are great indicators to reflect Starlab’s commitment to the continued efforts and advancements of their commercial destination,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program. “As we look forward to the future of low Earth orbit, every successful milestone is one step closer to creating a dynamic and robust commercialized low Earth orbit.”

      The commercial space station is designed to launch on a single flight and includes a large habitation and laboratory module with a smaller service module for power and propulsion.

      Earlier this year, Starlab Space completed a structural test article preliminary design review, supported by NASA. The structural test article is an engineering development unit of the station’s habitation module, which is where astronauts will spend most of their time living and working aboard the future commercial destination. An engineering development unit is a physical model that is used to test and verify the design of a project, such as a space station.

      A digital rendering of the Starlab free-flying commercial destination, which continues to be developed as part of a Space Act Agreement with NASACredits: Starlab Starlab also recently shared a test plan for the structural test article, which included defining qualification tests of the development unit from welding verifications to proof pressure and static load testing, among others. During proof pressure tests, a spacecraft component or system is pressurized to a significantly higher than normal operating pressure to verify its structural integrity, and a static load test measures the response of a component or system under an applied load.

      In addition, Starlab completed integration operations and systems integration reviews. These reviews included updates on system and station architecture, segment interfaces, and program goals, as well as a comprehensive look into the program’s requirements.

      Starlab also is set to complete a preliminary design review and phase 1 safety review by the end of the year. This review is meant to demonstrate that the station’s design meets system requirements, including human spaceflight verification, with acceptable risk. The safety review will summarize the current design and general safety approach for the destination.

      NASA is supporting the design and development of multiple commercial space stations, including Starlab, through funded and unfunded agreements. The current design and development phase will be followed by the procurement of services from one or more companies, where NASA aims to be one of many customers for low Earth orbit destinations.

      NASA’s low Earth orbit microgravity strategy builds on the agency’s extensive human spaceflight experience to advance future scientific and exploration goals. As the International Space Station nears the end of operations, NASA plans to transition to a new low Earth orbit model to continue leveraging microgravity benefits. Through commercial partnerships, NASA aims to maintain its leadership in microgravity research and ensure continued benefits for humanity.

      Learn more about NASA’s low Earth orbit microgravity strategy at:
      https://www.nasa.gov/leomicrogravitystrategy
      News Media Contacts:
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov

      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Keep Exploring Discover Related Topics
      Commercial Destinations in Low Earth Orbit
      Low Earth Orbit Economy
      Commercial Space
      Commercial Use of the International Space Station

      View the full article
  • Check out these Videos

×
×
  • Create New...