Jump to content

Recommended Posts

  • Publishers
Posted

5 min read

NASA’s LRO: Lunar Ice Deposits are Widespread

Deposits of ice in lunar dust and rock (regolith) are more extensive than previously thought, according to a new analysis of data from NASA’s LRO (Lunar Reconnaissance Orbiter) mission. Ice would be a valuable resource for future lunar expeditions. Water could be used for radiation protection and supporting human explorers, or broken into its hydrogen and oxygen components to make rocket fuel, energy, and breathable air.

Prior studies found signs of ice in the larger permanently shadowed regions (PSRs) near the lunar South Pole, including areas within Cabeus, Haworth, Shoemaker and Faustini craters. In the new work, “We find that there is widespread evidence of water ice within PSRs outside the South Pole, towards at least 77 degrees south latitude,” said Dr. Timothy P. McClanahan of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of a paper on this research published October 2 in the Planetary Science Journal.

The study further aids lunar mission planners by providing maps and identifying the surface characteristics that show where ice is likely and less likely to be found, with evidence for why that should be. “Our model and analysis show that greatest ice concentrations are expected to occur near the PSRs’ coldest locations below 75 Kelvin (-198°C or -325°F) and near the base of the PSRs’ poleward-facing slopes,” said McClanahan.

Illustration of permanently shadowed regions near the lunar south pole.
This illustration shows the distribution of permanently shadowed regions (in blue) on the Moon poleward of 80 degrees South latitude. They are superimposed on a digital elevation map of the lunar surface (grey) from the Lunar Orbiter Laser Altimeter instrument on board NASA’s Lunar Reconnaissance Orbiter spacecraft.
NASA/GSFC/Timothy P. McClanahan

“We can’t accurately determine the volume of the PSRs’ ice deposits or identify if they might be buried under a dry layer of regolith. However, we expect that for each surface 1.2 square yards (square meter) residing over these deposits there should be at least about five more quarts (five more liters) of ice within the surface top 3.3 feet (meter), as compared to their surrounding areas,” said McClanahan. The study also mapped where fewer, smaller, or lower-concentration ice deposits would be expected, occurring primarily towards warmer, periodically illuminated areas.

Ice could become implanted in lunar regolith through comet and meteor impacts, released as vapor (gas) from the lunar interior, or be formed by chemical reactions between hydrogen in the solar wind and oxygen in the regolith. PSRs typically occur in topographic depressions near the lunar poles. Because of the low Sun angle, these areas haven’t seen sunlight for up to billions of years, so are perpetually in extreme cold. Ice molecules are thought to be repeatedly dislodged from the regolith by meteorites, space radiation, or sunlight and travel across the lunar surface until they land in a PSR where they are entrapped by extreme cold. The PSR’s continuously cold surfaces can preserve ice molecules near the surface for perhaps billions of years, where they may accumulate into a deposit that is rich enough to mine. Ice is thought to be quickly lost on surfaces that are exposed to direct sunlight, which precludes their accumulations.  

The team used LRO’s Lunar Exploration Neutron Detector (LEND) instrument to detect signs of ice deposits by measuring moderate-energy, “epithermal” neutrons. Specifically, the team used LEND’s Collimated Sensor for Epithermal Neutrons (CSETN) that has a fixed 18.6-mile (30-kilometer) diameter field-of-view. Neutrons are created by high-energy galactic cosmic rays that come from powerful deep-space events such as exploding stars, that impact the lunar surface, break up regolith atoms, and scatter subatomic particles called neutrons. The neutrons, which can originate from up to about a 3.3-foot (meter’s) depth, ping-pong their way through the regolith, running into other atoms. Some get directed into space, where they can be detected by LEND.  Since hydrogen is about the same mass as a neutron, a collision with hydrogen causes the neutron to lose relatively more energy than a collision with most common regolith elements. So, where hydrogen is present in regolith, its concentration creates a corresponding reduction in the observed number of moderate-energy neutrons.

“We hypothesized that if all PSRs have the same hydrogen concentration, then CSETN should proportionally detect their hydrogen concentrations as a function of their areas. So, more hydrogen should be observed towards the larger-area PSRs,” said McClanahan.

The model was developed from a theoretical study that demonstrated how similarly hydrogen-enhanced PSRs would be detected by CSETNs fixed-area field-of-view. The correlation was demonstrated using the neutron emissions from 502 PSRs with areas ranging from 1.5 square miles (4 km2) to 417 square miles (1079 km2) that contrasted against their surrounding less hydrogen-enhanced areas. The correlation was expectedly weak for the small PSRs but increased towards the larger-area PSRs.

The research was sponsored by the LRO project science team, NASA’s Goddard Space Flight Center’s Artificial Intelligence Working Group, and NASA grant award number 80GSFC21M0002. The study was conducted using NASA’s LRO Diviner radiometer and Lunar Orbiter Laser Altimeter instruments. The LEND instrument was developed by the Russian Space Agency, Roscosmos by its Space Research Institute (IKI). LEND was integrated to the LRO spacecraft at the NASA Goddard Space Flight Center. LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington.

Share

Details

Last Updated
Oct 03, 2024
Editor
wasteigerwald
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
      That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
      “Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
      Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
      Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
      Article 10 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Global warming is driving the rapid melting of the Greenland Ice Sheet, contributing to global sea level rise and disrupting weather patterns worldwide. Because of this, precise measurements of its changing shape are of critical importance for adapting to climate change.
      Now, scientists have delivered the first measurements of the Greenland Ice Sheet’s changing shape using data from ESA's CryoSat and NASA's ICESat-2 ice missions.
      View the full article
    • By European Space Agency
      Video: 00:04:04 English Paxi explores ice
      Join Paxi on an adventure to the North and South poles, to learn more about ice and its role in keeping Earth cool.
       
      Italian Paxi osserva il ghiaccio
      Unisciti a Paxi in un'avventura ai poli Nord e Sud, per saperne di più sul ghiaccio e sul suo ruolo nel mantenere la Terra fresca.
       
      German Paxi erforscht das Eis
      Begleiten Sie Paxi auf ein Abenteuer zum Nord- und Südpol, um mehr über Eis und seine Rolle bei der Kühlung der Erde zu erfahren.
       
      French Paxi explore la glace
      Rejoignez Paxi dans une aventure aux pôles Nord et Sud, pour en savoir plus sur la glace et son rôle dans le refroidissement de la Terre.
       
      Spanish Paxi explora el hielo
      Únete a Paxi en una aventura a los polos Norte y Sur, para aprender más sobre el hielo y su papel en mantener la Tierra fría.
       
      Portuguese Paxi explora o gelo
      Junte-se a Paxi numa aventura aos pólos Norte e Sul, para aprender mais sobre o gelo e o seu papel na manutenção da Terra fresca.
       
      Greek Ο Πάξι εξερευνά τον πάγο
      Ελάτε μαζί με τον Paxi σε μια περιπέτεια στο Βόρειο και το Νότιο Πόλο, για να μάθετε περισσότερα για τον πάγο και το ρόλο του στη διατήρηση της ψύξης της Γης.
       
      Polish Paxi bada lód
      Dołącz do Paxi podczas przygody na biegunie północnym i południowym, aby dowiedzieć się więcej o lodzie i jego roli w chłodzeniu Ziemi.
       
      Swedish Paxi utforskar is
      Följ med Paxi på ett äventyr till Nord- och Sydpolen för att lära dig mer om is och dess roll för att hålla jorden sval.
       
      Norwegian Paxi utforsker is
      Bli med Paxi på et eventyr til Nord- og Sydpolen for å lære mer om is og dens rolle i å holde jorden kjølig.
       
      Danish Paxi udforsker is
      Tag med Paxi på eventyr til Nord- og Sydpolen for at lære mere om is og dens rolle i at holde Jorden kølig.
       
      Romanian Paxi explorează gheață
      Alăturați-vă lui Paxi într-o aventură la polii Nord și Sud, pentru a afla mai multe despre gheață și rolul său în menținerea Pământului rece.
       
      Finnish Paxi tutkii jäätä
      Lähde Paxin mukaan seikkailulle pohjois- ja etelänavoille ja opi lisää jäästä ja sen roolista maapallon viileänä pitämisessä.
       
      Estonian Paxi avastab jääd
      Liitu Paxiga seiklusel põhja- ja lõunapoolusele, et õppida rohkem jääst ja selle rollist Maa jahedana hoidmisel.
       
      Czech Paxi zkoumá led
      Vydejte se s Paxi na dobrodružnou výpravu na severní a jižní pól, abyste se dozvěděli více o ledu a jeho úloze při udržování chladu na Zemi.
       
      Dutch Paxi onderzoekt ijs
      Ga mee met Paxi op avontuur naar de Noord- en Zuidpool om meer te leren over ijs en de rol die ijs speelt bij het koel houden van de aarde.
      View the full article
    • By NASA
      Congratulations to the selected teams and their schools who will participate in the Lunar Autonomy Challenge! 31 teams were selected for the qualifying round, engaging 229 students from colleges and universities in 15 states. Teams will now move on to a Qualifying Round where they will virtually explore and map the lunar surface using a digital twin of NASA’s lunar mobility robot, the ISRU Pilot Excavator (IPEx). Teams will develop software that can perform set actions without human intervention, navigating the digital IPEx in the harsh, low-light conditions of the Moon. The Qualifying Round will extend to February 28, when the top-scoring teams will proceed to the Final Round, with the winners announced in May 2025.

      The Lunar Autonomy Challenge is a collaboration between NASA, The Johns Hopkins University (JHU) Applied Physics Laboratory (APL), Caterpillar Inc., and Embodied AI. ​
      Learn more: https://lunar-autonomy-challenge.jhuapl.edu/ ​
      SchoolCityStateAmerican Public University SystemCharles TownWest VirginiaArizona State UniversityTempeArizonaCalifornia Polytechnic Institute, Pomona (1)PomonaCaliforniaCalifornia Polytechnic Institute, Pomona (2)PomonaCaliforniaCarnegie Mellon UniversityPittsburghPennsylvaniaEmbry Riddle Aeronautical UniversityDaytona BeachFloridaEssex County CollegeNewarkNew JerseyGeorgia Institute of Technology & Arizona State UniversityAtlanta & TempeGeorgia & ArizonaHarvard UniversityAllstonMassachusettsJohns Hopkins University Whiting School of EngineeringBaltimoreMarylandMassachusetts Institute of TechnologyCambridgeMassachusettsNew York University Tandon School of EngineeringBrooklynNew YorkNorth Carolina State UniversityRaleighNorth CarolinaPenn State (1)University ParkPennsylvaniaPenn State (2)University ParkPennsylvaniaPurdue UniversityWest LafayetteIndianaRochester Institute of TechnologyRochester New YorkRose Hulman Institue of TechnologyTerre HauteIndianaStanford UniversityStanfordCalifornia Texas A&M UniversityCollege StationTexasUniversity of AlabamaTuscaloosaAlabamaUniversity of Buffalo, State University of New YorkBuffaloNew YorkUniversity of California, StanislausTurlockCaliforniaUniversity of Illinois Urbana Champaign (1)UrbanaIllinoisUniversity of Illinois Urbana Champaign (2)UrbanaIllinoisUniversity of MarylandCollege ParkMarylandUniversity of Pennsylvania (1)Philadelphia PennsylvaniaUniversity of Pennsylvania (2)Philadelphia PennsylvaniaUniversity of Southern California & Stanford UniversityLos Angeles & StanfordCaliforniaWest Virginia UniversityMorgantownWest VirginiaWorcester Polytechnic InstituteWorcesterMassachusetts Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      NASA’s Lunar Surface Innovation Initiative
      ISRU Pilot Excavator
      Education & Opportunities
      We are committed to providing educational opportunities for students interested in pursuing professional experiences in the life science disciplines. Our…
      View the full article
    • By NASA
      The Fresh Eyes on Ice team receives the C. Peter Magrath exemplary project award from the Association of Public and Land-grant Universities. H. Buurman Congratulations to the Fresh Eyes on Ice project, which received a C. Peter Magrath exemplary project award from the Association of Public and Land-grant Universities! The award recognizes programs that demonstrate how colleges and universities have redesigned their learning, discovery, and engagement missions to deepen their partnerships and achieve broader impacts in their communities.
      “Thank you to all of you for making this project what it is.” said Fresh Eyes on Ice project lead Research Professor Katie Spellman from the University of Alaska, Fairbanks. “We couldn’t do it without you.”
      Fresh Eyes on Ice tracks changes in the timing and thickness of ice throughout Alaska and the circumpolar north. You can get involved by downloading the GLOBE Observer app and taking photos of ice conditions using the GLOBE Land Cover protocol.
      Fresh Eyes on Ice is supported by the Navigating the New Arctic Program of the U.S. National Science Foundation and the NASA Citizen Science for Earth Systems Program.
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Dec 05, 2024 Related Terms
      Citizen Science Earth Science Explore More
      4 min read 2024 AGU Fall Meeting Hyperwall Schedule


      Article


      1 day ago
      2 min read This Thanksgiving, We’re Grateful for NASA’s Volunteer Scientists!


      Article


      1 week ago
      9 min read The Earth Observer Editor’s Corner: Fall 2024


      Article


      3 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...