Members Can Post Anonymously On This Site
Gateway Stands Tall for Stress Test
-
Similar Topics
-
By NASA
Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit. Thales Alenia Space Through the Artemis campaign, NASA will send astronauts on missions to and around the Moon. The agency and its international partners report progress continues on Gateway, the first space station that will permanently orbit the Moon, after visiting the Thales Alenia Space facility in Turin, Italy, where initial fabrication for one of two Gateway habitation modules is nearing completion.
Leaders from NASA, ESA (European Space Agency), and the Italian Space Agency, as well as industry representatives from Northrop Grumman and Thales Alenia Space, were in Turin to assess Gateway’s HALO (Habitation and Logistics Outpost) module before its primary structure is shipped from Italy to Northrop Grumman’s Gilbert, Arizona site in March. Following final outfitting and verification testing, the module will be integrated with the Power and Propulsion Element at NASA’s Kennedy Space Center in Florida.
“Building and testing hardware for Gateway is truly an international collaboration,” said Jon Olansen, manager, Gateway Program, at NASA’s Johnson Space Center in Houston. “We’re excited to celebrate this major flight hardware milestone, and this is just the beginning – there’s impressive and important progress taking shape with our partners around the globe, united by our shared desire to expand human exploration of our solar system while advancing scientific discovery.”
Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit.Thales Alenia Space To ensure all flight hardware is ready to support Artemis IV — the first crewed mission to Gateway – NASA is targeting the launch of HALO and the Power and Propulsion Element no later than December 2027. These integrated modules will launch aboard a SpaceX Falcon Heavy rocket and spend about a year traveling uncrewed to lunar orbit, while providing scientific data on solar and deep space radiation during transit.
Launching atop HALO will be ESA’s Lunar Link communication system, which will provide high-speed communication between the Moon and Gateway. The system is undergoing testing at another Thales Alenia Space facility in Cannes, France.
Once in lunar orbit, Gateway will continue scientific observations while awaiting the arrival of Artemis IV astronauts aboard an Orion spacecraft which will deliver and dock Gateway’s second pressurized habitable module, the ESA-led Lunar I-Hab. Thales Alenia Space, ESA’s primary contractor for the Lunar I-Hab and Lunar View refueling module, has begun production of the Lunar I-Hab, and design of Lunar View in Turin.
Teams from NASA and ESA (European Space Agency), including NASA astronaut Stan Love (far right) and ESA astronaut Luca Parmitano (far left) help conduct human factors testing inside a mockup of Gateway’s Lunar I-Hab module.Thales Alenia Space Northrop Grumman and its subcontractor, Thales Alenia Space, completed welding of HALO in 2024, and the module successfully progressed through pressure and stress tests to ensure its suitability for the harsh environment of deep space.
Maxar Space Systems is assembling the Power and Propulsion Element, which will make Gateway the most powerful solar electric propulsion spacecraft ever flown. Major progress in 2024 included installation of Xenon and chemical propulsion fuel tanks, and qualification of the largest roll-out solar arrays ever built. NASA and its partners will complete propulsion element assembly, and acceptance and verification testing of next-generation electric propulsion thrusters this year.
The main bus of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems SpaceX will provide both the Starship human landing system that will land astronauts on the lunar surface during NASA’s Artemis III mission and ferry astronauts from Gateway to the lunar South Pole region during Artemis IV, as well as provide logistics spacecraft to support crewed missions.
NASA also has selected Blue Origin to develop Blue Moon, the human landing system for Artemis V, as well as logistics spacecraft for future Artemis missions. Having two distinct lunar landing designs provides flexibility and supports a regular cadence of Moon landings in preparation for future missions to Mars.
CSA (Canadian Space Agency) is developing Canadarm3, an advanced robotics system, and JAXA (Japan Aerospace Exploration Agency) is designing and testing Lunar I-Hab’s vital life support systems, batteries, and a resupply and logistics vehicle called HTV-XG.
NASA’s newest Gateway partner, the Mohammad Bin Rashid Space Centre (MBRSC) of the United Arab Emirates, kicked off early design for the Gateway Crew and Science Airlock that will be delivered on Artemis VI. The selection of Thales Alenia Space as its airlock prime contractor was announced by MBRSC on Feb. 4.
Development continues to advance on three radiation-focused initial science investigations aboard Gateway. These payloads will help scientists better understand unpredictable space weather from the Sun and galactic cosmic rays that will affect astronauts and equipment during Artemis missions to the Moon and beyond.
The Gateway lunar space station is a multi-purpose platform that offers capabilities for long-term exploration in deep space in support of NASA’s Artemis campaign and Moon to Mars objectives. Gateway will feature docking ports for a variety of visiting spacecraft, as well as space for crew to live, work, and prepare for lunar surface missions. As a testbed for future journeys to Mars, continuous investigations aboard Gateway will occur with and without crew to better understand the long-term effects of deep space radiation on vehicle systems and the human body as well as test and operate next generation spacecraft systems that will be necessary to send humans to Mars.
Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
Details
Last Updated Feb 21, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station Humans in Space Johnson Space Center Explore More
2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
A key element of the Gateway lunar space station has entered the cleanroom for final…
Article 1 week ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
Article 1 month ago 2 min read Gateway Tops Off
Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
Article 3 months ago Keep Exploring Discover More Topics From NASA
Humans In Space
Orion Spacecraft
Human Landing System
Extravehicular Activity and Human Surface Mobility
View the full article
-
By Space Force
A joint team of AFGSC Airmen and Vandenberg SFB Guardians launched an unarmed Minuteman III intercontinental ballistic missile equipped with a single telemetered joint test assembly re-entry vehicle from Vandenberg SFB.
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A still image of a video that shows a plastic rod and cotton-fiberglass fabric being burned during a ground test of the Lunar-g Combustion Investigation (LUCI) experiment.Credit: Voyager Technologies An experiment studying how solid materials catch fire and burn in the Moon’s gravity was launched on Blue Origin’s New Shepard suborbital flight this month.
Developed by NASA’s Glenn Research Center in Cleveland together with Voyager Technologies, the Lunar-g Combustion Investigation (LUCI) will help researchers determine if conditions on the Moon – with reduced gravity – might be a more hazardous environment for fire safety.
The video shows a plastic rod and cotton-fiberglass fabric being burned during a ground test of the Lunar-g Combustion Investigation (LUCI) experiment. Scientists will compare the ground test video to the video recorded on the Blue Origin flight.
Credit: Voyager Technologies On this flight, LUCI tested flammability of cotton-fiberglass fabric and plastic rods, and once launched, the payload capsule rotated at a speed to simulate lunar gravity. NASA Glenn researchers will analyze data post-flight.
A plastic rod and cotton-fiberglass fabric that were burned during testing for the Lunar-g Combustion Investigation. New, unburned samples were lit on fire during the flight. Credit: Voyager Technologies LUCI’s findings will help NASA and its partners design safe spacecraft and spacesuits for future Moon and Mars missions.
For more information on LUCI and the mission, visit.
Return to Newsletter View the full article
-
By NASA
2 Min Read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
A sample holder in a vacuum chamber spins during a lunar dust adhesion test at NASA’s Johnson Space Center. Credits: NASA/Josh Litofsky NASA’s Artemis campaign aims to return humans to the Moon, develop a sustainable presence there, and lay the groundwork for the first crewed missions to Mars. As the agency prepares for longer stays on and around the Moon, engineers are working diligently to understand the complex behavior of lunar dust, the sharp, jagged particles that can cling to spacesuits and jam equipment.
Lunar dust has posed a problem since astronauts first encountered it during the Apollo missions. Ahead of more frequent and intense contact with dust, NASA is developing new strategies to protect equipment as astronauts travel between the Moon and spacecraft like Gateway, humanity’s first lunar space station.
Josh Litofsky, systems engineer at NASA’s Johnson Space Center, scoops material designed to behave like lunar dust to test how it adheres to Gateway materials. NASA/Bill Stafford Unlike Apollo-era spacecraft that faced lunar dust exposure just once, Gateway will encounter it each time a Human Landing System spacecraft returns to the space station from the lunar South Pole region. Dust could enter Gateway’s environment, risking damage to science instruments, solar arrays, robotic systems, and other important hardware.
Josh Litofsky is the principal investigator and project manager leading a Gateway lunar dust adhesion testing campaign at NASA’s Johnson Space Center in Houston. His team tracks how the dust interacts with materials used to build Gateway.
An artist’s rendering of the Gateway lunar space station in polar orbit around the Moon. NASA/Alberto Bertolin “The particles are jagged from millions of years of micrometeoroid impacts, sticky due to chemical and electrical forces, and extremely small,” Litofsky said. “Even small amounts of lunar dust can have a big impact on equipment and systems.”
Litofksy’s work seeks to validate the Gateway On-orbit Lunar Dust Modeling and Analysis Program (GOLDMAP), developed by Ronald Lee, also of Johnson Space Center. By considering factors such as the design and configuration of the space station, the materials used, and the unique conditions in lunar orbit, GOLDMAP helps predict how dust may move and settle on Gateway’s external surfaces.
Josh Litofsky, systems engineer at NASA’s Johnson Space Center, places a sample holder inside a vacuum chamber to test how lunar dust sticks to Gateway materials. NASA/Bill StaffordNASA/Bill Stafford Early GOLDMAP simulations have shown that lunar dust can form clouds around Gateway, with larger particles sticking to surfaces.
The data from these tests and simulations will help NASA safeguard Gateway, to ensure the space station’s longevity during the next era of lunar exploration.
The lessons learned managing lunar dust and other harsh conditions through Gateway and Artemis will prepare NASA and its international partners for missions deeper into the cosmos
Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
Details
Last Updated Jan 22, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
Gateway Space Station Artemis Exploration Systems Development Mission Directorate Gateway Program Johnson Space Center Explore More
4 min read NASA Technology Helps Guard Against Lunar Dust
Article 10 months ago 3 min read NASA Science Payload to Study Sticky Lunar Dust Challenge
Article 1 month ago 3 min read Measuring Moon Dust to Fight Air Pollution
Article 4 months ago Keep Exploring Discover More Topics From NASA
Space Launch System (SLS)
Orion Spacecraft
Gateway
International teams of astronauts will explore the scientific mysteries of deep space with Gateway, humanity’s first space station around the…
Human Landing System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.