Jump to content

NASA Prepares for Lunar Terrain Vehicle Testing


NASA

Recommended Posts

  • Publishers

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA astronaut Kate Rubins takes Apollo 17 Lunar Module Pilot Harrison “Jack” Schmitt on a ride on NASA’s rover prototype at Johnson Space Center in Houston.
NASA astronaut Kate Rubins takes Apollo 17 Lunar Module Pilot Harrison “Jack” Schmitt on a ride on NASA’s rover prototype at Johnson Space Center in Houston.
NASA/James Blair

When astronauts return to the Moon as part of NASA’s Artemis campaign, they will benefit from having a human-rated unpressurized LTV (Lunar Terrain Vehicle) that will allow them to explore more of the lunar surface, enabling diverse scientific discoveries.

As crewed Artemis missions near, engineers at NASA’s Johnson Space Center in Houston are designing an unpressurized rover prototype, known as the Ground Test Unit. The test unit will employ a flexible architecture to simulate and evaluate different rover concepts for use beginning with Artemis V.

In April 2024, as part of the Lunar Terrain Vehicle Services contract, NASA selected three vendors — Intuitive Machines, Lunar Outpost, and Venturi Astrolab — to supply rover capabilities for use by astronauts on the lunar surface. While the test unit will never go to the Moon, it will support the development of additional rover prototypes that will enable NASA and the three companies to continue making progress until one of the providers comes online. Additionally, data provided from GTU testing helps inform both NASA and the commercial companies as they continue evolving their rover designs as it serves as an engineering testbed for the LTV providers to test their technologies on crew compartment design, rover maintenance, and payload science integration, to name a few.

“The Ground Test Unit will help NASA teams on the ground, test and understand all aspects of rover operations on the lunar surface ahead of Artemis missions,” said Jeff Somers, engineering lead for the Ground Test Unit. “The GTU allows NASA to be a smart buyer, so we are able to test and evaluate rover operations while we work with the LTVS contractors and their hardware.” 

The LTVS contractors have requirements that align with the existing GTU capabilities. As with the test unit, the vendor-developed, LTV should support up to two crewmembers, have the ability to be operated remotely, and can implement multiple control concepts such as drive modes, self-leveling, and supervised autonomy. Having a NASA prototype of the vehicle we will drive on the Moon, here on Earth, allows many teams to test capabilities while also getting hands-on engineering experience developing rover hardware.

NASA has built some next generation rover concept vehicles following the successes of the agency’s Apollo Lunar Roving Vehicle in the 1970s, including this iteration of the GTU. Crewed test vehicles here on Earth like the GTU help NASA learn new ways that astronauts can live and work safely and productively on the Moon, and one day on the surface of Mars. As vendor designs evolve, the contracted LTV as well as the GTU allow for testing before missions head to the Moon. The vehicles on the ground also allow NASA to reduce some risks when it comes to adapting new technologies or specific rover design features.

Human surface mobility helps increase the exploration footprint on the lunar surface allowing each mission to conduct more research and increase the value to the scientific community. Through Artemis, NASA will send astronauts – including the first woman, first person of color, and its first international partner astronaut – to explore the Moon for scientific discovery, technology evolution, economic benefits, and to build the foundation for future crewed missions to Mars. 

Learn about the rovers, suits, and tools that will help Artemis astronauts to explore more of the Moon: 

https://go.nasa.gov/3MnEfrB

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Students celebrate after a successful performance in the 2024 Student Launch competition at Bragg Farms in Toney, Alabama.NASA NASA has selected 71 teams from across the U.S. to participate in its 25th annual Student Launch Challenge, one of the agency’s Artemis Student Challenges. The competition is aimed at inspiring Artemis Generation students to explore science, technology, engineering, and math (STEM) for the benefit of humanity.
      As part of the challenge, teams will design, build, and fly a high-powered amateur rocket and scientific payload. They also must meet documentation milestones and undergo detailed reviews throughout the school year.
      The nine-month-long challenge will culminate with on-site events starting on April 30, 2025. Final launches are scheduled for May 3, at Bragg Farms in Toney, Alabama, just minutes north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. Teams are not required to travel for their final launch, having the option to launch from a qualified site. Details are outlined in the Student Launch Handbook.
      Each year, NASA updates the university payload challenge to reflect current scientific and exploration missions. For the 2025 season, the payload challenge will again take inspiration from the Artemis missions, which seek to land the first woman and first person of color on the Moon, and pave the way for future human exploration of Mars.
      As Student Launch celebrates its 25th anniversary, the payload challenge will include reports from STEMnauts, non-living objects representing astronauts. The STEMnaut crew must relay real-time data to the student team’s mission control via radio frequency, simulating the communication that will be required when the Artemis crew achieves its lunar landing.
      University and college teams are required to meet the 2025 payload requirements set by NASA, but middle and high school teams have the option to tackle the same challenge or design their own payload experiment.
      Student teams will undergo detailed reviews by NASA personnel to ensure the safety and feasibility of their rocket and payload designs. The team closest to their target will win the Altitude Award, one of multiple awards presented to teams at the end of the competition. Other awards include overall winner, vehicle design, experiment design, and social media presence.
      In addition to the engineering and science objectives of the challenge, students must also participate in outreach efforts such as engaging with local schools and maintaining active social media accounts. Student Launch is an all-encompassing challenge and aims to prepare the next generation for the professional world of space exploration.
      The Student Launch Challenge is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies.
      For more information about Student Launch, visit:
      Student Launch Website Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      taylor.goodwin@nasa.gov
      Facebook logo @StudentLaunch @StudentLaunch Share
      Details
      Last Updated Oct 04, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      2 min read NASA Announces Teams to Compete in International Rover Challenge
      Article 1 hour ago 20 min read The Marshall Star for October 2, 2024
      Article 2 days ago 29 min read The Marshall Star for September 25, 2024
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA MSFC HERC is the annual engineering competition – one of NASA’s longest standing challenges – held its concluding event April 19 and April 20, at the U.S. Space & Rocket Center in Huntsville, near NASA’s Marshall Space Flight Center.NASA NASA has selected 75 student teams to begin an engineering design challenge to build rovers that will compete next spring at the U.S. Space and Rocket Center near the agency’s Marshall Space Flight Center in Huntsville, Alabama. The competition is one of the agency’s Artemis Student Challenges, encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics (STEM).
      Recognized as NASA’s leading international student challenge, the 31st annual Human Exploration Rover Challenge (HERC) aims to put competitors in the mindset of NASA’s Artemis campaign as they pitch an engineering design for a lunar terrain vehicle which simulates astronauts piloting a vehicle, exploring the lunar surface while overcoming various obstacles.
      Participating teams represent 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations from around the world. The 31st annual Human Exploration Rover Challenge (HERC) is scheduled to begin on April 11, 2025. The challenge is managed by NASA’s Southeast Regional Office of STEM Engagement at NASA Marshall.
      Following a 2024 competition that garnered international attention, NASA expanded the challenge to include a remote-control division, Remote-Operated Vehicular Research, and invited middle school students to participate. The 2025 HERC Handbook includes guidelines for the new remote-control division and updates for the human-powered division.
      NASA’s Artemis Student Challenges reflects the goals of the Artemis campaign, which seeks to land the first woman and first person of color on the Moon while establishing a long-term presence for science and exploration.
      More than 1,000 students with 72 teams from around the world participated in the 2024 challenge as HERC celebrated its 30th anniversary as a NASA competition. Since its inception in 1994, more than 15,000 students have participated in HERC – with many former students now working at NASA, or within the aerospace industry.    
      To learn more about HERC, please visit: 
      HERC Website Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Oct 04, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      20 min read The Marshall Star for October 2, 2024
      Article 2 days ago 29 min read The Marshall Star for September 25, 2024
      Article 1 week ago 3 min read NASA Michoud Continues Work on Evolved Stage of SLS Rocket for Future Artemis Missions
      Article 1 week ago Keep Exploring Discover Related Topics
      NASA Student Launch Challenge
      Middle/high school and college-level student teams design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload.
      NASA Human Exploration Rover Challenge
      Teams of high school and college students design, develop, build, and test human-powered rovers capable of traversing challenging terrain.
      NASA STEM Opportunities and Activities For Students
      Marshall Space Flight Center
      View the full article
    • By NASA
      During National Disability Employment Awareness Month, we celebrate the thousands of employees living with disabilities who contribute to NASA’s mission. By sharing their stories, we highlight the impact people with disabilities have on our organization and the vital role they play in fostering an inclusive workforce at NASA.
      Meghan Daley sits in the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida during the final days of the Space Shuttle Program. Meghan Daley has spent nearly two decades blazing new trails in robotics. As a project manager in NASA’s Engineering, Software Robotics, and Simulation Division at Johnson Space Center in Houston, she is building simulations that will shape the future of space exploration. 

      From training astronauts with advanced robotic tools to collaborating with the Department of Defense on research simulations, Daley’s work is transforming how humans interact with space, ensuring that every mission is set up for success. 

      Daley oversees key programs at Johnson, including the Generic On-Orbit Robotic Trainer (GROOT), the Robotic OnBoard Trainer, and Dynamics Skills Trainers. These tools are vital to NASA’s mission and are used in both ground-based simulations and real-time space operations. 

      One of Daley’s proudest achievements is launching GROOT, a simulation system that trains astronauts in a variety of robotic operations. From handling the Canadarm2 for spacecraft docking to servicing satellites, GROOT prepares astronauts for tasks like performing maintenance, assembling structures in space, managing cargo, and even coordinating multiple robotic systems.  

      The tool also supports astronauts in mastering robotic inspections, autonomous operations, and emergency procedures, making it indispensable for missions to the Moon and Mars. 

      During a visit by Gen. John W. Raymond to the Systems Engineering Simulator, the general requested an outdated rendezvous and proximity operations simulation for the United States Space Force.  

      Recognizing the limitations of the old system and knowing her team’s capabilities, Daley proposed building a new simulation from scratch to meet their needs. In 2019, GROOT was born and continues to be a critical asset in NASA’s training toolkit. 
      United States Space Force Vice Chief of Space Operations Gen. David D. Thompson observes a demonstration of the Generic On-Orbit Robotic Trainer alongside NASA astronauts and crew members. For Daley, celebrating her identity and culture in the workplace is about advocacy and education. She is passionate about using her voice to promote awareness and understanding, not just for her own experience, but for the benefit of all. 

      “Being a woman in engineering is extremely difficult. However, being a woman with a disability in engineering is even harder,” Daley said. “I have learned how important it is to communicate your ideas, questions, and concerns.” 

      When reflecting on her career, Daley says she cannot pick a favorite project. Each one—from Orion to Gateway to the International Space Station and space shuttle—has deepened her understanding of NASA’s vision.  
      The Robotic OnBoard Trainer onboard the International Space Station in the U.S. Destiny Laboratory. As Daley looks to the future of robotics and human spaceflight, she remains optimistic and passionate about inspiring the next generation of explorers.  

      “Keep your hope and don’t be afraid to ask questions because that is how you learn and become a leader!” she said.  
      View the full article
    • By NASA
      Bridget Moody stands at NASA’s Stennis Space Center where she is the technical lead for the NASA Stennis Environmental and Health Services Office. Along with supporting the NASA mission at NASA Stennis, Moody supports commercial companies by helping them determine environmental requirements and obtain required permits.NASA/Danny Nowlin Bridget Moody has the future in mind every day she works for NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      The future success of NASA’s Artemis campaign. The future success of commercial companies working at NASA Stennis. The future success of the Artemis Generation to follow.
      As technical lead for the NASA Stennis Environmental and Health Services Office, Moody’s job helps ensure work at America’s largest rocket propulsion test site is carried out with the best environmental stewardship in mind. 
      “This work is important because it helps preserve a legacy,” Moody said. “NASA has a mission, and it is also making sure we do that in the most environmentally sound manner possible. We all have the responsibility to protect and improve the environment.”
      The McNeill, Mississippi, resident supports NASA’s Artemis campaign by managing the NASA Stennis air permit, ensuring all federal and state requirements are met.
      The south Mississippi center is at the front end of the critical path for future space exploration by conducting hot fire testing for RS-25 engines that will help power NASA’s SLS (Space Launch System) rocket.
      NASA Stennis also is preparing to test the agency’s new exploration upper stage for future SLS flights. The newer upper stage will help NASA carry larger payloads on future Artemis missions to the Moon and beyond.
      Additionally, Moody’s knowledge of operations and environmental requirements benefits commercial companies working at NASA Stennis by helping them determine environmental requirements and obtain required permits in a timely manner.
      “We know what needs to be done and how to get it done, so we can really help facilitate and expedite those processes for them,” she said. 
      Moody, a native of Slidell, Louisiana, moved to Mississippi from Baton Rouge, Louisiana, in 2005. One year later, she started working as a contractor at NASA Stennis before being hired by NASA in 2016.
      The Southeastern Louisiana graduate received a NASA Early Career Achievement Medal in 2021. She was named a Space Hero by the agency that same year and received NASA’s prestigious Space Flight Awareness Silver Snoopy award, the astronaut’s award given to less than 1 percent of the total NASA workforce annually, in 2023.
      “NASA is one of the top federal agencies to work for,” Moody said. “Everybody knows about NASA, so it is amazing to be here, to contribute to our mission and be a part of that legacy. At NASA Stennis, we work as a team with everyone contributing to meet all challenges.  The work culture at NASA helps everybody realize that their contribution is important to our success, and all can have their voices heard.”
      As NASA continues its mission of exploring the unknown in air and space, innovating for the benefit of humanity, and inspiring the world through discovery, Moody will continue working to leave things better than she found it in hopes of inspiring the Artemis Generation to come.
      Learn more about the people who work at NASA Stennis View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The American flag inside the cupola of the International Space Station (Credits: NASA).Credit: NASA NASA astronauts aboard the International Space Station have the opportunity to vote in general elections through absentee ballots or early voting in coordination with the county clerk’s office where they live.  

      So, how is voting from space possible? Through NASA’s Space Communication and Navigation (SCaN) Program. 

      Similar to most data transmitted between the space station and the Mission Control Center at NASA’s Johnson Space Center in Houston, votes cast in space travel through the agency’s Near Space Network, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The network connects missions within 1.2 million miles of Earth with communications and navigation services – including the space station. 

      NASA astronauts Loral O’Hara and Jasmin Moghbeli (from left) give a thumbs up after voting as Texas residents from the International Space Station. The duo filled out electronic absentee ballots in March 2024 and downlinked them to Mission Control at NASA’s Johnson Space Center in Houston, which relayed the votes to the county clerk’s office.Credit: NASA
      Just like any other American away from home, astronauts may fill out a Federal Post Card Application to request an absentee ballot. After an astronaut fills out an electronic ballot aboard the orbiting laboratory, the document flows through NASA’s Tracking and Data Relay Satellite System to a ground antenna at the agency’s White Sands Test Facility in Las Cruces, New Mexico.

      From New Mexico, NASA transfers the ballot to the Mission Control Center at NASA Johnson and then on to the county clerk responsible for casting the ballot. To preserve the vote’s integrity, the ballot is encrypted and accessible only by the astronaut and the clerk.

      NASA’s Near Space Network enables astronauts on the International Space Station to communicate with Earth and electronically deliver ballots from space. Credit: NASA
      Astronauts have voted in U.S. elections since 1997 when the Texas Legislature passed a bill that allowed NASA astronauts to cast ballots from orbit. That year, NASA astronaut David Wolf became the first American to vote from space while aboard the Mir Space Station. NASA astronaut Kate Rubins became the latest astronaut to vote in a presidential election, as she voted aboard the International Space Station in November 2020. 

      Astronauts forego many of the comforts afforded to those back on Earth as they embark on their journeys to space for the benefit of humanity. Though they are far from home, NASA’s networks connect them with their friends and family and give them the opportunity to participate in democracy and society while in orbit. While astronauts come from all over the United States, they make their homes in Texas so they can be near NASA Johnson’s training and mission support facilities. 

      For more than two decades, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory stay connected with Earth and their civilian lives back home by communicating with mission control through the Near Space Network. This development in communication ultimately can benefit humanity and lay the groundwork for other agency missions, like NASA’s Artemis campaign, and future human exploration of Mars. 

      Learn more about the International Space Station online: 

      https://www.nasa.gov/station
      About the Author
      Dominique V. Crespo

      Share
      Details
      Last Updated Oct 03, 2024 Related Terms
      General Astronauts Goddard Space Flight Center Humans in Space International Space Station (ISS) Johnson Space Center Johnson's Mission Control Center Near Space Network Space Communications & Navigation Program Space Communications Technology Space Operations Mission Directorate Tracking and Data Relay Satellite (TDRS) White Sands Test Facility Explore More
      5 min read NASA’s Laser Comms Demo Makes Deep Space Record, Completes First Phase
      Article 11 mins ago 1 min read Gateway Stands Tall for Stress Test
      Gateway space station’s Habitation and Logistics Outpost has successfully completed static load testing in Turin,…
      Article 2 hours ago 5 min read Facility Managers, Assemble: Protecting Johnson Space Center’s People and Places
      Article 17 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...