Jump to content

Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’


Recommended Posts

  • Publishers
Posted

To shape NASA’s path of exploration forward, Dr. Gioia Rau unravels stars and worlds beyond our solar system.

Name: Dr. Gioia Rau
Title: Astrophysicist
Organization: Exoplanets and Stellar Astrophysics Laboratory, Astrophysics Division, Science Mission Directorate (Code 667)

Dr. Gioia Rau stands against a wall with a large Hubble image of a spiral galaxy. She is standing to the right of the image wearing a black blazer, white shirt, tan pants, and glasses.
Dr. Gioia Rau is an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md.
Photo courtesy of Gioia Rau

What do you do and what is most interesting about your role here at Goddard?

I’m an astrophysicist who studies both evolved stars, stars that about to die, and exoplanets, planets outside our solar system. I study the stars that once held the elements that are in our body, such as calcium. I also lead the science part of several mission concept studies. And I am really passionate about strategic thinking.

How does it feel to achieve your childhood dream of becoming an astrophysicist at NASA?

I am from Italy. Growing up, I was always fascinated by NASA. As a child, I watched the shuttle launches. I loved everything about stars, planets, and galaxies. I devoured astronomy books. I always knew that I wanted to study astrophysics.

Around 10 years old, I wrote a letter to NASA saying that I wanted to become an astrophysicist to study the universe. NASA sent me information and encouraged me to study and work hard. So I did.

I still remember my first day working at NASA. I looked around with so much joy at my dream coming true. Every day that I work at Goddard, I find more passion to continue pursue my dreams.

What is your educational background?

In 2009, I earned a Bachelor of Science in physics from the University of Rome, La Sapienza. In 2011, I obtained a master’s in physics and astrophysics there. Also in 2011, I was awarded a very competitive fellowship to do a master’s thesis at the California Institute of Technology and NASA’s Jet Propulsion Lab thanks to my high GPA. In 2016, I earned a Ph.D. in astrophysics from the University of Vienna. I came to Goddard in 2017 when I obtained a NASA post-doctoral fellowship.

Why do you study evolved stars? 

Evolved stars are the future of our own Sun, which in about 5 billion years will die. Evolved stars also produce elements found in our own bodies, as, for example, the calcium in our bones, the iron in our blood, and the gold in our rings. The stardust that I study is spread by the stellar winds into the interstellar medium to form new generation of stars and planets, and contribute to the cosmic recycle of matter in the universe.

As Carl Sagan said, “We are all made of stardust.”

What is most interesting about studying exoplanets?

If we discover an exoplanet within the habitable zone of its star, we increase the likelihood of finding a planet with Earth-like conditions. This can enhance our understanding of planetary formation processes, and help determine if these exoplanets may harbor life through studying their atmospheres.

My team of students and scientists used Artificial Intelligence techniques to discover new exoplanet candidates. They are called candidates because they need to be confirmed through follow-up observations. It was a very exciting, pioneering project using cutting-edge techniques.

Why is working on mission concepts important to you?

Mission concepts represent the future of space exploration, and I lead the science team of multiple mission concepts. By working on these pioneering projects, we as teams are actively shaping the future of NASA, and advancing the field of astrophysics. I am grateful for the opportunity to collaborate with so many brilliant scientists and engineers. I am passionate about strategic thinking and the visionary process behind it to shape the future of science and of organizations alike. I thrive on seeing the big picture and contributing to initiative that shape the future of organizations and people alike.

Why do you love mentoring?

I love working with students. It is gratifying to teach them and fuel their passions and also, again, working with the next generation helps shape NASA’s future. I tell the students what I firmly believe: that resilience, grit, passion, and hard work are some of the most important qualities in a scientist. That integrity, humility, and flexibility are great values to honor as a scientist. And I tell them not to be afraid of trying something new. After all, failure is part of being a scientist. Doing science is about learning from failures, to be successful. As scientists, we follow the scientific method to test our hypotheses through experiments. Ninety-nine percent of the time that experiment does not work the first time. So we need to keep refining the experiment until it does work. I also tell my students to keep in focus their goal, and work very hard toward it: make a plan and stick to it.

What is your message when you do outreach?

I started doing outreach when I was in college. I have since done hundreds of outreach events; I am passionate about sharing the joy of astrophysics, and my passion for it, with the general public! When I do outreach, my goal is to make the Universe accessible to the public: the Cosmos belongs to all of us, and we can all enjoy the beauty and wanders of the Universe, together.  I aim to build connections that bridge the gap between science and the public, working together to deepen our understanding of the Universe and inspire the next generation of scientists. I also remind the audience that behind every success there are a multitude of failures that led to that success. I tell them why I am passionate about science and how I became an astrophysicist at NASA. Engaging with people makes science more accessible and relatable. Outreach inspires the next generation to become scientists.

Who is your science hero?

Hypatia. She was an astronomer and a philosopher who lived in ancient Greece. At that time, scientists were also philosophers, and I love philosophy. She was martyred because her views were considered to be against the established way of thinking. She was a martyr for freedom of thought.

Do you have a phrase that you live by?

Keep on dreaming, and work hard toward your goals; ad astra per aspera!

Who do you wish to thank?

My father and my mother, and my current family: my husband who is my biggest supporter and fan, and my kids for the joy they bring. I also would like to thank all my mentors along the way. They always believed in me and guided me on my path.

What do you do for fun?

I love playing volleyball, skiing, reading, taking photos, playing the piano and the guitar, hiking, sailing, baking, and of course being with my family.

What is your “six-word memoir”? A six-word memoir describes something in just six words.

Unraveling mysteries, shaping futures, inspiring paths.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Oct 01, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Learn Home NASA HEAT Student Activity… Heliophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      NASA HEAT Student Activity Featured in TIME’s Top 100 Photos of 2024
      On April 8, 2024, tens of millions experienced a solar eclipse from Mexico through the United States and into Canada. Astronomers, educators, and organizations had been preparing the public for this grand celestial event. Learning from engagement experiences in 2017, the NASA Heliophysics Education Activation Team (NASA HEAT) promoted an activity called “Eclipse Essentials: Safe and Stylish Solar Viewing Glasses.” The activity was first tested in Albuquerque, New Mexico during the Balloon Fiesta around the October 2023 annular eclipse. Using solar viewing glasses, a paper plate, some drawing and decoration supplies, visitors – minors and adults alike – crowded around the heliophysics tables in the NASA tent. That positive experience led NASA HEAT to modify and perfect the design of their “face shield” activity before offering trainings to numerous educators and outreach personnel in the weeks leading up to the April 2024 engagement events.
      Note: The glasses and the art activity are not only useful for solar eclipses. They can be used anytime to safely observe the Sun. While it is never safe to look directly at the sun with unprotected eyes, eclipse glasses are perfect for observing sunspots!
      One proof of positive impact can be found at the Myers Elementary School in Grand Blanc, Michigan. Students from two kindergarten classes, escorted outside by their teachers Amy Johnston and Wendy Sheridan, stared toward the sky with their solar viewing glasses using paper plates to watch the solar eclipse on Monday, April 8, 2024. The paper plates, which helped provide additional safety measures to protect their eyes, were attached to solar eclipse glasses and decorated by each student in their classrooms as a project leading up to the big day. A photo of the students was so captivating that multiple media outlets shared it on or shortly after the day of the eclipse.
      The global media brand, TIME, selected a photo of these kindergarten students wearing their NASA HEAT-designed solar eclipse-viewing “face shields” during the April 8th solar eclipse as one of “TIME’s Top 100 Photos of 2024”. When sharing about the top 100 photos on Instagram, TIME had this to say:
      “Every year the TIME photo department sits down to curate the strongest images that crossed our path over the previous 12 months. And every year, sitting with the images, we find ourselves mulling the ways this collection feels heavier than the last, how the year produced images unlike what we’ve seen before.
      But this year something else, a tautness, runs through the collection – the tension of conflict, the anxiety over outcome, anticipation of excitement or in possibility. Somehow, these photographers are able to capture that coiled feeling and hold it within the four walls of a frame. Be it by impeccable timing or intentional framing, they have created a time capsule that feels as if it’s about to be opened.”
      NASA HEAT is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

      Kindergarten students at Myers Elementary School in Grand Blanc, Michigan watched the solar eclipse with special solar viewing glasses on Monday, April 8, 2024. The paper plates, which helped provide additional safety for their eyes, were added on and decorated by each student prior to the big day. Jake May/MLive.com/The Flint Journal Share








      Details
      Last Updated Jan 13, 2025 Editor NASA Science Editorial Team Related Terms
      2024 Solar Eclipse Heliophysics Science Activation Explore More
      2 min read First NASA Neurodiversity Network Intern to Present at the American Geophysical Union Annual Conference


      Article


      3 days ago
      2 min read NASA eClips Educator Receives 2024 VAST Science Educator Specialist Award


      Article


      6 days ago
      5 min read NASA’s LEXI Will Provide X-Ray Vision of Earth’s Magnetosphere


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      NASA’s SPHEREx observatory will use a technique called spectroscopy across the entire sky, capturing the universe in more than 100 colors.Credit: BAE Systems Media accreditation is open for the launch of two NASA missions that will explore the mysteries of our universe and Sun.
      The agency is targeting late February to launch its SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) observatory, a space telescope that will create a 3D map of the entire sky to help scientists investigate the origins of our universe. NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will study origins of the Sun’s outflow of material, or the solar wind, also will ride to space with the telescope.
      NASA and SpaceX will launch the missions aboard the company’s Falcon 9 rocket from Space Launch Complex 4E at Vandenberg Space Force Base in California.

      Accredited media will have the opportunity to participate in a series of prelaunch briefings and interviews with key mission personnel, including a science briefing the week of launch. NASA will communicate additional details regarding the media event schedule as the launch date approaches.
      Media interested in covering the launch must apply for media accreditation. The application deadline for U.S. citizens is 11:59 p.m. EST, Thursday, Feb. 6, while international media without U.S. citizenship must apply by 11:59 p.m., Monday, Jan. 20.

      NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact the newsroom at NASA’s Kennedy Space Center in Florida at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      Updates about spacecraft launch preparations are available on the agency’s SPHEREx blog and PUNCH blog.

      The SPHEREx mission will observe hundreds of millions of stars and galaxies in infrared light, a range of wavelengths not visible to the human eye. With this map, SPHEREx will enable scientists to study inflation, or the rapid expansion of the universe a fraction of a second after the big bang. The observatory also will measure the collective glow from galaxies near and far, including light from hidden galaxies that individually haven’t been observed, and look for reservoirs of water, carbon dioxide, and other key ingredients for life in our home galaxy.
      Launching as a rideshare with SPHEREx, the agency’s PUNCH mission is made up of four suitcase-sized satellites that will spread out around Earth’s day-night line to observe the Sun and space with a combined field of view. Working together, the four satellites will map out the region where the Sun’s outer atmosphere, the corona, transitions to the solar wind, or the constant outflow of material from the Sun.

      The SPHEREx observatory is managed by NASA’s Jet Propulsion Laboratory in Southern California for the Astrophysics Division within the agency’s Science Mission Directorate in Washington. The mission principal investigator is based jointly at NASA JPL and Caltech. Formerly Ball Aerospace, BAE Systems built the telescope, supplied the spacecraft bus, and performed observatory integration. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech. The SPHEREx data set will be publicly available.

      The agency’s PUNCH mission is led by Southwest Research Institute’s office in Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate. NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the SPHEREx and PUNCH missions.
      For more details about the SPHEREx mission and updates on launch preparations, visit:
      https://science.nasa.gov/mission/spherex
      -end-
      Alise Fisher (SPHEREx)
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Sarah Frazier (PUNCH)
      Goddard Space Flight Center, Maryland
      202-853-7191
      sarah.frazier@nasa.gov
      Laura Aguiar
      Kennedy Space Center, Florida
      321-593-6245
      laura.aguiar@nasa.gov
      Share
      Details
      Last Updated Jan 13, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Goddard Space Flight Center Heliophysics Jet Propulsion Laboratory Kennedy Space Center Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
    • By European Space Agency
      On 8 January 2025, the ESA/JAXA BepiColombo mission will fly just 295 km above Mercury's surface, with a closest approach scheduled for 06:59 CET (05:59 UTC). It will use this opportunity to photograph Mercury, make unique measurements of the planet’s environment, and fine-tune science instrument operations before the main mission begins. This sixth and final flyby will reduce the spacecraft’s speed and change its direction, readying it for entering orbit around the tiny planet in late 2026.
      View the full article
    • By NASA
      This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 2566.ESA/NASA This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 2566, which sits 76 million light-years away in the constellation Puppis. A prominent bar of stars stretches across the center of this galaxy, and spiral arms emerge from each end of the bar. Because NGC 2566 appears tilted from our perspective, its disk takes on an almond shape, giving the galaxy the appearance of a cosmic eye.
      As NGC 2566 appears to gaze at us, astronomers gaze right back, using Hubble to survey the galaxy’s star clusters and star-forming regions. The Hubble data are especially valuable for studying stars that are just a few million years old; these stars are bright at the ultraviolet and visible wavelengths to which Hubble is sensitive. Using these data, researchers can measure the ages of NGC 2566’s stars, which helps piece together the timeline of the galaxy’s star formation and the exchange of gas between star-forming clouds and the stars themselves.
      Hubble regularly teams up with other astronomical observatories to examine objects like NGC 2566, including the NASA/ESA/CSA James Webb Space Telescope. Webb data complements Hubble’s by going beyond the infrared wavelengths of light Hubble can see, better defining areas of warm, glowing dust. At even longer wavelengths, the Atacama Large Millimeter/submillimeter Array (ALMA) of 66 radio telescopes that work together can capture detailed images of the clouds of gas and dust in which stars form. Together, Hubble, Webb, and ALMA provide an overview of the formation, lives, and deaths of stars in galaxies across the universe.
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 quiet supersonic research aircraft completed its first maximum afterburner test at Lockheed Martin’s Skunk Works facility in Palmdale, California. This full-power test, during which the engine generates additional thrust, validates the additional power needed for meeting the testing conditions of the aircraft. The X-59 is the centerpiece of NASA’s Quesst mission, which aims to overcome a major barrier to supersonic flight over land by reducing the noise of sonic booms.Lockheed Martin Corporation/Garry Tice NASA completed the first maximum afterburner engine run test on its X-59 quiet supersonic research aircraft on Dec. 12. The ground test, conducted at Lockheed Martin’s Skunk Works facility in Palmdale, California, marks a significant milestone as the X-59 team progresses toward flight.
      An afterburner is a component of some jet engines that generates additional thrust. Running the engine, an F414-GE-100, with afterburner will allow the X-59 to meet its supersonic speed requirements. The test demonstrated the engine’s ability to operate within temperature limits and with adequate airflow for flight. It also showed the engine’s ability to operate in sync with the aircraft’s other subsystems.
      The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter. The X-59’s first flight is expected to occur in 2025.
      Share
      Details
      Last Updated Dec 20, 2024 EditorDede DiniusContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Integrated Aviation Systems Program Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      2 min read NASA, Notre Dame Connect Students to Inspire STEM Careers
      Article 4 hours ago 2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
      Article 4 hours ago 3 min read Atmospheric Probe Shows Promise in Test Flight
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aeronautics
      Supersonic Flight
      Quesst: The Vehicle
      View the full article
  • Check out these Videos

×
×
  • Create New...