Jump to content

The Universe "Down Under" is the Latest Target for Hubble's Latest Deep-View


HubbleSite

Recommended Posts

low_STSCI-H-p-9841a-k1340x520.png

Turning its penetrating vision toward southern skies, the Hubble telescope has peered down a 12- billion-light-year-long corridor loaded with a dazzling assortment of thousands of never-before-seen galaxies. The observation, called the Hubble Deep Field South, doubles the number of far-flung galaxies available to astronomers for deciphering the history of the universe.

This new far-look complements the original Hubble "deep field" taken in late 1995, when Hubble was aimed at a small patch of space near the Big Dipper. Hubble's sharp vision allows astronomers to sort galaxy shapes. The image is dominated by beautiful pinwheel-shaped disk galaxies, which are like our Milky Way.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Francisco Rodriguez (aircraft mechanic) services liquid oxygen or LOX on the ER-2 during the Geological Earth Mapping Experiment (GEMx) research project. Experts like Rodriguez sustain a high standard of safety on airborne science aircraft like the ER-2 and science missions like GEMx. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Steve Freeman Operating at altitudes above 99% of the Earth’s atmosphere, NASA’s ER-2 aircraft is the agency’s highest-flying airborne science platform. With its unique ability to observe from as high as 65,000 feet, the ER-2 aircraft is often a platform for Earth science that facilitates new and crucial information about our planet, especially when the plane is part of collaborative and multidisciplinary projects.
      “We’re deploying instruments and people everywhere from dry lakebeds in the desert to coastal oceans and from the stratosphere to marine layer clouds just above the surface,” said Kirk Knobelspiesse, an atmospheric scientist at NASA’s Goddard Space Flight Center.  “We live on a changing planet, and it is through collaborative projects that we can observe and understand those changes.”
      One mission that recently benefitted from the ER-2’s unique capabilities is the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) project. The PACE-PAX mission uses the ER-2’s capabilities to confirm data collected from the PACE satellite, which launched in February 2024.
      The PACE observatory is making novel measurements of the ocean, atmosphere, and land surfaces, noted Knobelspiesse, the mission scientist for PACE-PAX. This mission is all about checking the accuracy of those new satellite measurements.
      Sam Habbal (quality inspector), Darick Alvarez (aircraft mechanic), and Juan Alvarez (crew chief) work on the network “canoe” on top of the ER-2 aircraft, which provides network communication with the pilot onboard. Experts like these sustain a high standard of safety while outfitting instruments onboard science aircraft like the ER-2 and science missions like the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris “The ER-2 is the ideal platform for PACE-PAX because it’s about the closest we can get to putting instruments in orbit without actually doing so,” Knobelspiesse said.
      The collaborative project includes a diverse team of researchers from across NASA, plus the National Oceanic and Atmospheric Administration (NOAA), the Netherlands Institute for Space Research (SRON), the University of Maryland, Baltimore County, the Naval Postgraduate School, and other institutions.
      Similarly, the Geological Earth Mapping eXperiment (GEMx) science mission is using the ER-2 over multiple years to collect observations of critical mineral resources across the Western United States.
      “Flying at this altitude means the GEMx mission can acquire wide swaths of data with every overflight,” said Kevin Reath, NASA’s associate project manager for the GEMx mission, a collaboration between the United States Geological Survey (USGS) and NASA.
      The ER-2 conducted over 80 flight hours in service of the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is uniquely qualified to conduct the high-altitude scientific flights that this project required, and is based at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris The GEMx team collects visible, shortwave infrared, and thermal infrared data using instruments installed onboard the ER-2. Combining these instruments with the aircraft’s capability to fly at high altitudes bears promising results.
      “The dataset being produced is the largest airborne surface mineralogy dataset captured in a single NASA campaign,” Reath said. “These data could help inform federal, tribal, state, and community leaders to make decisions that protect or develop our environment.”
      Learn more about the ER-2 aircraft.
      Learn more about the PACE-PAX mission.
      Learn more about the GEMx mission.
      Learn more about NASA’s Airborne Science Program.
      Share
      Details
      Last Updated Oct 24, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science Earth Science Earth's Atmosphere ER-2 PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Science Mission Directorate Explore More
      2 min read Hubble Sees a Celestial Cannonball
      The spiral galaxy in this NASA/ESA Hubble Space Telescope image is IC 3225. It looks…
      Article 5 hours ago 1 min read PSI Database is Live with New Features to Improve User Experience
      Since its ​launch​​​ in 2014, ​the ​Physical Sciences Informatics (PSI) ​system ​has served as NASA’s…
      Article 22 hours ago 7 min read S-MODE, ASIA-AQ, and the Role of ESPO in Complex Airborne Campaigns
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Science Projects
      Aircraft Flown at Armstrong
      Earth Science
      View the full article
    • By NASA
      NASA’s SpaceX Crew-8 members, from left to right, Roscosmos cosmonaut Alexander Grebenkin and NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps, are seen inside the Dragon spacecraft shortly after having landed off the coast of Pensacola, Florida, on Oct. 25, 2024. Credit: NASA/Joel Kowsky NASA’s SpaceX Crew-8 mission successfully splashed down at 3:29 a.m. EDT Friday, off Pensacola, Florida, concluding a nearly eight-month science mission and the agency’s eighth commercial crew rotation mission to the International Space Station.  
      After launching March 3 on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, NASA astronauts Matthew Dominick, Michael Barratt, and Jeanette Epps, as well as Roscosmos cosmonaut Alexander Grebenkin, spent 232 days aboard the space station.
      Recovery teams from NASA and SpaceX quickly secured the spacecraft and assisted the astronauts during exit. The crew now will head to NASA’s Johnson Space Center in Houston, while the Dragon spacecraft will return to SpaceX facilities at Cape Canaveral Space Force Station in Florida for inspection and refurbishment for future missions.
      During their mission, crew members traveled nearly 100 million miles and completed 3,760 orbits around Earth. They conducted new scientific research to advance human exploration beyond low Earth orbit and benefit human life on Earth. Research and technology demonstrations included conducting stem cell research to develop organoid models for studying degenerative diseases, exploring how fuel temperature affects material flammability, and studying how spaceflight affects immune function in astronauts. Their work aims to improve astronaut health during long-duration spaceflights, contributing to critical advancements in space medicine and benefitting humanity.

      Crew-8’s return follows the arrival of NASA’s SpaceX Crew-9 to the orbiting laboratory Sept. 29. These missions are part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station. 
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111 
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov  
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Oct 25, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Humans in Space International Space Station (ISS) ISS Research View the full article
    • By NASA
      The study of X-ray emission from astronomical objects reveals secrets about the Universe at the largest and smallest spatial scales. Celestial X-rays are produced by black holes consuming nearby stars, emitted by the million-degree gas that traces the structure between galaxies, and can be used to predict whether stars may be able to host planets hospitable to life. X-ray observations have shown that most of the visible matter in the universe exists as hot gas between galaxies and have conclusively demonstrated that the presence of “dark matter” is needed to explain galaxy cluster dynamics, that dark matter dominates the mass of galaxy clusters, and that it governs the expansion of the cosmos.
      X-ray observations also enable us to probe mysteries of the Universe on the smallest scales. X-ray observations of compact objects such as white dwarfs, neutron stars, and black holes allow us to use the Universe as a physics laboratory to study conditions that are orders of magnitude more extreme in terms of density, pressure, temperature, and magnetic field strength than anything that can be produced on Earth. In this astrophysical laboratory, researchers expect to reveal new physics at the subatomic scale by conducting investigations such as probing the neutron star equation of state and testing quantum electrodynamics with observations of neutron star atmospheres. At NASA’s Marshall Space Flight Center, a team of scientists and engineers is building, testing, and flying innovative optics that bring the Universe’s X-ray mysteries into sharper focus.
      A composite X-ray/Optical/Infrared image of the Crab Pulsar. The X-ray image from the Chandra X-ray Observatory (blue and white), reveals exquisite details in the central ring structures and gas flowing out of the polar jets. Optical light from the Hubble Space Telescope (purple) shows foreground and background stars as pinpoints of light. Infrared light from the Spitzer Space Telescope (pink) traces cooler gas in the nebula. Finally, magnetic field direction derived from X-ray polarization observed by the Imaging X-ray Polarimetry Explorer is shown as orange lines. Magnetic field lines: NASA/Bucciantini et al; X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech Unlike optical telescopes that create images by reflecting or refracting light at near-90-degree angles (normal incidence), focusing X-ray optics must be designed to reflect light at very small angles (grazing incidence). At normal incidence, X-rays are either absorbed by the surface of a mirror or penetrate it entirely. However, at grazing angles of incidence, X-rays reflect very efficiently due to an effect called total external reflection.  In grazing incidence, X-rays reflect off the surface of a mirror like rocks skipping on the surface of a pond.
      A classic design for astronomical grazing incidence optics is the Wolter-I prescription, which consists of two reflecting surfaces, a parabola and hyperbola (see figure below). This optical prescription is revolved around the optical axis to produce a full-shell mirror (i.e., the mirror spans the full circumference) that resembles a gently tapered cone. To increase the light collecting area, multiple mirror shells with incrementally larger diameters and a common focus are fabricated and nested concentrically to comprise a mirror module assembly (MMA).
      Focusing optics are critical to studying the X-ray universe because, in contrast to other optical systems like collimators or coded masks, they produce high signal-to-noise images with low background noise. Two key metrics that characterize the performance of X-ray optics are angular resolution, which is the ability of an optical system to discriminate between closely spaced objects, and effective area, which is the light collecting area of the telescope, typically quoted in units of cm2. Angular resolution is typically measured as the half-power diameter (HPD) of a focused spot in units of arcseconds.  The HPD encircles half of the incident photons in a focused spot and measures the sharpness of the final image; a smaller number is better. 
      Schematic of a full-shell Wolter-I X-ray optic mirror module assembly with five concentrically nested mirror shells. Parallel rays of light enter from the left, reflect twice off the reflective inside surface of the shell (first off the parabolic segment and then off the hyperbolic segment), and converge at the focal plane. NASA MSFC NASA Marshall Space Flight Center (MSFC) has been building and flying lightweight, full-shell, focusing X-ray optics for over three decades, always meeting or exceeding angular resolution and effective area requirements. MSFC utilizes an electroformed nickel replication (ENR) technique to make these thin full-shell X-ray optics from nickel alloy.
      X-ray optics development at MSFC began in the early 1990s with the fabrication of optics to support NASA’s Advanced X-ray Astrophysics Facility (AXAF-S) and then continued via the Constellation-X technology development programs. In 2001, MSFC launched a balloon payload that included two modules each with three mirrors, which produced the first focused hard X-ray (>10 keV) images of an astrophysical source by imaging Cygnus X-1, GRS 1915, and the Crab Nebula.  This initial effort resulted in several follow-up missions over the next 12 years, and became known as the High Energy Replicated Optics (HERO) balloon program.
      In 2012, the first of four sounding rocket flights of the Focusing Optics X-ray Solar Imager (FOXSI) flew with MSFC optics onboard, producing the first focused images of the Sun at energies greater than 5 keV. In 2019 the Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) instrument on the Spectr-Roentgen-Gamma Mission launched with seven MSFC-fabricated X-ray MMAs, each containing 28 mirror shells. ART-XC is currently mapping the sky in the 4-30 keV hard X-ray energy range, studying exotic objects like neutron stars in our own galaxy as well as active galactic nuclei, which are spread across the visible universe. In 2021, the Imaging X-ray Polarimetry Explorer (IXPE), flew and is now performing extraordinary science with an MSFC-led team using three, 24-shell MMAs that were fabricated and calibrated in-house.
      Most recently, in 2024, the fourth FOXSI sounding rocket campaign launched with a high-resolution MSFC MMA. The optics achieved 9.5 arcsecond HPD angular resolution during pre-flight test with an expected 7 arcsecond HPD in gravity-free flight, making this the highest angular resolution flight observation made with a nickel-replicated X-ray optic. Currently MSFC is fabricating an MMA for the Rocket Experiment Demonstration of a Soft X-ray (REDSoX) polarimeter, a sounding rocket mission that will fly a novel soft X-ray polarimeter instrument to observe active galactic nuclei. The REDSoX MMA optic will be 444 mm in diameter, which will make it the largest MMA ever produced by MSFC and the second largest replicated nickel X-ray optic in the world.
      Scientists Wayne Baumgartner (left, crouched) and Nick Thomas (left, standing) calibrate an IXPE MMA in the MSFC 100 m Beamline. Scientist Stephen Bongiorno (right) applies epoxy to an IXPE shell during MMA assembly. NASA MSFC The ultimate performance of an X-ray optic is determined by errors in the shape, position, and roughness of the optical surface. To push the performance of X-ray optics toward even higher angular resolution and achieve more ambitious science goals, MSFC is currently engaged in a fundamental research and development effort to improve all aspects of full-shell optics fabrication.
      Given that these optics are made with the Electroformed Nickel Replication technique, the fabrication process begins with creation of a replication master, called the mandrel, which is a negative of the desired optical surface. First, the mandrel is figured and polished to specification, then a thin layer of nickel alloy is electroformed onto the mandrel surface. Next, the nickel alloy layer is removed to produce a replicated optical shell, and finally the thin shell is attached to a stiff holding structure for use.
      Each step in this process imparts some degree of error into the final replicated shell. Research and development efforts at MSFC are currently concentrating on reducing distortion induced during the electroforming metal deposition and release steps. Electroforming-induced distortion is caused by material stress built into the electroformed material as it deposits onto the mandrel. Decreasing release-induced distortion is a matter of reducing adhesion strength between the shell and mandrel, increasing strength of the shell material to prevent yielding, and reducing point defects in the release layer.
      Additionally, verifying the performance of these advanced optics requires world-class test facilities. The basic premise of testing an optic designed for X-ray astrophysics is to place a small, bright X-ray source far away from the optic. If the angular size of the source, as viewed from the optic, is smaller than the angular resolution of the optic, the source is effectively simulating X-ray starlight. Due to the absorption of X-rays by air, the entire test facility light path must be placed inside a vacuum chamber.
      At MSFC, a group of scientists and engineers operate the Marshall 100-meter X-ray beamline, a world-class end-to-end test facility for flight and laboratory X-ray optics, instruments, and telescopes. As per the name, it consists of a 100-meter-long vacuum tube with an 8-meter-long, 3-meter-diameter instrument chamber and a variety of X-ray sources ranging from 0.25 – 114 keV. Across the street sits the X-Ray and Cryogenic Facility (XRCF), a 527-meter-long beamline with an 18-meter-long, 6-meter-diameter instrument chamber. These facilities are available for the scientific community to use and highlight the comprehensive optics development and test capability that Marshall is known for.
      Within the X-ray astrophysics community there exist a variety of angular resolution and effective area needs for focusing optics. Given its storied history in X-ray optics, MSFC is uniquely poised to fulfill requirements for large or small, medium- or high-angular-resolution X-ray optics. To help guide technology development, the astrophysics community convenes once per decade to produce a decadal survey. The need for high-angular-resolution and high-throughput X-ray optics is strongly endorsed by the National Academies of Sciences, Engineering, and Medicine report, Pathways to Discovery in Astronomy and Astrophysics for the 2020s.In pursuit of this goal, MSFC is continuing to advance the state of the art in full-shell optics. This work will enable the extraordinary mysteries of the X-ray universe to be revealed.
      Project Leads
      Dr. Jessica Gaskin and Dr. Stephen Bongiorno, NASA Marshall Space Flight Center (MSFC)
      Sponsoring Organizations
      The NASA Astrophysics Division supports this work primarily through the Internal Scientist Funding Model Direct Work Package and competed solicitations. This work is also supported by the Heliophysics Division through competed solicitations, as well as by directed work from other government entities.
      Share








      Details
      Last Updated Oct 15, 2024 Related Terms
      Astrophysics Astrophysics Division Marshall Astrophysics Marshall Space Flight Center Science-enabling Technology Technology Highlights Explore More
      2 min read Hubble Spots a Grand Spiral of Starbursts


      Article


      4 days ago
      6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus


      Article


      6 days ago
      4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball


      Article


      6 days ago
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Two NASA employees, Howard Chang and Bradley Williams, were named as two of the “20 under 35 of 2024” by the Space and Satellite Professionals International. The award recognizes outstanding young professionals in the space industry.
      Photos courtesy of Bradley Williams and Howard Chang The annual list of “20 Under 35” features 20 employees and entrepreneurs to keep your eye on in coming years. They were selected from nominations submitted by the membership and evaluated by the same panel of judges who name winners of the Promise Awards.  
      Howard Chang is an Assistant Chief Counsel at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Bradley (Brad) Williams is the Acting Associate Director for Flight, Heliophysics Division, NASA Science Mission Directorate at NASA Headquarters, Washington. 
      “I’m honored to be named in this year’s cohort,” Chang said. “I saw how SSPI connects people across the space and satellite industry—across generations, countries, and even disciplines—to build up the space economy of the future. And I can’t express enough thanks to all my NASA colleagues for their support and kindness—especially Deputy Chief Counsel Amber Hufft for her time and mentorship this year.”
      “It is an absolute honor to be recognized by SSPI on the 20 under 35 list of 2024,” said Williams. “I feel privileged to have benefitted from the opportunities I’ve had so far in my career. I want to thank the numerous mentors through the years who have provided me guidance and lessons learned and especially my colleagues and the leaders at NASA who have recognized my contributions and supported my growth potential as a leader.”
      About Howard Chang
      Howard Chang serves as the lead attorney for NASA’s Wallops Flight Facility’s commercial, nonprofit, and interagency partnerships in Wallops Island, Virginia. He also focuses on legal issues involving Unmanned Aircraft Systems (UAS), small UAS, real property transactions, government contracts litigation and administration supporting NASA Goddard, and partnerships involving the Goddard Institute for Space Studies located at Columbia University, New York, NASA commended Chang with an individual merit award in recognition of his superior support to the Goddard Space Flight Center during his first six months.
      In addition to his legal work, Chang contributes substantially to thought leadership in space law and policy. He has authored articles for The Federalist and the International Institute of Space Law on topics from the Apollo 8 mission to the travaux preparatoires of the Principles Declaration of 1963—the precursor to the Outer Space Treaty. He is a frequent speaker on matters of space law. He will be presenting at the 2024 International Astronautical Congress in Milan, Italy on the Wolf Amendment and the future of the International Space Station. In Milan, he will present in his capacity as an Advisor for the Georgetown University Space Initiative. He continues to serve as a guest lecturer on space policy for law schools and undergraduate space courses as well.
      Chang previously worked at an international firm in its aerospace finance and space law practices, engaging in litigation, transactional, regulatory, and policy work for aerospace and space companies. In addition, he worked on white-collar criminal defense, internal corporate investigations, congressional investigations, trial litigation, appellate litigation, and national security matters.
      About Bradley Williams
      Bradley Williams is the acting Associate Director for Flight Programs in the Heliophysics Division of the Science Mission Directorate at NASA Headquarters, Washington where he oversees more than a dozen missions in operations and approximately another dozen missions in different stages of development.
      Previously, Williams was a Program Executive in the Heliophysics Division where his assignments included IMAP, TRACERS, HelioSwarm, the Solar Cruiser solar sail technology project, and Senior Program Executive of the NASA Space Weather Program.
      Before joining NASA, he was the Director of Civil Space Programs at Terran Orbital Corporation, where he led the spacecraft development for both commercial and NASA technology demonstration missions and assisted with the growth of the science mission portfolio.
      Previously at the University of Arizona, he worked with faculty and research teams to identify proposal opportunities and develop spaceflight proposals. Williams was a vital member of the OSIRIS-REx Camera Suite (OCAMS) team. He also served as the Deputy Payload Manager on GUSTO, the first of its kind, balloon-borne observatory.
      He has been recognized for his achievements being named a Via Satellite Rising Star in 2024 and has been awarded the Robert H. Goddard Engineering Team Award, NASA Group Achievement Award, and asteroid (129969) Bradwilliams named in his honor.
      The “20 Under 35“ are honored each year at SSPI’s Future Leaders Dinner. At the Dinner, SSPI presents the three top-ranked members of the 20 Under 35 with a Promise Award, recognizing them as leaders of their year’s cohort, and honors the Mentor of the Year for fostering young talent, both within his or her organization and throughout the industry. The 2024 “20 Under 35” will be honored at the Future Leaders Celebration on October 21, 2024 during Silicon Valley Space Week.
      Rob Gutro
      NASA’s Goddard Space Flight Center
      Share
      Details
      Last Updated Oct 03, 2024 EditorJamie AdkinsContactRob Garnerrob.garner@nasa.gov Related Terms
      General Goddard Space Flight Center People of Goddard People of NASA
      View the full article
    • By European Space Agency
      The latest edition of ESA Impact is here
      Your interactive gateway to the most captivating stories and stunning visuals from ESA
      View the full article
  • Check out these Videos

×
×
  • Create New...