Jump to content

Summary of the 10th SWOT Applications Workshop


Recommended Posts

  • Publishers
Posted
eo-meeting-summary-banner.png?w=1037

21 min read

Summary of the 10th SWOT Applications Workshop

Introduction

The tenth Surface Water Ocean Topography (SWOT) Applications Workshop took place December 7–8, 2023 at the California Institute of Technology Keck Institute for Space Studies. The meeting was organized to highlight the work and project status of the SWOT Early Adopters (EAs). NASA’s Applied Sciences Program (which is now housed within the NASA Earth Science in Action element of NASA’s Earth Science Division), the SWOT Project, the Centre National d’Etudes Spatiales (CNES’s), or French space agency’s SWOT Downstream Program, the SWOT Applications Working Group (SAWG), and members of the SWOT science community have coordinated efforts in support of the SWOT Applications Program since 2010.

The 2023 meeting, which was the latest in an annual series organized by the SAWG, welcomed over 100 participants online and in person during the two days, with many joining virtually across different time zones, to share their project status and explore the many facets of operational and applied uses of SWOT data. Presentations covered the current state of and near-term plans for using SWOT data products and highlighted related applied science efforts focused on SWOT. A significant focus explored the use of the new mission data to improve hydrology and ocean models.

After a brief introduction to SWOT and its instruments and a short update on the SWOT EAs, the remainder of this article contains a select group of summaries from EA projects. The complete meeting agenda and a list of presentations are available on the 10th SWOT Application Meeting website.

SWOT Mission Overview and Update

SWOT launched December 16, 2022, from Vandenberg Space Force Base in California. After a successful checkout of the satellite systems, instruments, and data systems, SWOT entered Science Mode on July 21, 2023. It continues to operate nominally as of this writing. A detailed account of SWOT Significant Events since launch is available online.

The goal of SWOT is to make the first global survey of Earth’s surface water, observe the fine details of the ocean’s surface topography, and measure how water bodies change over time. The international partnership is led by NASA and CNES, with contributions from the U.K. Space Agency and the Canadian Space Agency.

The SWOT Science Team is made up of researchers from all over the world with expertise in oceanography and hydrology. Together the team is using SWOT data to study a range of topics, including availability of Earth’s freshwater resources and our changing ocean and coasts. Studies like these are crucial to meet society’s growing needs for clean air and water, to help prepare for and mitigate impacts of extreme weather, and to help the world adapt to long-term changes in climate on continental scales.

SWOT’s payload has been designed to provide the data that allow the SWOT team to study the topics listed in the previous paragraph. While the complete compliment of instruments is listed on the website, the three most relevant to the current article are described here.

  • Ka-band Radar Interferometer (KaRIn). This state-of-the-art, wide-swath, interferometric radar can measure the ocean, major lake, river, and wetland levels over a 120-km (75-mi) wide swath with a ~20-km (~12-mi) gap along nadir, which is filled by the Jason-class altimeter described below. KaRIn can operate in two modes: It uses low-resolution mode over the ocean with significant onboard processing to reduce data volume; and high-resolution mode over broad, primarily continental regions defined by the SWOT Science Team, where the focus is on hydrological studies as opposed to oceanographic ones.
  • Jason-class Altimeter (nadir altimeter). The altimeter flying on SWOT is similar to those flown on the series of ocean surface topography missions that have operated since 1992, including the (TOPEX)/Poseidon, Jason-1, Jason-2, and Jason-3 missions, and the newest mission, Sentinel 6 Michael Freilich (S6MF), developed in partnership with the European Space Agency (ESA). The altimeter sends and receives signals that travel straight up and down beneath the spacecraft (or nadir-pointing) making it ideal to fill in the “gap” between KaRIn swaths.
  • Microwave Radiometer (radiometer). This radiometer measures the amount of water vapor between SWOT and Earth’s surface. More water vapor present in the atmosphere slows down the radar signals and this instrument aids in correcting the signal.

SWOT’s sea surface height (SSH) measurements will be added to the existing 32-year time series of measurements of oceans and large water bodies compiled by the series NASA–CNES altimetry missions listed above. With higher resolution observations, SWOT will enable hydrological research and applications and provide more detailed information on heights and extent of rivers, lakes, reservoirs, and wetlands, as well as derived parameters such as river discharge.

SWOT Early Adopter Overview and Update

The SWOT Early Adopters Program was initiated in 2018 to ensure community preparedness to make use of SWOT data. The program comprises a growing community working to incorporate SWOT data into the operational and applied science activities of their organizations – see Figure 1. The current SWOT EA cohort spans surface hydrology and oceanography domains and organizations, including both U.S. and international private-sector companies, academia, nonprofits, operational agencies, state and national government organizations, and research communities.

SWOT figure 1
Figure 1. Forty SWOT Early Adopter (EA) teams span the globe with a wide range of operational and applied science project topics.
Figure credit: NASA

The 2023 SWOT Applications Workshop offered an opportunity to assess how the SWOT user community is using the data in anticipation of future SWOT data reprocessing and releases. The 2023 meeting explored three themes: 1) planned and current operational and applied uses of SWOT data; 2) the current state of the data products and access to the data; and 3) a variety of other projects that may/will include SWOT data in their applications.

The first public release of SWOT data came in June 2023, with the release of nadir altimeter and radiometer data. These data had a head-start in processing due to the instrument and processing heritage. These early releases allowed the EA community to begin incorporating SWOT into their operational models and systems. A public release of beta pre-validated SWOT KaRIn data products took place in November 2023, and the subsequent public release of pre-validated SWOT KaRIn data products in February 2024. SWOT KaRIn, nadir altimeter, and radiometer products are now in operational production and routinely available.

Workshop Overview

This workshop focused on the achievements of the SWOT EAs, offering a platform to share their projects with the community as they transition from “early adoption” to simply “adoption” of SWOT as a valuable resource in their system management toolbox. In addition, the meeting provided a space for discussions, an increased community awareness of the gaps and challenges of incorporating SWOT data into operational and decision-support framework for models, modeling systems, and other operational uses. Feedback from these discussions – especially concerning the known limitations of SWOT data with respect to data latency and mission length – will be exceptionally useful to the SWOT Project and Applications Teams.

Meeting Welcome and “Keynote” Presentations

Brad Doorn [NASA Headquarters (HQ)—Programmatic Lead], Annick Sylvestre-Baron [CNES—Programmatic Lead], Parag Vaze [JPL—SWOT Project Manager], and Pierre Sengenes [CNES—Project Lead] gave remarks to open the meeting. They welcomed attendees on behalf of NASA and CNES.

The first morning session closed with two highly relevant and illuminating presentations. Jinbo Wang [JPL] spoke about SWOT KaRIn performance and calibration/validation (Cal/Val) activities. Curtis Chen [JPL] detailed critical and important proclivities of KaRIn data products that EAs may find beneficial as they interpret data results. Understanding the information in Chen’s talk is critical for those planning to use the data.

SWOT Early Adopter Project Updates

The EA project summaries selected for this article provide an overview of the range and depth of the extensive work accomplished by the SWOT EA community to date. These examples illustrate the potential of SWOT data as a tool to manage surface water resources and forecast ocean and coastal conditions via operational systems in the coming years.

Daniel Moreira [Brazil Geological Society (BGS)—Project Investigator] explained that the current gauge network on rivers across the Amazon basin is limited. SWOT data offers unprecedented spatial and temporal coverage of water storage processes and may be beneficial to prepare for floods and extreme events in the basin. Moreira’s group has compared several sites using Global Navigation Satellite System data and a gauge station elevation time series with very good results. In addition, BGS maintains a weekly water level report and a web application that leverages satellite altimetry data from the S6MF and Jason-3 missions for comparison across the Amazon Basin. BGS plans to produce discharge datasets over the Amazon using altimetry.

Isabel Houghton [Sofar Ocean] introduced the Sofar Ocean ship route optimization and navigational safety platform, incorporating 10-day, data-assimilating marine weather forecasts. That data includes significant wave height estimates from both the Sofar spotter buoy network and estimates derived from nadir altimeters on NASA’s S6MF and Jason-3 missions and the joint CNES–Indian Space Research Agency (ISRO) Satellite with ARgos and ALtiKa (SARAL) satellites. (Argos collects data from a floating oceanic buoy network with the same name that CNES operates; AltiKa is a CNES-contributed Ka-band altimeter.) TheWaveWatch III model improves on the forecast through the addition of altimeter data. Houghton explained that Sofar Ocean is in the preliminary stages of using SWOT significant wave height data in their model, which is less noisy than the predecessor altimeters reducing forecast error. Sofar expects SWOT to improve their observation numbers by 50–100% in a given 24-hour period. Additionally, Sofar plan to use KaRIn observations in an Earth system model under development to address waves, circulation, and atmosphere.

Robert Dudley [U.S. Geological Survey (USGS)] presented a project that involved the team integrating data from SWOT and in situ sources together to derive discharge and flow velocity for the Tanana and Yukon Rivers in Alaska. The USGS is collaborating with the Physical Oceanography Distributed Active Archive (PO.DAAC) to integrate SWOT in SatRSQ measurements to develop the Water Information from Space (WISP) dashboard to access time series of SWOT hydrology products. WISP is in development and not yet publicly available. When operational, it will enable comparisons with collocated, ground-gauged time series. WISP contains SWOT orbital ground tracks and will add the SWOT lake database in the future. The dashboard should be publicly available later in 2024.

Gregg Jacobs [U.S. Naval Research Laboratory (NRL)] explained how NRL has evaluated SWOT KaRIn SSH data accuracy and integrated it into ocean forecast models by characterizing along-track errors in early data products to determine the necessary corrections. Jacobs then explained how the team computed daily interpolation of nadir altimeter data at SWOT crossover locations. They found good agreement between the corrected SWOT estimates and interpolated SSH from nadir altimeters and conducted ocean forecast experiments on California SWOT crossover Cal/Val sites – see Figure 2. NRL has had success in assimilating KaRIn data at a resolution of 5 km (~3 mi).

SWOT figure 2
Figure 2. Altimetry data collected over calibration/validation (Cal/Val) sites using traditional nadir altimeter data only [left], a combination of traditional nadir altimeter data and in situ observations [center], and a combination of traditional altimeter data and SWOT altimeter data. The dotted lines indicate the satellite ground track paths.
Figure credit: U.S. Naval Research Laboratory

Pierre Yves Le Traon [Mercator Ocean International (MOi)] explained that MOi is a non-profit that is now transforming into an intergovernmental organization. He began with a description of the Copernicus Marine Service, which is a long-term partnership between CNES, MOi, and a French company called Collecte Localisation Satellites (CLS) that focuses on ocean monitoring and forecasting. SWOT data will be used to constrain small scales in models – see Figure 3. The preliminary results are in good agreement with CNES Level-3 (L3) products. SWOT KaRIn data will be integrated into the operational Copernicus Marine Service operational forecast portfolio in 2025.

SWOT figure 3
Figure 3. Both these maps show the root mean square (RMS) error in the SWOT 21-day phase data in sea level anomaly (SLA) over one month on the 1/12° Mercator Ocean global forecasting system  The image pair contrasts the SLA RMS error without including SWOT data in the assimilation [left] versus when SWOT data are included in the assimilation [right]. Note that including SWOT data make smaller scale errors in the data become more apparent.
Figure credit: Mercator Ocean International

Guy Schumann [Water in Sight]explained this Swedish start-up company uses SWOT data to validate in situ gauge data in Malawi. Gauge readers and observers collect data at monitoring stations from south to north Malawi to support the government’s efforts in managing water and climate risks. They have used free Short Message Service and leveraged citizen science to develop a cloud platform for data access. For the next step, the project plans to integrate SWOT data into two-dimensional (2D) flood models. This EA project aims to address latency – time delay between collection and transmission of data – and interoperability challenges, enhancing hydrological network optimization as well as demonstrating the diverse complementary value of satellite observations. The group supports codesigned joint explorations, engagement activities, and technology alignment. The CNES hydroweb tool may be very useful in this endeavor, but Schumann acknowledges that there are interoperability challenges that need to be overcome.

Jerry Wegiel [NASA’s Goddard Space Flight Center] explained that the U.S. Air Force’s Weather Land Information System (LIS) is a software framework used by multiple agencies for simulating land/hydrology processes. The Global Hydrology Intelligence (GHI) system (rebranding of LIS) is a comprehensive framework for hydrologic analysis, forecasting, and projections across scales encompassing all aspects of water security and addressing significant hydro-intelligence gaps identified by the defense and national security communities. Integration of SWOT L2 products operationally into the LIS Hydrological Modeling and Analysis Platform (HyMAP) model is expected to improve the global hydrological model data analysis system, as well as improve extreme hydrological event monitoring, reduce forecasting uncertainty, and support water security conflicts.

Alexandre de Amorim Teixeira and Alexandre Abdalla Araujo [both at Agência Nacional de Águas e Saneamento Básico (ANA), or Brazilian National Water and Sanitation Agency] began by explaining that the ANA hydrography datasets [e.g., Base Hidrográfica Ottocodificada (BHO)] and water atlases [e.g., Base Hidrográfica Atlas-Estudos (BHAE)] have been extended using information from the SWOT River Database (SWORD) river reaches, which are roughly 10 km (~6 mi) SWORD-specified sections of a river, in Brazil – see Figure 4. By incorporating SWORD data into the BHAE, over 400,000 reaches have been identified – compared to 20,000 identified previously using SWORD alone. The latest version (6.2) of BHO will combine SWORD and BHAE data increasing numbers exponentially to nearly 5.5 million. The ANA EA project will use SWOT data to support water resource management in Brazil. ANA is working in collaboration with University Brasilia to integrate available gauge information on rivers and reservoirs to fulfill their mandate to determine and report on water availability in the country. They described a sophisticated hexagonal hierarchical geospatial indexing system that will support hydrological and hydrodynamical modeling and cross-validation. The team will use SWOT data pixel cloud or raster products to best serve their needs.

SWOT figure 4
Figure 4. The Agência Nacional de Águas e Saneamento Básico’s (ANA) [Brazilian National Water and Sanitation Agency] SWOT Early Adopter project is extending hydrography datasets, e.g., Base Hidrográfica Ottocodificada (BHO) [top] and water atlases, e.g., Base Hidrográfica Atlas-Estudos (BHAE) [middle] using the SWOT data to produce the SWOT River Database (SWORD) product [bottom] that expands on the extent of the BHO hydrography dataset.
Image credit: ANA

Data Systems and Products for Early Adopters

In 2021, the SWOT Project Science Team made simulated datasets available for select hydrologic and oceanographic regions. These datasets shared many characteristics in common with future SWOT data products (e.g., formats, metadata, and data contents) and were intended to familiarize users with the expected SWOT science data products.

At this meeting, teams from both the NASA and CNES mission data system and data repositories shared timely and valuable information and updates with the EA community. The talks provided information and insight into what users can expect from SWOT products.

Lionel Zawadzki and Cyril Germineaud [both at CNES] described the use of SWOT data available from CNES through the AVISO (ocean and coastal) and hydroweb.next (hydrology and ocean) data portals. Systems supporting data access include data acquisition and production, data repositories, and ultimately cloud data access through thematic portals.

Catalina Taglialatela and Cassandra Nickles [both at JPL] discussed the use of KaRIn high-resolution and low-resolution SWOT data products available through PO.DAAC, which provides centralized, searchable access that is available using an in-cloud commercial web service through the NASA EarthData portal. The team demonstrated resources and tutorials available via the online PO.DAAC Cookbook: SWOT Chapter, as well as the new Hydrocron SWOT time series applications programming interface (API) for generating time series over water features identified in SWORD and SWODLR, which is a system for creating on-demand L2 SWOT raster products.

Shailen Desai [JPL] explained how KaRIn products depend on upstream orbit, attitude, and radiometer products for optimal accuracy. SWOT KaRIn, nadir altimeter, and radiometer products are now in operational production and routinely available. Product description documents and SWOT algorithm theoretical basis documents are all publicly available.

Curtis Chen [JPL] discussed how the SWOT science data system team have reduced complexities of the KaRIn measurements to ensure robust interpretation of the results. Knowledge of measurement details may be especially important in trying to interpret the pre-validated data products. During his presentation, Chen addressed practical aspects of interpreting KaRIn data products, including answers to frequently asked questions and tips to avoid confusion and misinterpretation in using the data.

Yannice Faugere [CNES] explained how CNES will assimilate SWOT data into Mercator Ocean with value-added elements, including multimission calibration, noise mitigation, and images that blend KaRIn and nadir instruments. A preliminary assessment of L4 products was conducted using one-day Cal/Val orbit measurements with promising results. Tests on 21-day data and an L4 data challenge for community feedback to compare mapping and validation methods are in process.

Complementary Projects

Participants spoke about a number of other projects and programs during the meeting. The selected presentations address elements relevant to SWOT applications.

Charon Birkett [NASA] discussed how SWOT data will be incorporated into the Global REservoir and LAke Monitor (G-REALM) and Global Water Measurements (GWM) portal, to integrate nadir radiometer and KaRIn measurements. G-REALM maintains a 30-plus-year time series of nadir altimeter data from the NASA/CNES reference missions for this measurement (i.e., Topex/Poseidon; Jason -1, -2, and -3; and S6MF) as well as the European Remote Sensing Satellite. GWM is focused on lakes and reservoirs, rivers, and wetland water levels to derive surface extents and storage change.

Stephanie Granger [JPL] introduced the Western Water Applications Office (WWAO), which provides NASA data, technology, and tools for water management to water managers in the western U.S. The WWAO team completes needs assessments for basins – a task complicated by the more than 100 agencies involved in water management activities in the western U.S. Granger identified several activities that could benefit from SWOT data, such as extreme event predictions and impacts, timely streamflow predictions at a sub-basin level, wet/dry indicators from streamflow monitoring, and flood plain mapping.

Babette Tchonang, Dimitris Menemenlis,and Matt Archer [all from JPL] presented a study that evaluates the feasibility of applying the Estimating the Circulation and Climate of the Ocean 4-Dimensional Variational (MITgcm-ECCO 4DVAR) data assimilation framework to a sub-mesoscale resolving model [grid resolution of 1 km (~0.6 mi)] in preparation for future studies to assimilate SSH measurements from SWOT. Two model solutions are nested within the global 1/12° Hybrid Coordinate Ocean Model (HYCOM)/Navy Coupled Ocean Data Assimilation (NCODA) analysis. Comparing the two model solutions against assimilated and withheld in situ observations indicates that the MITgcm-ECCO 4DVAR framework can be applied to the reconstruction of sub-mesoscale ocean variability. This data assimilation system is now being used by the Scripps Institution of Oceanography to support SWOT post-launch activities.

Matt Bonnema [JPL] presented the Observational Products for End-Users from Remote Sensing Analysis (OPERA) project, which produces a suite of surface water extent products, such as Dynamic Surface Water extent (DSWx). The products are based on a variety of optical and radar sensors built on existing satellite data that are freely available from NASA. DSWx gives two dimensions of surface water measurements (i.e., spatial extent), whereas SWOT produces three dimensions of surface water measurement (i.e., spatial extent and elevation). DSWx has the potential to fill in temporal gaps in SWOT observations and to cross-compare DSWx and SWOT when observations are concurrent. DSWx is a valuable source of global water information that can be used to interpret and enhance SWOT’s capabilities.

Renato Frasson [JPL] explained how the U.S. Army Corps of Engineers support the National Geospatial-Intelligence Agency (NGA), which uses water storage and lake/reservoir flux information primarily from NASA’s MODerate resolution Imaging Spectroradiometer (MODIS) that flies on both the Terra and Aqua platforms. SWOT data has a higher spatial resolution for river widths, and NASA–ISRO Synthetic Aperture Radar (NISAR) observations are planned to be incorporated into the OPERA platform.

Cedric David [NASA/JPL] discussed how SWOT data can improve state-of-the-art hydrologic models to address environmental and societal challenges in river system science (e.g., flooding, water security, river biodiversity, changing deltas, and transboundary issues). Model advancements (e.g., U.S. National Water Model) can be realized in areas such as uncertainty quantification, data assimilation, bias correction, and decreasing numbers of in situ observation systems. Incorporating SWOT data into river models will lead to more realistic representations of these rivers, which in turn will improve the users’ ability to understand and effectively manage these critical and threatened water resources.

Workshop Recommendations and Feedback

This 2023 SWOT Applications Workshop provided an opportunity to share early experiences with SWOT data and insight into integration of the data into operational and decision-support workflows and models (e.g., ocean circulation and hydrologic, hydrodynamic, and decision support). Understanding how EAs integrate SWOT data and the associated challenges is critical to provide a clear analytical path for assessing the value of SWOT’s observations.

Integrating satellite observations into models enhances the model’s capability to forecast natural phenomena and monitor remote or inaccessible regions, expanding modeling capabilities dynamically and spatially. The EA-user community shared information on the potential of incorporating SWOT data into local- or community-wide models or modeling systems. SWOT’s high-resolution data – particularly from the KaRIn instrument – can enhance the precision of hydrology and ocean models by enabling detailed simulations of water dynamics. This includes accurate mapping of freshwater bodies and SSH. Both these measurements are crucial for managing water resources, predicting floods, and understanding ocean circulation patterns. The incorporation of SWOT data into model systems enables significant advancement and insights that can inform environmental management policies and practices by supporting more informed decision-making.

Although the SWOT nadir altimeter data products are being operationally produced and distributed through the data centers, the new data products from the novel KaRIn instrument continue to be assessed. An entire year of data is necessary for a more comprehensive assessment of value, ease of use, and degree to which SWOT data will impact operations and decision-making.

Throughout the workshop, EAs shared their experiences and specific needs in regard to early use of SWOT data in their modeling frameworks. Overall impressions were positive, but the actual use of SWOT beta product data was limited to a few projects (e.g., NRL, Sofar Ocean, and Copernicus Marine Service). Overall, the meeting participants supported the need for lower-latency products.

In the coming year, the impact of SWOT data with lower 21-day science orbital repeat frequency and latency on various applications will be understood further. Ultimately, the most important feedback from SWOT EAs is yet to come.

SWOT has the potential to provide invaluable information to operational user communities through its ability to advance understanding of global surface water dynamics. The SWOT Applications Program has successfully engaged a diverse cohort of agencies and the commercial sector to support integrating SWOT data into operational workflows. Moving forward, the program aims to highlight societal benefits, support applied research in hydrology and oceanography, expand user engagement, and provide ongoing training to maximize the effective use of fully validated SWOT data products.

Conclusion

The 2023 SWOT Applications meeting was a successful and timely engagement opportunity, further strengthening the connection between the different collaborating organizations. Many EAs demonstrated early ingest of the preliminary release of KaRIn data, with some having already started using the nadir altimeter data in their operational processes. Engagement will continue as more data, including pre-validated and validated science products, become regularly available with support to the EA community.

Future SWOT Application activities will include continued communication at community meetings and conferences as well as with a broader audience to engage new users for both applied research and operational activities through workshops, hackathons, and telecons. The SAWG will continue working with EAs and the applied and operational user communities to identify and apply value of SWOT to support decision makers and operational agencies.

NASA and CNES data distribution centers will continue to train users in cloud data access, data formats, and preferred formats for different topics, as well as provide EA feedback to improve data products and platform services. NASA and CNES will continue to work with EAs to overcome technical hurdles, help complete their projects, and generate high-impact success stories, as well as expand the extent of SWOT EAs and applied science users to build recognition of SWOT among practitioners.

Black Separator Line

Acknowledgment: The author wishes to acknowledge the contribution of Stacy Kish [NASA’s Goddard Space Flight Center (GSFC)/Global Science and Technology, Inc. (GST)] for her editing work to reduce/repurpose the full summary report to create a version suitable for the context of The Earth Observer.

Black Separator Line

Margaret Srinivasan
NASA/Jet Propulsion Laboratory, California Institute of Technology
margaret.srinivasan@jpl.nasa.gov

Share

Details

Last Updated
Sep 30, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A Satellite for Optimal Control and Imaging (SOC-i) CubeSat awaits integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Thursday, June 6, 2024. SOC-i, along with several other CubeSats, will launch to space on an Alpha rocket during NASA’s Educational Launch of Nanosatellites (ELaNa) 43 mission as part of the agency’s CubeSat Launch Initiative and Firefly’s Venture-Class Launch Services Demonstration 2 contract.NASA NASA is collaborating with the U.S. Air Force and U.S. Space Force to offer a set of hands-on learning engagements that will help higher education institutions, faculty, and students learn more about what it takes to build small satellites and enhance the potential to be selected for flight opportunities. 
      Teams selected for the University Nanosatellite Program Mission Concept 2025 Summer Series will receive systems engineering training that prepares them for the industrial workforce while developing small satellite expertise at U.S. universities. The program, which runs from May through August 2025, also enhances students’ potential to be selected for flights to space as part of NASA’s CSLI (CubeSat Launch Initiative) and the U.S. Air Force University Nanosatellite Program. 
      “Part of NASA’s mission is to inspire the next generation,” said Liam Cheney, CSLI mission manager at the agency’s Kennedy Space Center in Florida. “The CubeSat Launch Initiative is providing opportunities for students and educators to experiment with technology and send their missions to space.”
      The program allows faculty and students to form teams for the summer program without using university resources, and includes travel funding for kickoff, final event, and any in-person reviews, among other benefits. 
      All U.S colleges and universities are eligible, and teams at minority-serving institutions and Historically Black Colleges and Universities are strongly encouraged to apply for the Mission Concepts 2025 Summer Series in accordance with the criteria in the request for proposal. The solicitation opened on Jan. 6, with a deadline to apply by Monday, Feb. 3. 
      The agency’s collaboration with the U.S. Air Force and U.S. Space Force helps broaden access to space and strengthen the capabilities and knowledge of higher education institutions, faculty, and students. 
      NASA’s CubeSat Launch Initiative provides opportunities for CubeSats built by U.S. educational institutions, and non-profit organizations, including informal educational institutions such as museums and science centers to fly on upcoming launches. Through innovative technology partnerships NASA provides these CubeSat developers a low-cost pathway to conduct scientific investigations and technology demonstrations in space, thus enabling students, teachers, and faculty to obtain hands-on flight hardware design, development, and build experience.
      For more information, visit: Solicitation – UNP

      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 32 min read
      Summary of the 2024 NASA LCLUC Science Team Meeting
      Introduction
      The 2024 NASA Land-Cover and Land-Use Change (LCLUC) Science Team Meeting (STM) took place from April 2–4, 2024 at the Marriott Washingtonian Center in Gaithersburg, MD. During the meeting, 75 people attended in-person. Represented among the attendees were LCLUC project investigators and collaborators, NASA Headquarters (HQ) program managers, and university researchers and students – see Photo.
      LCLUC is an interdisciplinary scientific program within NASA’s Earth Science program that aims to develop the capability for periodic global inventories of land use and land cover from space. The program’s goal is to develop the scientific understanding and models necessary to simulate the processes taking place and to evaluate the consequences of observed and predicted changes.
      The LCLUC program’s focus is divided into three areas – impacts, monitoring, and synthesis. Each category constitutes about one-third of the program’s content. The LCLUC program is part of the Carbon Cycle and Ecosystems research area, alongside other programs, such as Terrestrial Ecosystems, Ocean Biology and Biogeochemistry, and Biodiversity.
      Within NASA’s Earth Science Division (ESD), the LCLUC program collaborates with the Earth Science Technology Office (ESTO), the Earth Action Program element on Agriculture, and data initiatives, such as Harmonized Landsat Sentinel-2 (HLS), Observational Products for End-Users from Remote Sensing Analysis (OPERA), and the Commercial SmallSat Data Acquisition (CSDA) program. Externally, the program engages the U.S. Global Climate Research Program (USGCRP), U.S. Geological Survey (USGS), the U.S. Department of Agriculture (USDA), and the U.S. Forest Service (USFS). Internationally, the program collaborates with Global Observations of Forest Cover and Land-use Dynamics (GOFC-GOLD), the Group on Earth Observations (GEO), particularly Group on Earth Observations Global Agricultural Monitoring (GEOGLAM), the Global Land Program (GLP), as well as regional initiatives – e.g., the South and Southeast Asia Regional Initiative (SARI), and space agencies, including the European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), Geo-Informatics and Space Technology Development Agency (GISTDA)–Thailand, Vietnam National Space Center (VNSC), and the Indian Space Research Organisation (ISRO).
      Principal Investigators (PIs) who participate in LCLUC are required to provide free and open access to their data and products via their metadata pages, aligning with NASA’s Transform to Open Science (TOPS) initiative. The program organizes at least one international regional workshop and one domestic ST meeting each year to share LCLUC science and foster global collaborations, contributing to regional capacity-building as an added value. Additionally, the program hosts regular webinars led by PIs on topics such as agriculture, urban areas, land-use changes in conflict zones, and natural disaster hotspots (i.e., fires, droughts, and floods). Garik Gutman [NASA HQ—LCLUC Program Manager] presented updates on LCLUC research publications, journal special issues, and upcoming international meetings.
      The remainder of this article summarizes the highlights of the 2024 LCLUC STM. The content is organized chronologically, with a section devoted to describing each day of the meeting and descriptive headers throughout. The full presentations from this meeting are available on the LCLUC meeting website.
      Photo. A group picture of meeting participants on the first day of the 2024 LCLUC meeting in Gaithersburg, MD. Photo credit: Hotel staff (Marriott Washingtonian Center, Gaithersburg, MD) DAY ONE
      The first day featured invited presentations, reports from LCLUC ST members funded through the LCLUC Research Opportunities in Space and Earth Sciences (ROSES) 2022 selections, and an overview of SARI. The day concluded with poster presentations and lightning talks highlighting recent results from ongoing LCLUC-related research.
      Update from the LCLUC Program Manager
      The meeting began with welcoming remarks from Garik Gutman, who provided an update on the program’s latest developments and achievements. He highlighted that the socioeconomic component is an integral part of most LCLUC projects. The program has recently expanded to include multisource land imaging, such as the ESA’s Copernicus Sentinel program, regional initiatives, and capacity-building efforts. He also underscored the importance of U.S. missions relevant to LCLUC, which produce spatially coarse resolution daily data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua and Terra platforms and the NASA–National Oceanic and Atmospheric Administration (NOAA) Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP); spatially moderate resolution data every eight days from the NASA–USGS Landsat-8 (L8) and Landsat-9 (L9) satellites; and very high-resolution data from private companies, such as Planet Inc. and Maxar.
      Gutman also discussed how LCLUC investigators are using data from missions on the International Space Station (ISS), e.g., ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), Global Ecosystem Dynamics Investigation (GEDI), and Earth Surface Mineral Dust Source Investigation (EMIT). He noted the potential of radar observations from the recently launched international Surface Water and Ocean Topography (SWOT) mission – led by NASA and the Centre National d’Études Spatiales [French Space Agency] – and the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) mission (planned for launch in 2025).
      LCLUC in the Broader Context of NASA
      Jack Kaye [ESD—Associate Director for Research] gave an update on ESD activities that reflected on NASA’s broad capabilities in Earth Science – emphasizing the agency’s unique role in both developing and utilizing cutting-edge technology. Unlike many other agencies, NASA’s scope spans technology development, research, data provision, and tool creation. Over the past 16 months, NASA has launched several significant missions, including SWOT, Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS), Tropospheric Emissions: Monitoring of Pollution (TEMPO), and Plankton, Aerosol, Cloud, ocean Ecosystem (PACE). This surge in satellite launches highlights NASA’s role in enhancing global observational capabilities. NASA also supports a diverse array of programs, including airborne campaigns and surface-based measurement networks. Initiatives aim to improve the involvement of minority-serving institutions and incorporate open science practices with a focus on enhancing inclusivity and expanding participation. The agency also emphasizes the importance of peer review and collaboration with international and community-based partners. Kaye highlighted NASA’s commitment to producing high-quality, actionable science while navigating financial and operational challenges. This commitment extends to addressing environmental and societal impacts through programs such as Earth Action and by fostering global collaboration.
      Sid Ahmed Boukabara [ESD—Senior Program Scientist for Strategy] presented a detailed overview of NASA’s Earth Science to Action Strategy, which aims to increase the impact of Earth science in addressing global challenges. This strategy acknowledges the urgency of global changes, e.g., accelerating environmental shifts, understanding Earth’s interconnected systems, and developing scalable information. NASA’s mission focuses on observing and understanding the Earth system, delivering trusted information, and empowering resilience activities through advanced technologies, partnerships, and innovations. Key principles include amplifying impact through partnerships, engaging a diverse and inclusive workforce, balancing innovation with sustainability, encouraging cutting-edge capabilities, and ensuring robust and resilient processes. The strategy emphasizes collaboration across sectors and international partnerships to leverage Earth observations enhance the value of Earth science for decision-making and policy support. The strategy also highlights the role of land-cover and land-use change activities in supporting objectives and enhancing modeling capabilities.
      Thomas Wagner [ESD—Associate Director for Earth Action] outlined NASA’s Earth Action initiative (formerly known as the Applications Program), which focuses on user-centered strategies to address global challenges, e.g., climate resilience, health, and ecological conservation. By integrating applied sciences and leveraging satellite data, the initiative aims to enhance Earth observation capabilities and connect scientific research with practical applications to meet societal needs. The strategy includes a virtuous cycle, where user feedback informs the development of future programs and missions, ensuring that research and technology are aligned with real-world needs. Additionally, Earth Action emphasizes public engagement by offering open-source models and data to enhance understanding and support decision making. Through multisector consortia and problem-solving teams, the initiative addresses urgent and broad-impact issues, fostering innovation and collaboration.
      Updates from LCLUC PIs on 2022 ROSES Proposal Selections
      Following the programmatic overview presentations, PIs presented updates on research results from LCLUC ROSES 2022 proposal selections. Gillian Galford [University of Vermont] presented on the socioeconomic and environmental dynamics of LCLUC in the Cerrado frontier of Brazil. She presented results from the three main objectives: developing LCLUC detection methods and datasets, characterizing major land-use transitions (LUTs), and understanding the drivers behind these transitions. The research employs remote-sensing and geostatistical methods to track changes, identify “hotspots” of activity, and understand the underlying motivations for land-use changes. The research aims to provide insights that can guide conservation efforts and promote sustainable land use in the region.
      Gustavo Oliveira [Clark University] presented “Irrigation as Climate-Change Adaptation in the Cerrado Biome of Brazil.” This project aims to develop methods for analyzing LCLUC data and their socioeconomic impacts, examining the expansion of irrigated agriculture and creating models to inform policy on agrarian development and water regulations. Oliveira highlighted areas of significant deforestation and the rapid growth of irrigated agriculture in the study region – positioning Western Bahia as a model for irrigation in Brazil. He explained that the research outputs include software for time series analysis and publications on land change, contributing to the broader understanding of climate adaptation strategies in the region.
      Grant Connette [Smithsonian Institution] presented “Can Improved Stakeholder Representation Prevent Human-caused Mangrove Loss in the Mesoamerican Reef Ecoregion?” He examined the factors contributing to mangrove loss in the Mesoamerican Reef (MAR) ecoregion. Through a combination of Earth observation data, socioeconomic analysis, and community engagement, Connette described how the study seeks to improve the effectiveness of protected areas and inform best practices for mangrove conservation in the MAR ecoregion.
      Saurav Kumar [Arizona State University] presented his team’s work, “Exploring the Nexus between LCLUC, Socio-Economic Factors, and Water for a Vulnerable Arid U.S.–Mexico Transboundary Region.” Kumar explained that the project aims to understand how natural and human systems influence LCLUC when constrained by water availability. The data used in this project come from a combination of time series data, theoretical model output, and artificial intelligence techniques. The team also focuses on stakeholder engagement, recognizing the need for comprehensive identification and involvement in addressing complex water resource issues. Kumar explained that the study seeks to predict future LCLUC transitions, assess the theoretical models of different stakeholder groups, and identify policy-relevant leverage points for sustainable water management.
      Abena Boatemaa Asare-Ansah [University of Maryland, College Park (UMD)] presented on “The Multisensor Mapping of Refugee Agricultural LCLUC Hotspots in Uganda.” She explained that this study focuses on mapping changes in cropland within refugee-hosting regions using satellite data and deep learning models. Asare-Ansah described how the first year involved evaluating existing cropland maps and initiating new classifications. Future work will refine these maps and connect cropland changes to specific refugee households, aiming to better understand the relationship between refugee populations, food aid, and agricultural practices.
      Elsa Ordway [University of California, Los Angeles (UCLA)] discussed her team’s efforts toward “Disentangling Land-Use Change in Central Africa to Understand the Role of Local and Indigenous Communities in Forest Restoration and Conservation.” Ordway reported that the project focuses on mapping land cover and carbon emissions, analyzing the impact of conservation efforts, and exploring potential forest restoration opportunities. She emphasized that this research highlights the critical role of local indigenous communities in forest management and the unintended consequences of conservation projects on land use – see Photo 2.
      Photo 2. Some residents of a village neighboring the Dja reserve – part of the dense rain forests that form Africa’s Congo Basin. Interviews and surveys among the area’s local and indigenous communities are used to gather information on forest restoration and conservation. Photo credit: Else Ordway (UCLA) Ordway also presented on the PAN-tropical investigation of BioGeochemistry and Ecological Adaptation (PANGEA), which aims to investigate the biogeochemistry and ecological adaptation of tropical forests that are crucial for global climate regulation and biodiversity. She explained that this study emphasizes the rapid changes occurring in tropical regions primarily due to deforestation and climate change. PANGEA seeks to answer key scientific questions about the vulnerability and resilience of these ecosystems, and how this information can inform climate adaptation, mitigation, and biodiversity conservation efforts.
      The ARID Experiment
      Andrew Feldman [NASA’s Goddard Space Flight Center (GSFC)] presented on the Adaptation and Response in Drylands (ARID) experiment, a field campaign focused on dryland ecosystems. He described how this project aims to understand the fundamental science of drylands, including water availability, land–atmosphere interactions, climate variability, carbon stocks, and land management. The study involves significant international collaboration and stakeholder engagement, with a particular focus on the Western U.S – see Figure 1. While this project is in planning stages, ongoing efforts will be made to engage with the scientific community, gather feedback, and refine its research themes.
      Figure 1. The Adaptation and Response in Drylands (ARID) experiment focuses on studying the characteristics of dryland ecosystems, e.g., water availability, land–atmosphere interactions, climate variability, carbon stocks, and land management. While the experiment is global in scope, it has a focus on the Western U.S., with numerous site locations across the desert Southwest and some in the Pacific Northwest. Figure credit: Andrew Feldman (NASA/UMD) SARI Update and Related Projects
      Krishna Vadrevu [NASA’s Marshall Space Flight Center] gave a comprehensive update on SARI, a regional initiative under the LCLUC program that addresses the critical needs of the South/Southeast Asia region by integrating remote sensing, natural sciences, engineering, and social sciences. His presentation covered the initiative’s background, various funded research projects, and their outputs. The diverse SARI projects include studies on forest degradation, agricultural transitions, food security, urbanization, and their environmental impacts. SARI has supported 35 research projects, engaging more than 400 scientists and over 200 institutions that result in significant scientific contributions, including nearly 450 publications, 16 special journal issues, and five books with two additional books pending publication. Vadrevu emphasized the importance of sustainable land use policies informed by LCLUC research and provided details on upcoming meetings. He concluded with information on three ongoing projects funded under the SARI synthesis solicitation – one in South Asia and two in Southeast Asia. Summaries of these projects are highlighted below.
      David Skole [Michigan State University (MSU)] leads the SARI synthesis project that spans South Asian countries, with an emphasis on tree-based systems, particularly Trees Outside Forests (TOF). The primary objective is to synthesize existing research to better understand the patterns, drivers, and impacts of TOF on carbon emissions and removals and their role in supporting rural livelihoods. This research is crucial for informing climate change policy, particularly in the context of nature-based solutions and pathways to achieve net-zero emissions. The project combines empirical data with process-based research and policy models to support the development of sustainable landscapes. By integrating biophysical and socioeconomic data, the project team members aim to provide robust, evidence-based contributions to climate mitigation and adaptation strategies, ultimately guiding regional policy decisions.
      Son Nghiem [NASA/Jet Propulsion Laboratory] discussed the interrelated dynamics of LCLUC and demographic changes in Southeast Asia under various developmental pressures and climate change. Nghiem explained that the study explores how these factors interact along the rural-to-urban continuum across regions in Cambodia, the Lao People’s Democratic Republic (Laos), Thailand, Vietnam, Malaysia, and parts of Indonesia. In rapidly urbanizing and agriculturally transitioning areas, physical and human feedback processes are becoming non-stationary, leading to unpredictable impacts that challenge traditional policymaking. The study aims to capture both physical patterns (e.g., land-use) and human (socioeconomic) fabrics, integrating these within a framework to assess whether the statistical properties of the time series measured during this study remain constant or change with time.
      Peilei Fan [Tufts University] presented the project, “Decoding Land Transitions Across the Urban-Rural Continuums (URC): A Synthesis Study of Patterns, Drivers, and Socio-Environmental Impacts in Southeast Asia.” The project aims to synthesize knowledge through an interdisciplinary approach. It focuses on URCs in 19 cities across eight Southeast Asian countries. It investigates how global urban hierarchies, URC connectivity, and local policies influence land-use change and related ecosystem impacts. By integrating remote-sensing data with climate and ecological models and socioeconomic analysis, the project seeks to advance theoretical understanding of land transitions and provide valuable insights for both scientific research and policymaking.
      Poster sessions
      Following the presentations, participants gave lightning talks linked to 17 posters, which highlighted recent results from ongoing LCLUC projects and LCLUC-related research from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) and the Inter-Disciplinary Research in Earth Science (IDS) programs. A reception followed. PDF versions of the posters can be accessed on the meeting website.
      DAY TWO
      The second day of the meeting continued with additional presentations from the LCLUC ROSES 2022 projects and updates from international programs. In addition, the attendees listened to presentations from NASA HQ and NASA Centers, describing various initiatives and data products, such as from the Socio-Economic Data and Applications Center (SEDAC).
      Updates from LCLUC PIs on ROSES 2022 Proposal Selections (cont.)
      Cascade Tuholske [Montana State University] presented “Modulation of Climate Risks Due to Urban and Agricultural Land Uses in the Arabian Peninsula.” Tuholske explained how this project aims to map LCLUC, assess the effects on extreme humid heat, and characterize the socio-demographics of exposure to heat stress – see Figure 2. Key findings include evidence of a rapid increase in dangerously hot and humid weather – particularly in urban and agricultural areas – and the importance of remote sensing in studying these interactions. Future steps will involve using climate models to predict the effects of LCLUC on heat waves, water stress, and dust storms.
      Figure 2. The Ghana Climate Hazards Center Coupled Model Intercomparison Project (CMIP) Phase 6 climate projection dataset map of temperatures exceeding 41 °C (106 °F) [left], future climate projection (SSP) for 2050 [middle], and the difference between the two [right]. Figure credit: From a 2024 paper in the journal Scientific Data Monika Tomaszewska [MSU] provided details on the project, “Institutional Forcings on Agricultural Landscapes in Post-Socialist Europe: Diachronic Hotspot Analysis of Common Agricultural Policy Influences on Agricultural Land Use in Romania 2002–2024.” She explained that the project focuses on how the EU’s common agricultural policy (CAP) programs (e.g., livelihood payments, environmental protections, and rural development projects) have influenced land use changes – see Figure 3. Tomaszewska summarized key findings from the study, which indicates significant changes in crop composition and spatial patterns – with notable decreases in maize and rapeseed areas between 2018 and 2023. She stated that the study aims to understand the diffusion of innovation through CAP enrollments and payments and their impact on agricultural practices in Romania.
      Figure 3. Dense time series of Harmonized Landsat Sentinel-2 (HLS) data at 30-m (98-ft) resolution revealing winter and summer crops across Southern Romania in 2018 [top] and 2023 [bottom]. Magenta areas indicate forests, green areas represent summer crops (e.g., maize, sunflower, soy), and blue areas show winter crops (e.g., wheat, barley, rapeseed). Yellow areas indicate very low spring Enhanced Vegetative Index-2 due to snow or persistent clouds at higher elevations. Figure credit: Geoff Henebry (MSU) Xiao-Peng Song [UMD] presented “Energy LCLUC Hotspot: Characterizing the Dynamics of Energy Land Use and Assessing Environmental Impacts in the Permian Basin.” He said that the project aims to assess the environmental impacts of energy-related land-cover and land-use change in the region. Song showed the output from the project, which includes high-resolution LCLUC and geohazard maps that enhance understanding of energy-related environmental impacts and contribute to NASA’s LCLUC program. Results from this study are expected to inform decision makers on societal issues related to oil and gas production and its effects on the environment.
      International Partner Program Updates
      The International Partners Programs session featured four presentations. Ariane DeBremond [UMD] focused on the Global Land Programme (GLP), which is a comprehensive, global initiative dedicated to understanding and addressing changes in land systems and their implications for sustainability and justice. DeBremond described the program, which coordinates research on land use, land management, and land cover changes,. She emphasized land systems as social-ecological systems and fostering interdisciplinary collaboration to develop solutions for global challenges. The research agenda includes descriptive, normative, and transformative aspects, aimed at characterizing land systems, identifying causes and impacts of changes, and creating pathways for sustainability transformations. GLP also emphasizes the need for new remote-sensing data, improved generalizability, and addressing geographic biases in land system science. Recent program activities include developing a new science plan, identifying emerging themes, and organizing open science meetings. DeBremond ended by announcing that the next GLP meeting is scheduled for November 2024 in Oaxaca, Mexico.
      David Skole outlined the efforts of the Global Observations of Forest and Land Cover Dynamics (GOFC–GOLD) Land Implementation Team (LC–IT) in advancing methods and tools for global land cover measurements and monitoring. The LC–IT is primarily focused on developing and evaluating space-borne and in-situ observation techniques to support global change research, forest inventories, and international policy. Skole highlighted the importance of regional networks in coordinating the use of Earth Observation (EO) data, facilitating capacity building, and addressing regional concerns through workshops and partnerships. He also discussed the changing role of EO in responding to climate change and sustainability challenges, emphasizing the need for high-integrity carbon finance and the integration of new data and technologies to support nature-based solutions. He concluded with insights into the BeZero Carbon Rating system, which evaluates carbon efficacy across various projects worldwide and highlights the need for reliable ratings to ensure the credibility of carbon markets.
      David Roy [MSU] detailed the work of the GOFC-GOLD Fire Implementation Team, which focuses on improving the accuracy and utility of satellite-based fire monitoring. The team is working to enhance global fire observation requirements, particularly for small fires and those with low Fire Radiative Power, which are often underrepresented in current datasets. Roy emphasized the need for continuous development and validation of satellite-derived fire products, including a robust quality assurance framework. The team advocates for standardized methods to validate fire data and harmonize information from various satellite missions to create a more comprehensive global fire record. Roy also highlighted the need for new satellite missions with advanced fire detection capabilities and the use of machine learning to improve fire modeling and data accessibility to provide more accurate and actionable data for global change research and fire management.
      Alexandra Tyukavina [UMD] presented on Land Product Validation (LPV) subgroup of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV). The LPV is focused on updating land cover validation guidelines, incorporating new literature and data from the past 20 years. Tyukavina emphasized the need for rigorous accuracy assessment in land cover studies, highlighting the need to improve methods and reporting as well as accuracy. She also discussed the outcomes of a NASA-sponsored joint cropland validation workshop co-hosted by CEOS and GEOGLAM, which aimed to set minimum requirements for cropland validation and develop community guidelines. Tyukavina concluded her presentation with a call for reviewers to assist in updating these guidelines.
      LCLUC Program Crosswalks
      The Crosswalks, a LCLUC program, featured six presentations. Frederick Policelli [GSFC] presented on the CSDA program, which supports the ESD by acquiring and utilizing commercial, small-satellite data to enhance Earth science research. Launched as a pilot in November 2017, the program became a sustained effort in 2020, transitioning from Blanket Purchase Agreements to Indefinite-Delivery, Indefinite-Quantity contracts for better data management. The CSDA also introduced a tiered End User License Agreement for data usage and focuses on long-term data preservation and broad access. Policelli described how program participants collaborate with U.S. government agencies and international partners, adhering to the 2003 U.S. Commercial Remote Sensing Policy. He discussed recent developments, which include onboarding new commercial data vendors and expanding the program’s capabilities.
      Jacqueline Le Moigne [ESTO] provided details on NASA’s Earth Science Technology Office’s (ESTO), Advanced Information Systems Technology (AIST) program and its development of Earth System Digital Twins (ESDT). She explained that ESDTs are intended to be dynamic, interactive systems that replicate the Earth’s past and current states, forecast future states, and assess hypothetical scenarios. They should integrate continuous data from diverse sources, utilize advanced computational and visualization capabilities, and rely heavily on machine learning for data fusion, super-resolution, and causal reasoning. Le Moigne added that ESDTs enhance our understanding of Earth systems, their interactions, and applications, particularly in the context of climate change. She highlighted various use cases (e.g., wildfires, ocean carbon processes, the water cycle, and coastal zones) demonstrating the potential of ESDTs to support decision-making and policy planning.
      Roger Pielke [University of Colorado, Boulder] discussed the critical need to incorporate land-use data into weather forecasts and climate models to improve understanding of and address climate change. He emphasized the distinction between weather and climate, explaining that climate is dynamic and influenced by both natural and human factors. Pielke critiqued the focus of the approach of the Intergovernmental Panel on Climate Change (IPCC) on carbon dioxide (CO2) emissions as the primary driver of climate change, arguing that LCLUC should be considered as an equally important climate forcing. He illustrated how changes in land cover, such as in Florida and the Great Plains, can significantly impact local and regional climate, sometimes rivaling the effects of CO2. Pielke called for integrating land-use data into climate models across all scales, suggesting that NASA’s programs could lead in this effort to enhance climate forecasting and policymaking.
      Brad Doorn [NASA HQ—Program Manager, NASA’s Earth Action Agriculture Program] presented an overview of the program’s status and strategic direction. He emphasized the importance of partnerships, particularly with the USDA, in advancing initiatives like Climate Smart Agriculture. NASA’s role in global food security and supply chain monitoring was highlighted through the activities of NASA’s Harvest and Acres, agriculture and food security consortia, both of which enable collaborative research to codevelop data-driven products and services and enhance predictive models to meet end-user needs. Doorn stressed the need for strong collaborations with the private sector, non-governmental organizations, and other space agencies to accelerate the development of agricultural solutions. He also highlighted the significance of integrating NASA’s capabilities in weather, water, and crop monitoring systems to provide comprehensive tools for stakeholders. Doorn explained that the program aims to bridge gaps between NASA’s observations and practical applications in agriculture, leveraging tools, such as the Global Crop Monitor, and integrating predictive capabilities for improved future planning.   
      Rachel Paseka [NASA HQ] presented on NASA’s open science funding opportunities with a focus on the ROSES F.7 element, which supports widely used open-source software tools, frameworks, and libraries within the NASA science community. She described the program, which offers two types of awards: Foundational Awards for projects that impact multiple divisions and Sustainment Awards for those affecting one or more divisions of the Science Mission Directorate. Foundational Awards are cooperative agreements lasting up to five years. Sustainment Awards can be grants or cooperative agreements lasting up to three years. Paseka also emphasized the importance of open science, highlighting various tools, data challenges, and collaborative efforts, including artificial intelligence (AI) models for tasks (e.g., flood detection and burn scar mapping). She concluded with an introduction of the Science Explorer (SciX) digital library and the Science Discovery Engine, both of which facilitate access to NASA’s open science data and research.
      Alex de Sherbinin [SocioEconomic Data and Applications Center (SEDAC), Center for International Earth Science Information Network (CIESIN), Columbia University] provided an overview of datasets and research related to climate risk, social vulnerability, and environmental change. de Sherbinin outlined the SocioEconomic Data and Applications Center (SEDAC) mission areas, which include population land-use and emissions, mitigation, vulnerability and adaptation, hazard vulnerability assessment, poverty and food security, and environment and sustainable development. He highlighted key SEDAC datasets (e.g., LCLUC and Urban and Settlements Datasets) and their use in analyses. SEDAC data and services are accessible via tools, such as Global Forest Watch and Google Earth Engine. de Sherbinin also covered recent research citations, the impact of studies on biodiversity and urban changes, and SEDAC’s contributions to open science and training initiatives. He also emphasized the importance of integrating remote sensing data with social and health sciences for comprehensive environmental analysis.
      DAY THREE
      The third day of the meeting focused on satellite missions and data product updates and a LCLUC program feedback session on emerging science directions.
      Landsat Mission Updates
      Chris Neigh [GSFC—Landsat 9 Project Scientist] provided an overview of the status of the current Landsat missions that are in orbit (L7, L8, and L9]. He reported that all L9 Level-1 requirements have now been met and exceeded. OLI-2, the updated sensor for L9, transmits data at 14 bits compared to the L8 12-bit transmission, allowing for finer data resolution. OLI-2 offers a 25–30% improvement in the signal-to-noise ratio for dark targets, leading to enhanced data quality. The Thermal Infrared Sensor on L9 (TIRS-2) has also been improved over TIRS on L7 and L8, to mitigate stray light issues, enhancing the reliability of thermal data. Additionally, OLI-2 supports better atmospheric corrections through split window techniques using both of its channels. With two operational observatories, L8 and L9, equipped with advanced radiometry, data is provided every eight days, ensuring consistent and precise Earth observation capabilities. The radiometric and geometric performance of L9 is excellent from a Calibration/Validation (Cal/Val) perspective.
      While all systems are nominal for L8 and L9, Neigh reported that L7 is nearing the end of its operational life. He stated that the Landsat Cal/Val team will continue its work for the duration of the mission as a joint USGS–NASA effort. He also highlighted the need for a global Analysis Ready Data framework and the development of proxy and simulated datasets to support the next generation of Landsat missions. Neigh ended by reporting that opportunities exist for scientists to share their high-profile, Landsat-based research through the program’s communications team.
      Bruce Cook [GSFC—Landsat Next Project Scientist] provided an update on the Landsat Next mission, an ambitious extension of the Landsat Program under the Sustainable Land Imaging (SLI) program, which will be a joint effort by NASA and the USGS. Cook explained that this mission aims to greatly enhance Earth observation by launching three identical satellites, each equipped with advanced Visible Shortwave Infrared (VSWIR) and Thermal Infrared (TIR) instruments. He described how the Landsat Next constellation will improve the temporal revisit time to six days – a major advancement from the 16-day interval of L8 and L9. In order to achieve this revisit time improvement, each satellite will carry a Landsat Next Instrument Suite (LandIS) that will capture 21 VSWIR and five thermal infrared bands, which will have better spatial resolutions compared to previous Landsat missions. It will have ground sample distances of 10–20 m (33–66 ft) for visible, near infrared, and shortwave infrared bands and 60 m (197 ft) for atmospheric visible SWIR and thermal infrared bands.
      Cook continued with details on LandIS, stating that Landsat Next will record 26 bands in total – 15 more than the currently active L8 and L9 missions. The LandIS will include refined versions of the 11 Landsat “heritage” bands to ensure continuity, five new bands similar to the ESA’s Copernicus Sentinel-2 mission for improved data integration, and 10 new spectral bands to meet evolving user needs and applications. Additionally, Landsat Next will have a water vapor band for atmospheric correction without needing data from other satellites. LandIS will collect all bands nearly simultaneously, reducing illumination variations between bands and aiding in cloud detection and the generation of multispectral surface reflectance and thermal emission products (e.g., evapotranspiration).
      Cook said that Landsat Next is in Phase A of its mission life cycle. The current focus is on defining science requirements and converting them into specific hardware and system designs. He said that this phase is crucial for setting up the subsequent phases. Phase B will involve preliminary design and technology completion, and later phases leading to the final design, fabrication, and launch of the satellites. He ended by emphasizing that the introduction of a new reference system and a lower orbit will further enhance the satellites’ ability to capture high-quality data, leading to a significant advancement in Earth observation technology.
      Harmonized Landsat–Sentinel Project Update
      Junchang Ju [GSFC] discussed the Harmonized Landsat Sentinel-2 (HLS) project, which aims to integrate data from the L8, L9, Sentinel-2A, and Sentinel-2B satellites for more frequent and detailed Earth observations. Currently the MODIS climate modeling grid data is used for atmospheric correction – see Figure 4. The newer HLS version will use VIIRS-based water vapor and ozone fields instead of MODIS data for atmospheric correction using the land surface reflectance code. Ju explained how HLS adopts the Military Grid Reference System used by Sentinel-2. HLS V2.0 corrects a mistake in view angle normalization of earlier versions (V1.3 and V1.4). Atmospherically corrected data from Hyperion (an instrument on NASA’s Earth Observing–1 extended mission) is used to make bandpass adjustments. A temporally complete global HLS V2.0 dataset has been available since August 2023. He also highlighted the availability and access of HLS data through various platforms – e.g., EarthData and WorldView, in Amazon Web Services and the project’s future plans, such as enhancing vegetation indices, cloud mask improvements, and 10-m (33-ft) improved resolution product.
      Figure 4. Sentinel-2B image over the Baltimore-Washington area on April 7, 2022 [left]. Example true color images of top of atmospheric reflectance and the corresponding HLS surface reflectance are shown [right]. The atmospheric ancillary data used in the surface reflectance derivation was from the MODIS Climate Modeling Grid (CMG) data before the transition to VIIRS was implemented. Figure Credit: Junchang Ju (GSFC) NISAR Update
      Gerald Bawden [NASA HQ—NISAR Program Scientist] delivered a presentation about the NISAR mission, which is a collaborative effort between NASA and the ISRO. He explained that NISAR will be a dual-frequency Synthetic Aperture Radar satellite using 24-cm (9-in) L-band and 10-cm (4-in) S-band radar frequencies. This dual-frequency approach will enable high-resolution imaging of Earth’s surface, offering near-global land and ice coverage with a 12-day repeat cycle for interferometry and approximately 6-day coverage using both ascending and descending orbits. The mission’s goals include providing valuable data to understand and manage climate variability, carbon dynamics, and catastrophic events (e.g., earthquakes). Specific applications include monitoring deformation, measuring ice sheet velocities, observing sea-ice deformation, and assessing biomass and crop disturbances. Bawden discussed NISAR’s data products, which will include raw radar data (Level-0) and geocoded single-look complex images and multi-look interferograms (Level-2). He stated that these data products will be crucial for various research and practical applications, including ecological forecasting, wildfire management, resource management, and disaster response. NISAR’s data will be openly accessible to the global scientific community through the Alaska Satellite Facility Data Active Archive Center. Initially planned for early 2024, the NISAR launch has been delayed to 2025. Bawden reported that NISAR will undergo a three-month commissioning phase after launch – before starting science operations. He also emphasized NASA’s commitment to open science, with NISAR’s data processing software and algorithms being made available as open-source tools, accompanied by training resources to facilitate their use.
      Land Surface Disturbance Alert Classification System Update
      Matthew Hansen [UMD] focused on the Land Surface Disturbance Alert (DIST-ALERT) classification system, designed for near-real-time global vegetation extent and loss mapping. He described the DIST-ALERT system, which uses HLS data, combining inputs from L8, L9, Sentinel-2A, and -2B to achieve a high-revisit rate of approximately 2–3 days at a 30-m (98-ft) resolution. DIST-ALERT operates with a primary algorithm that tracks vegetation loss through time-series analysis of fractional vegetation cover (FVC) and a secondary algorithm that detects general spectral anomalies. The system integrates drone data from various biomes to build a k-nearest neighbors model that is applied globally to predict FVC at the HLS-pixel scale. Hansen explained that DIST-ALERT monitors disturbances by comparing current vegetation fraction against a seasonal baseline, capturing changes such as forest fires, logging, mining, urban expansion, drought, and land conversion. He concluded by highlighting some case studies, including analysis of forest fires in Quebec, Canada, logging in the Republic of Congo, and gold mining in Ghana. He also said that the team released an improved version (V1) in March 2024, following a provisional release (V0) that was operational from February 2023 to February 2024.
      State of LCLUC Report
      Chris Justice [UMD—LCLUC Program Scientist] provided comments on the current state of the LCLUC program, followed by an open discussion to gather feedback. He emphasized the need for PI’s to effectively communicate their work to the broader community and highlighted the recent LCLUC initiative to create policy-oriented briefs based on research results, demonstrating its relevance to the Earth Science to Action Strategy. Justice acknowledged that challenges lie ahead for the LCLUC program – particularly considering the anticipated resource constraints in the coming year. He noted that the program plans to strengthen its position by forming partnerships with other ESD program elements and increasing involvement across NASA Centers. The program is also emphasizing the use of advanced remote sensing technologies, AI, and deep-learning data analytics, to deliver more precise and actionable insights into land dynamics contributing to better decision-making and policy development in land management and environmental conservation.
      Justice also suggested the need for better integration between different scientific fields (i.e., between LCLUC and climatology, climate mitigation, and adaptation) to enhance interdisciplinary research and collaboration. He cited the current program solicitation (e.g., ROSES 2024 A.2) as an example of this integration and the recent IDS solicitation in ROSES 2022 A.28. Justice reminded participants that the solicitation focuses on collaborating with AIST to develop Land Digital Twins that incorporate available remote sensing data time series as non-static boundary conditions in weather forecast and climate models. Improvements in model forecasts and climate simulations will highlight the importance of accounting for LCLUC in these models – advancing the goals of the IPCC.
      Conclusion
      Garik Gutman concluded the meeting by summarizing key points raised about data management strategies, educational outreach efforts, LCLUC research outside the U.S., and current and upcoming projects. He highlighted that the program requires PIs to provide metadata for data products generated under NASA-funded projects, ensuring these resources are freely and openly accessible to the scientific community. Gutman acknowledged the challenges of conducting research and fieldwork in foreign countries due to funding and, at times, security issues, but praised the PIs for their efforts to expand the program globally. He also noted the program’s outreach efforts, which include engaging PIs, collaborators, and interested parties through its website, newsletters, webinars, and policy briefs. LCLUC emphasizes the importance of effectively communicating research results and encourages researchers to share their findings via NASA’s Earth Sciences Research Results Portal to enhance visibility among leadership and communication teams.
      Gutman ended his presentation by providing details about forthcoming meetings in the Philippines, South Korea, and Turkey, as well as workshops scheduled for 2024, which will involve various stakeholders in the LCLUC community and are vital for fostering collaboration and advancing the program’s goals. He concluded by recognizing the contributions of long-term supporters and collaborators, reaffirming the program’s ongoing commitment to advancing Earth observation and land-use science.
      Overall, the 2024 LCLUC meeting was highly successful in fostering collaboration among researchers and providing valuable updates on recent developments in LCLUC research. The exchange of ideas, integration of new data products, and discussions on emerging science directions were particularly impactful, contributing to the advancement of the LCLUC program’s goals.
      Krishna Vadrevu
      NASA’s Marshall Space Flight Center
      krishna.p.vadrevu@nasa.gov
      Meghavi Prashnani
      University of Maryland, College Park
      meghavi@umd.edu
      Christopher Justice
      University of Maryland, College Park
      cjustice@umd.edu
      Garik Gutman
      NASA Headquarters
      ggutman@nasa.gov
      Share








      Details
      Last Updated Jan 09, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 27 min read
      Summary of the Third Annual AEOIP Workshop
      Introduction
      The Applied Earth Observations Innovation Partnership (AEOIP) was established in 2018 to facilitate knowledge coproduction and optimization of NASA Earth observations that can be used by natural resource managers for decision making. Through continued iteration and reflection, coproduction brings together stakeholders to share responsibilities and the completion of activities towards a common goal. AEOIP enables strong collaborations between NASA and the U.S. Forest Service (USFS), along with growing participation from U.S. Geological Survey (USGS), Bureau of Land Management (BLM), and other federal land management agencies.
      AEOIP has held several previous meetings: the first was a Joint Applications Workshop on Satellite Data for Natural Resource Management held April 29–May 2, 2019, reported in an Earth Observer article, “Summary of the USFS–NASA Joint Applications Workshop on Satellite Data for Natural Resource Management.” The group met again virtually in 2020 during PitchFest. In 2022, a virtual workshop on Integrating Remote Sensing Data for Land Management Decision-Making took place March 23–24, 2022. In 2023, the AEOIP workshop took place April 25–27, 2023, with a hybrid format – the in-person participants met at the USFS Geospatial Technology and Applications Center (GTAC) in Salt Lake City, UT. The 2023 workshop focused on Addressing Land & Water Monitoring Needs Using Remote Sensing Data.
      These workshops have been designed to build connections between participants across the research-to-applications spectrum with subject matter experts from a variety of federal agencies and other affiliations to continue to promote interagency collaboration within the Earth Observations (EO) applications field. This goal is accomplished using interactive panels and guided discussion sessions that highlight new tools and techniques, promote NASA EO data product uptake, and foster connections between data providers and data users.
      2024 Workshop Overview
      The most recent AEOIP workshop took place April 23–25, 2024, with a hybrid format. The in-person participants met in Ann Arbor, MI. The three-day event had a similar structure to its predecessors but with a wildland fire management theme. Altogether, 135 people participated in the workshop, with 77 attending in person and 58 virtually – see Photo 1.
      Photo 1. Participants at the 2024 AEOIP workshop. Photo credit: AEOIP Meeting Objectives
      The workshop objectives were to:
      meet AEOIP’s mission by providing a forum for building new relationships among Earth observations data providers, users, and stakeholders; gather and/or codevelop “shovel-ready” ideas to better leverage Earth observations to meet science and management priorities of U.S. land and natural resource management agencies; gather needs for and/or develop educational materials to support the use of existing EO training resources for fire management; and gather ideas for the 2025 workshop and other AEOIP activities. Breakout Sessions
      A large segment of this workshop was dedicated to four concurrent topical breakout sessions – referred to in this report as Breakout Sessions A–D. The topics covered in each breakout session are listed below, along with the name(s) of those who facilitated discussion.
      Breakout Session A: Fuels, Wildland Fire Emissions, Carbon & Climate – Andy Hudak [USFS] and Edil Sepulveda Carlo [NASA’s Goddard Space Flight Center (GSFC)/Science Systems and Applications Inc. (SSAI)]; Breakout Session B: Prescribed Fire Planning & Management – Nancy French [Michigan Tech Research Institute (MTRI)], Birgit Peterson [USGS], and Jessica Meisel [University of Idaho]; Breakout Session C: Fractional Vegetation Cover Products & Decision Making – Tim Assal and Jake Slyder [both U.S. Department of Interior, BLM], and Liz Hoy and Amanda Armstrong [both at GSFC]; and Alexis O’Callahan [University of Arkansas]. Breakout Session D: Post-fire Effects & Recovery: Assess, Predict, Remediate, and Monitor – Mary Ellen Miller [MTRI]. All of the breakout groups met on each day of the meeting. On the morning of the first day, the facilitators of each group gave brief “elevator pitches” about each breakout topic, and participants selected a topic for focus. After that, a block of time each day was dedicated to breakout activities and discussions. Participants were asked to focus on different aspects of the topic each day. In the afternoon of the first day, each group focused on identifying needs and challenges in the area being discussed – with a brief report-out at the end of the day. On the afternoon of the second day, the focus was on data availability and solutions – i.e., finding ways to overcome obstacles to making data more readily available to users – again with a brief report- out at the end of the day. On the morning of the third day, there were topical presentations. Each group worked to synthesize their three days of discussions and chose a representative to give a summary report during the closing plenary later that morning.
      Workshop Summary
      The remainder of this article presents highlights from each day of the workshop. This includes the most important presentations given during the meeting and those given during the breakout sessions. The report also includes highlights from training breakouts given on the second day of the workshop and a summary of a prescribed fire field trip, which took place the day before the workshop and visited two locations – see Optional “Field Trip” for AEOIP Workshop Participants to learn more.
      Optional “Field Trip” for AEOIP Workshop Participants
      On April 22, 2024, an optional field trip was offered that featured two sites demonstrating prescribed fire in Michigan. For the first stop on the trip, Kevin Butler [Washtenaw County—Natural Areas Preservation Program Stewardship Supervisor] gave a tour of a prescribed fire site in Park Lyndon, a county park in the northwest part of Washtenaw County, MI. The park is being restored to maintain native species using prescribed fire as invasive species control. The intent of these efforts is to restore oak meadows and preserve over 500 species of plants across fens, marshes, ponds, forest, and prairie lands.
      On the second leg of the trip, Tina Stephens [City of Ann Arbor—Volunteer and Outreach Coordinator] led a tour of Furstenberg Nature Area, in the city of Ann Arbor, MI. She highlighted the importance of prescribed burning to achieve ecological benefits. The 0.15-km2 (38-acre) park contains wetlands, woodlands, prairie, and oak savanna. Since the mid-1990’s, Natural Area Preservation staff and volunteers have maintained those ecosystems through controlled burns and invasive shrub removal. The second tour stop included a small prescribed fire demonstration – see Photo 2.
      Photo 2. Ann Arbor park staff conduct a prescribed fire demonstration for workshop participants during the Furstenberg Nature Area tour portion of the AEOIP field trip. Photo credit: Joseph Paki DAY ONE
      On the first day, Kira Sullivan-Wiley [Pew Institute] gave a plenary presentation, in which she discussed the value of coproduction, which in the context of AEOIP can be described as honoring the generative capacity of others as a means of optimizing the use of Earth by natural resource managers for decision making – see Photo 3. The benefits of this approach include cost reduction, tracking new ideas, and empowering marginalized voices.
      The first block of breakout sessions also occurred during the afternoon of the first day, along with a short report-out. In light of the keynote discussion on coproduction, deliverables from this meeting’s breakout sessions can be seen as coproduced, new or improved conduits between NASA and land-managing entities.
      After the keynote, representatives of government agencies (NASA, USFS, and BLM) presented their respective agency’s perspectives. The manager of a nearby state park in Michigan followed with a local perspective. A series of short presentations in the late afternoon featured various program highlights from NASA’s Earth Science Division, which are not detailed in this report – see workshop agenda for list of programs and speakers.
      Notable Presentations
      In addition to Kira Sullivan–Wiley’s keynote (described above), Christina Moats-Xavier [NASA Headquarters, Earth Action Program—Program Manager for Mission Engagement] shared NASA’s perspective, focusing on NASA’s Earth Science-to-Action strategy, which aims to increase the impact of scientific data. NASA’s Applied Science Program is now included under the broader umbrella of the new Earth Action program element of NASA’s Earth Science Division. This strategy has three pillars: 1) scaling existing efforts; 2) building bridges; and 3) focusing on the user. By collaborating with NASA, AEOIP can address real-world challenges to develop solutions that benefit society. Overall, the presentations on the first day highlighted the importance of collaborative, user-centered approaches and community engagement in addressing environmental challenges.
      Everett Hinkley and Frenchy Morisette [both USFS] provided a practitioner’s perspective. They discussed USFS efforts to address climate adaptation, wildfire management, and incorporation of Indigenous traditional ecological knowledge. They also emphasized the application of artificial intelligence/machine learning (AI/ML) for mapping and remote sensing tools.
      Both Jake Slyder and Tim Assal described their respective government agency’s management of vast (mostly western) land areas and use of remote sensing for post-fire emergency stabilization and integration with the Assessment, Inventory, and Monitoring (AIM) program.
      Kevin Butler offered more of a local perspective as he discussed land stewardship in Michigan. He emphasized the importance of community involvement and respecting natural ecosystems, especially fire-dependent ones, at the local level.
      Photo 3. Kira Sullivan-Wiley [Pew Institute] presents on co-production of knowledge during the first day’s plenary session. Photo credit: AEOIP DAY TWO
      The presentations on the second day of the workshop highlighted the opportunities that Earth observing satellite data presents for natural resource management applications. Five presenters contributed to the panel discussion, titled “Communicating and Soliciting End User Needs: Past, Present and Future.” The second – longer – block of breakout sessions also occurred with a short report-out at the end of the day. A poster session ran concurrently with the report-outs. While this session is not described in this report, it afforded participants an opportunity to showcase their Earth observation related projects and/or interact with their peers. Highlights from the day follow below.
      Notable Presentations
      Pontus Olafsson [NASA’s Marshall Space Flight Center] and Natasha Sadoff [NASA HQ—Satellite Needs Program Manager] presented on the Satellite Needs Working Group (SNWG), which provides a coordinated approach to identify and communicate federal satellite Earth observation needs and develop solutions based on Earth observation data. The speakers explained that as part of this effort, SNWG facilitates a biannual survey to all civilian federal agencies. SNWG provides federal agencies a path to coordinate Earth observing needs and a mechanism to develop actionable solutions for decision makers. Solutions cover thematic areas, including air quality, land use/land cover, and water resources. They noted that NASA is also making a greater effort to engage with agency partners in the co-development of new solutions that are useful, accessible, and actionable.
      Alison York [University of Alaska Fairbanks] spoke about the Joint Fire Science Program (JFSP) and Fire Science Exchange Network (FSEN). JFSP’s main function is to maintain and grow a data repository and community based on fuels, fire behavior, fire ecology, and human dimensions. The goal is to help enable informed, actionable change by policy makers and land managers with the best available scientific support. York then discussed the FSEN, which acts as a mechanism to collate research needs from a collection of regional fire exchanges. The syntheses of data and data needs provides more effective understanding and management of fire.
      Training Breakout Session Takeaways
      On the second day, the four breakout sessions met, beginning with four short (25-minute) trainings. The speakers each gave half-hour presentations, which they repeated twice during the hour dedicated to the training breakouts, allowing participants to engage in two of the training breakouts if desired.
      Pete Robichaud [USFS] discussed training opportunities for modeling post-fire hydrological response using the Water Erosion Prediction Project (WEPP). Soil burn severity is first assessed with remote sensing and then field verified. A subsequent soil burn severity map can be created to give details on physical features, e.g., ash color, ash depth, fine roots, soil structure, water repellency, and ground cover. This resource can be used to create a risk assessment table of probability and consequence parameters. Following the risk assessment, the Forest Service Water WEPP suite of tools can be used to model the landscape. The WEPP suite includes both hillslope and watershed modeling tools. The final step in the Burned Area for Emergency Response (BAER) program is to implement and monitor solutions.
      Rupesh Shretha [Oak Ridge National Laboratory (ORNL), Distributed Active Archive Center (DAAC)] discussed the Earth Observing System Data and Information System (EOSDIS) DAACs, which are collocated with centers of science discipline expertise and archive and distribute NASA Earth Science data products. The ORNL DAAC archives and distributes terrestrial ecology data, particularly data from field and airborne campaigns. The Terrestrial Ecology Subsetting & Visualization Services (TESViS) – formerly MODIS–VIIRS subsets tool – provide subsets of satellite data in easy-to-use formats that are particularly valuable for site-based field research. The Ecological Spectral Information System (ECOSIS) integrates spectral data with measurements of vegetation functional traits (i.e., species, foliar chemistry). ECOSIS allows users to submit spectral data and return a citable DOIs. ECOSIS also provides users application programming interface (API)-based methods to retrieve thousands of field spectra.
      Jake Slyder discussed the use of remote sensing for efficient resource management over vast tracts of land with limited human and financial resources. He explained that while the vast collection of remotely sensed data makes it challenging to effectively exploit, Google Earth Engine (GEE) has become an important tool in leveraging remotely sensed information to address BLM management questions. The Change and Disturbance Event Detection Tool (CDEDT), a GEE-based application, allows users to detect and develop vector geospatial products to identify changes and disturbances to surface cover between two dates of observations [10 m (~33 ft) resolution] from the European Space Agency’s (ESA) Copernicus Sentinel-2 mission. Slyder said that the Version 2 (V2) beta product includes the National Agriculture Imagery Program (NAIP) and ESA Copernicus Sentinel-1 SAR Imagery. CDEDT supports a range of BLM monitoring applications, including disaster events, energy development, forest disturbances, and seasonal patterns and processes (e.g., vegetation, water cover). The CDEDT tool is publicly available and does not require any license or special software.
      DAY THREE
      The third day was dedicated to the final block of the breakout sessions and a final plenary, where a representative from each breakout group gave five to seven minute summaries of their discussions throughout the meeting. The overview was followed by a meeting wrap-up and adjournment. The sections below summarize the topical presentations given on day three and encapsulate the three days of discussions.
      Breakout Session A: Focus on Carbon
      The carbon breakout aimed to inform participants about carbon-related EO initiatives and spark discussion about user needs.
      Aaron Piña [USFS] spoke about the Forest Service’s broad base of applied research that spans wildfire weather and behavior to dynamics of the smoke produced – see Photo 2. Recent assessments have been made for wildland fire, controlled burn smoke, and remote air monitors. Piña spoke about Bluesky Playground, a community-driven tool aimed at providing the public with information on fuels and smoke modeling. These data have been used to identify important indicators for fires and fuels (e.g., vertical plume structure).
      Piña then discussed a fusion Fire Radiative Power (FRP) data product [MOD19A2] that combines data from four sources – the Visible and Infrared Scanner (VIRS) on the former Tropical Rainfall Measuring Mission (TRMM), the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP), the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua platforms, and the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product.
      A group discussion followed Piña’s presentation, during which several participants expressed concerns about the continuity of VIIRS and the other observations that are used in the fusion FRP product. Another topic of discussion was the potential of remotely sensed data to improve the characterization of duff (decaying vegetation) in satellite data products. NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) mission data have also been used to characterize the vertical structure of smoke plumes; however, these efforts have thus far been limited by personnel knowledge gaps as well as raw data formats.
      Chris Woodall [USFS] discussed the growing emphasis on carbon metrics for a variety of sectors and applications. The USFS wants to work in tandem with other entities, especially federal organizations, to maximize efforts and workstream. USFS is seen as the in-situ carbon observer, while NASA is the remote sensor, and USGS is the lateral flux assessor. The coproduction of knowledge and data regarding carbon among these agencies is an iterative process. The USFS investment in improved Measurement, Monitoring, Reporting, and Verification (MMRV) of greenhouse gas (GHG), for example, can expand soil and land-use inventories to improve alignment with remote-sensing platforms. Challenges to implementing this cooperative approach to collecting carbon metrics include creating a workflow that incorporates a wealth of existing resources and accruing data from multiple federal agencies concerned with ecosystem carbon management to create scalable GHG knowledge. The coproduction, iteration, and dissemination of knowledge should be a major focus with all interested parties – not just the aforementioned federal agencies.
      Sydney Neugebauer [NASA’s Langley Research Center] and Melanie Follette-Cook [GSFC] discussed NASA’s capacity building initiatives, which are aimed at developing and strengthening an organization or community’s skills, abilities, processes, and resources to enable them to survive, adapt, and thrive in a fast changing world. The DEVELOP, Indigenous Peoples Initiative, and SERVIR programs (all under the Earth Action program element) work towards capacity building through co-development projects, collaborative training, and data availability. The NASA Applied Remote Sensing Training (ARSET) program has offered over 100,000 training sessions since it was created in 2009 – primarily to international participants. The trainings are free and virtual for individuals interested in using remotely sensed data in a diverse suite of environmental applications. All content is archived. NASA’s Carnegie-Ames-Stanford Approach (CASA), which has contributed to global carbon dioxide (CO2) sequestration datasets for the past 30-years, will be upgraded to incorporate CO2 fluxes. The NASA cooperative interagency U.S. Greenhouse Gas Center is also looking for feedback on its beta portal.
      The group discussions that followed identified and addressed AEOIP needs and questions (e.g., obtaining carbon and smoke emission estimates from prescribed wildfires and ensuring global satellite fire record continuity). Participants also identified the need for near real-time active fire and burned area mapping at medium scale and for continuity of these measurements. The group is interested in engaging federal agency end users to obtain feedback on their capacity to facilitate and elucidate capacity needs. Prominent challenges going forward include preparing for the end of the Terra and Aqua missions, which will include the decommissioning of MODIS, and ensuring the continuity of VIIRS, which is being used to allow for continuity of MODIS data products. One of the greatest unknowns identified was being able to determine wildfire fuel conditions in near-real time, and the ability to constrain estimates of fuel attributes to a focused fire event.
      Andy Hudak discussed the diverse coalition of practitioners who manage more than just carbon (e.g., forest health, harvest, fires). Of the diverse group of stakeholders, Indigenous Tribes are at the cutting edge using lidar for carbon assessment. While Forest Inventory and Analysis plots are used for bias correction, they do not provide synoptic coverage for accurate carbon assessments. Lidar and other passive remote sensing satellite data provide a way to address this need. Tree lists are also highly valuable to carbon and forest managers for diverse applications. Application-specific metrics (e.g., timber volume, basal area, and density) can be weighted based on stakeholder priorities, as quantified from stakeholder surveys, to optimize data products.
      Sarah Lewis [USFS] explained the needs and applications of Earth observations in a post-fire environment. The information needs to be available quickly, integrated into effective decision-making tools, and delivered in a functional product. Information is needed on water, soils, vegetation recovery, and habitat – all major metrics of interest in a data product. Areas of concern during post-fire management for water quality and erosion control include ash and soil–water transport. In addition, major concerns exist for timely data acquisition and processing, along with the fate and transport mapping of post-fire ash. Data products would benefit from end-user input to optimize relevance and accessibility of decision ready maps, models, and trusted recommendations.
      The group identified the need for heavy carbon fuels and duff estimates for ecological modeling, which is critical to achieving a better understanding of smoke and carbon emissions. The heavy carbon fuel and duff estimates may be achieved through multiple means but may be most accessible currently through a new layer in the LANDFIRE database. They also identified the need for more post-fire data for model training and integration of active remote sensing data. Finally, the group identified the need for more regulation and research on prescribed fire emissions and disturbance.
      Breakout Session B: Prescribed Fire
      This breakout session focused on prescribed fires. Some of the major objectives and needs that emerged from this session were improved access to data, cultivating deeper public trust in the practice, creating networks of future coproduction, and assessing end-user needs, burn maps, and securing funding. The discussions emphasized knowledge and awareness gaps as a major impediment to prescribed fire implementation. Uniform capacity building is an ideal approach to engage stakeholders at a reference level appropriate to their background to optimize equity and efficacy.
      Another issue that came up during discussion is that land management professionals do not have the time or resources to stay current with data sources and analysis techniques. The participants suggested the creation of a “Fire Science Library” as an iterative data tool to organize and present fire knowledge in an actionable and streamlined manner for public land managers. The interface would allow practitioners to filter unique categories (e.g., role, scope, region, ecosystem type, weather, agency affiliation) to provide the ability to search, modify, and maintain fire science knowledge as it evolves. This interface would also provide provenance through references to papers, justification for methods, and case studies. The library would guide and streamline data collection, analyses, and interpretation workflows that are needed for holistic prescribed fire planning and monitoring based on tangible needs from fire professionals.
      The virtual library tool would provide a user with a fire-science knowledge graph, which is an organized representation of real-world entities and their relationships that could quickly connect fire-related management with current research questions concerning data products, processing methods, and data sources along with references and case studies. Information provided in the knowledge graph would need to be context specific but not overly prescriptive to avoid constraining users to a rigid workflow that is more common in basic data portals. Knowledge graphs are associated with semantic web technology that forms a modern version of a database. The tool establishes relationships between entities that promote new relationship discovery, search, and modification. It also provides a foundation on which other applications can be built, such as prescribed fires in the southeast and incorporating drone data. Focusing on prescribed fire may help to bound the initial product development but leave the door open for eventual expansion for wildfire.
      The group identified objectives moving forward, including the need to finalize the main set of prescribed fire management questions (e.g., planning, implementation, pre/post monitoring), establish user personas based on known representatives and gaps, engage the Earth Science Information Partners (ESIP), identify cluster members (e.g., subject matter experts from local and federal agencies, private industry, and academia/research), and investigate additional funding sources. (Clusters are agile working groups within ESIP formed to focus on specific topics.)
      Breakout Session C: Fractional Vegetation Cover
      This breakout session focused on fractional vegetation cover (FVC) – see Photo 4. The presenters introduced three large FVC assessment efforts, and the participants contributed to a Strengths, Weakness, Opportunities, and Threats (SWOT) analysis of FVC products intended to improve the use of this data by decision makers – see Table.
      Photo 4. [left to right] Amanda Armstrong, Elizabeth Hoy [both at Goddard Space Flight Center], and Timothy Assal [Bureau of Land Management] collaborating during the Fractional Vegetation Cover Breakout. Photo credit: AEOIP Tim Assal discussed the BLM’s Assessment Inventory and Monitoring (AIM) strategy. He explained that AIM has nearly 60,000 monitoring locations across the terrestrial uplands, aquatic systems, and riparian and wetland habitat of the U.S., and the data collected are being used for monitoring and restoration activities. Assai added that integration of remote sensing data with field plot data enables the generation of continuous datasets (e.g., FVC that can relate field plot-level indicators to those based on remote-sensing). He also reported that FVC data are currently being used to address numerous management decisions.
      Sarah McCord [USDA] discussed V3 of the Rangeland Analysis Platform (RAP). McCord explained that V3 uses vegetation cover and rangeland production data to monitor these parameters. The model also uses species composition data. She explained that there are approximately 85,000 training/validation locations across the U.S. that have been incorporated into the modeling process. She said that enhancements to future versions of RAP are expected as data from new satellite instruments, field plots, and deep learning (i.e., application of AI/ML techniques) are all incorporated into the model. McCord chairs a working group that is actively investigating sources of error and uncertainty within individual and across different FVC products.
      Matt Rigge [USGS Earth Resources Observation and Science (EROS) Center] discussed V3 of the Rangeland Condition Monitoring Assessment and Projection (RCMAP), which will provide current and future condition using Landsat time series. Data available includes cover maps and potential cover. The platform uses various training data in addition to AIM plot data. In the future RCMAP plans to incorporate data from synthetic NASA-Indian Space Research Organization Synthetic Aperture Radar (NISAR), from NASA’s Earth Surface Mineral Dust Source (EMIT) mission, and from convolution neural network-based (CNN) algorithms.
      Bo Zhou [University of California, Los Angeles (UCLA)] discussed V2 of the Landscape Cover Analysis and Reporting Tool (LandCART). V3 will be different and coming in the future. He explained that the BLM uses V3 to make legally defensible decisions. He then discussed the training data, which come mostly from AIM. The training dataset includes 71 Level-4 (L4) Ecoregions, as defined by the U.S. Environmental Protection Agency, with at least 100 observations. Zhou noted that these training data are used to define spatial extent, the temporal extent is defined by available satellite imagery, and uncertainty estimates are based on CNN and random forest (RF) machine-learning algorithms.
      Eric Jensen [Desert Research Institute] discussed how ClimateEngine.org uses cloud-based tools, such as GEE, to access, visualize, and share Earth observation datasets to overcome computational limitations of big data in a real-time environment. It encompasses over 85 datasets, including RAP and RCMAP, and the group is working to add LandCART. Two core functionalities of the ClimateEngine app are producing maps and making graphs. Jensen provided a brief demonstration of the app using a juniper removal project in sage grouse habitat in southern Idaho.
      Strengths
      • Tools available for accessing and processing data are user-friendly and widely accessible, making it easy to compile, use, and display data for users of all expertise levels across a range of management activities.
      • Tools provide a comprehensive view of an area, offering both current and retrospective insights that are highly regarded by the restoration community.
      • Tool format supports integration of new datasets, ensuring inclusivity and consistency over time and space.   Weaknesses
      • Training data exhibits spatial and temporal biases.
      • Training data is biased towards federal data, lacking global representation.
      • Sensors have limitations for both temporal and spatial accuracy.   Opportunities
      • Managers can use these tools to make informed decisions and evaluate the effectiveness of their treatments.
      • Additional training (e.g., training in how to process new data types, such as hyperspectral data) could institutionalize remote sensing and reach more end users.
      • Future expansion of AI/ML techniques and cloud-based services could reduce error, enhance data quality, and increase user reach.   Threats
      • Stability of funding could threaten continuity of measurements.
      • Falling into a “one size fits all” mentality could stifle innovation.
      • Variation in land management organizations’ willingness to update data and lack of cohesion could prevent obtaining full potential of FVC.
      • Transition from research to operations could hinder collaboration and tool development and weaken the community of practice.
      • Poor performance, misuse of information, and data sovereignty could diminish the community’s trust in the tools.
      • Rapid technological advancements could displace smaller businesses.   Table. Results of a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis of the current state of Fractional Vegetation Cover (FVC) data analysis tools and techniques. Breakout Session D: Post-fire Effects and Recovery
      This session focused on assessing, predicting, remediating, and monitoring areas in the aftermath of fires. The focus was on “shovel-ready” ideas, such as improving operational soil burn severity maps to connect post-fire ground conditions and soil properties. The participants highlighted the need to leverage information (e.g., active fire thermal data) to better detect changes in post-fire cover and soil properties. Such information would be beneficial to USFS’s Burned Area for Emergency Response (BAER) program as well as to researchers, data providers, decision makers, and community leaders. The group discussed steps that would aid in this collaboration (e.g., incorporating thermal imagery into mapping soil burn severity, developing and validating products, getting first-look data to field teams, monitoring threats by conducting rapid burn severity assessment before official soil burn severity maps are made available, and sharing outputs quickly with decision makers).
      The breakout participants also noted the challenge of ash load mapping, which they suggested might be constrained by using information on pre-fire fuels (e.g., biomass, understory, and canopy vegetation) to constrain potential ash production. Derived information products [e.g., Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), LANDFIRE fuels layers, and RAP] may improve this process. The group noted the limitations of the VIIRS instrument for mapping fire duration and soil heating. The group proposed adding supplemental data through the use of National Infrared Operations (NIROPS) raw infrared imagery – see Figure 1.
      Fire tools currently available – and under consideration for improving maps – include VIIRS active fire data through NASA’s Fire Information for Resource Management System (FIRMS), fire event tracking through NASA’s Earth Information System Fire Event Data Suite (FEDS), the burn severity prediction model at MTRI, and Rapid Differenced Normalized Burn Ratio Mapping at the University of Wisconsin, Madison. The group identified VIIRS L1 image capture to detect smoldering fires as a potential improvement in wildfire characterization. The group also suggested more frequent observations of moderate resolution satellites, GOES Integration [0.5–2 km (0.3–1.2 mi) spatial resolution], and comprehensive field data. They identified possible ways to improve post-fire soil burn severity maps (e.g., information on pre-fire fuels, soil characteristics, and thermal properties, such as fire heating, residence time, spread rate), optical characteristic (e.g., vegetation mortality, ash production), and lidar canopy metrics.
      Presently, burn severity is assessed using a simple spectral index derived from remote sensing data, driven by necessity, data access, and computing power. The group presented the need to break this single number into ecologically meaningful components for better post-fire assessment and remediation. Improvements could involve incorporating additional information (e.g., peak soil temperature, heat residence time, and fuel moisture). Coupling atmospheric fire behavior models could address temporal gaps, necessitating high-spatial and temporal resolution thermal data sets.
      The participants agreed that future strategies should include monitoring warmer areas and smoldering zones instead of just flaming fronts, as well as exploring temperature differences across burn severities. Additionally, post-fire assessments would benefit from using other spectral bands and post-fire Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) products. They also added that access to more field information is crucial for scientific post-fire observations. Efforts are underway to make the SBS S123 survey system a national standard, though surveys currently reside with local units that have good record-keeping practices.
      Figure 1. Optical [left and right] and thermal [right, overlay] images of participants at the 2024 AEOIP workshop obtained by an unpiloted aerial vehicle (UAV). Image credit: Colin Brooks Conclusion
      The 2024 AEOIP workshop addressed a wide range of geospatial data tool and training needs and forums. The meeting centered on coproduction of knowledge and community-of-practice building as key needs for the geospatial data topics. Participants identified capacity building – through awareness, accessibility, and utility of data and tools – as the top priority for processing and technological advancement initiatives.
      The breakout session topics selected (e.g., carbon concentrations, wildfires, prescribed fires, and landscape dynamics) were chosen to promote dialogue between data users and scientists, leading to plans for action and change in data and tool utility in four areas of interest for land managers. Following the meeting, the organizers submitted a spreadsheet detailing the data and tool needs identified during the breakouts to the Earth Action Program. The SNWG has also been made aware of the most compelling needs that participants identified. The AEOIP believes that by bridging two groups – data users and research and development – it will be possible to bolster user provenance and efficacy of NASA resources moving forward.
      Severin Scott
      Washington State University
      severin.scott@wsu.edu
      Alan B. Ward
      NASA’s Goddard Space Flight Center (GSFC)/Global Science and Technology (GST)
      alan.b.ward@nasa.gov
      Alexis O’Callahan
      University of Arkansas
      aocallah@uark.edu
      Share








      Details
      Last Updated Jan 03, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This animation shows data taken by NASA’s PACE and the international SWOT satellites over a region of the North Atlantic Ocean. PACE captured phytoplankton data on Aug. 8, 2024; layered on top is SWOT sea level data taken on Aug. 7 and 8, 2024. NASA’s Scientific Visualization Studio One Earth satellite can see plankton that photosynthesize. The other measures water surface height. Together, their data reveals how sea life and the ocean are intertwined.
      The ocean is an engine that drives Earth’s weather patterns and climate and sustains a substantial portion of life on the planet. A new animation based on data from two recently launched missions — NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the international Surface Water and Ocean Topography (SWOT) satellites — gives a peek into the heart of that engine.
      Physical processes, including localized swirling water masses called eddies and the vertical movement of water, can drive nutrient availability in the ocean. In turn, those nutrients determine the location and concentration of tiny floating organisms known as phytoplankton that photosynthesize, converting sunlight into food. These organisms have not only contributed roughly half of Earth’s oxygen since the planet formed, but also support economically important fisheries and help draw carbon out of the atmosphere, locking it away in the deep sea.
      “We see great opportunity to dramatically accelerate our scientific understanding of our oceans and the significant role they play in our Earth system,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “This visualization illustrates the potential we have when we begin to integrate measurements from our separate SWOT and PACE ocean missions. Each of those missions is significant on its own. But bringing their data together — the physics from SWOT and the biology from PACE — gives us an even better view of what’s happening in our oceans, how they are changing, and why.”
      A collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), the SWOT’ satellite launched in December 2022 to measure the height of nearly all water on Earth’s surface. It is providing one of the most detailed, comprehensive views yet of the planet’s ocean and its freshwater lakes, reservoirs, and rivers.
      Launched in February 2024, NASA’s PACE satellite detects and measures the distribution of phytoplankton communities in the ocean. It also provides data on the size, amount, and type of tiny particles called aerosols in Earth’s atmosphere, as well as the height, thickness, and opacity of clouds.
      “Integrating information across NASA’s Earth System Observatory and its pathfinder missions SWOT and PACE is an exciting new frontier in Earth science,” said Nadya Vinogradova Shiffer, program scientist for SWOT and the Integrated Earth System Observatory at NASA Headquarters.
      Where Physics and Biology Meet
      The animation above starts by depicting the orbits of SWOT (orange) and PACE (light blue), then zooms into the North Atlantic Ocean. The first data to appear was acquired by PACE on Aug. 8. It reveals concentrations of chlorophyll-a, a vital pigment for photosynthesis in plants and phytoplankton. Light green and yellow indicate higher concentrations of chlorophyll-a, while blue signals lower concentrations.
      Next is sea surface height data from SWOT, taken during several passes over the same region between Aug. 7 and 8. Dark blue represents heights that are lower than the mean sea surface height, while dark orange and red represent heights higher than the mean. The contour lines that remain once the color fades from the SWOT data indicate areas of the ocean with the same height, much like the lines on a topographic map indicate areas with the same elevation.
      The underlying PACE data then cycles through several groups of phytoplankton, starting with picoeukaryotes. Lighter green indicates greater concentrations of this group. The final two groups are cyanobacteria — some of the smallest and most abundant phytoplankton in the ocean — called Prochlorococcus and Synechococcus. For Prochlorococcus, lighter raspberry colors represent higher concentrations. Lighter teal colors for Synechococcus signal greater amounts of the cyanobacteria.
      The animation shows that higher phytoplankton concentrations on Aug. 8 tended to coincide with areas of lower water height. Eddies that spin counterclockwise in the Northern Hemisphere tend to draw water away from their center. This results in relatively lower sea surface heights in the center that draw up cooler, nutrient-rich water from the deep ocean. These nutrients act like fertilizer, which can boost phytoplankton growth in sunlit waters at the surface.
      Overlapping SWOT and PACE data enables a better understanding of the connections between ocean dynamics and aquatic ecosystems, which can help improve the management of resources such as fisheries, since phytoplankton form the base of most food chains in the sea. Integrating these kinds of datasets also helps to improve calculations of how much carbon is exchanged between the atmosphere and the ocean. This, in turn, can indicate whether regions of the ocean that absorb excess atmospheric carbon are changing.
      More About SWOT
      The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations.  The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      To learn more about SWOT, visit:
      https://swot.jpl.nasa.gov
      More About PACE
      The PACE mission is managed by NASA Goddard Space Flight Center, which also built and tested the spacecraft and the Ocean Color Instrument, which collected the data shown in the visualization. The satellite’s Hyper-Angular Rainbow Polarimeter #2  was designed and built by the University of Maryland, Baltimore County, and the Spectro-polarimeter for Planetary Exploration  was developed and built by a Dutch consortium led by Netherlands Institute for Space Research, Airbus Defence, and Space Netherlands.
      To learn more about PACE, visit:
      https://pace.gsfc.nasa.gov
      News Media Contacts
      Jacob Richmond (for PACE)
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      jacob.a.richmond@nasa.gov
      Jane J. Lee / Andrew Wang (for SWOT)
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-169
      Share
      Details
      Last Updated Dec 09, 2024 Related Terms
      PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Climate Science Oceans SWOT (Surface Water and Ocean Topography) Explore More
      7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
      Article 3 weeks ago 4 min read NASA Data Helps International Community Prepare for Sea Level Rise
      Article 4 weeks ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
      Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Expanded AI Model with Global Data Enhances Earth Science Applications 
      On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Data from Landsat 8 were used to train the Prithvi artificial intelligence model, which can help detect burn scars. NASA Earth Observatory NASA, IBM, and Forschungszentrum Jülich have released an expanded version of the open-source Prithvi Geospatial artificial intelligence (AI) foundation model to support a broader range of geographical applications. Now, with the inclusion of global data, the foundation model can support tracking changes in land use, monitoring disasters, and predicting crop yields worldwide. 
      The Prithvi Geospatial foundation model, first released in August 2023 by NASA and IBM, is pre-trained on NASA’s Harmonized Landsat and Sentinel-2 (HLS) dataset and learns by filling in masked information. The model is available on Hugging Face, a data science platform where machine learning developers openly build, train, deploy, and share models. Because NASA releases data, products, and research in the open, businesses and commercial entities can take these models and transform them into marketable products and services that generate economic value. 
      “We’re excited about the downstream applications that are made possible with the addition of global HLS data to the Prithvi Geospatial foundation model. We’ve embedded NASA’s scientific expertise directly into these foundation models, enabling them to quickly translate petabytes of data into actionable insights,” said Kevin Murphy, NASA chief science data officer. “It’s like having a powerful assistant that leverages NASA’s knowledge to help make faster, more informed decisions, leading to economic and societal benefits.”
      AI foundation models are pre-trained on large datasets with self-supervised learning techniques, providing flexible base models that can be fine-tuned for domain-specific downstream tasks.
      Crop classification prediction generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. Focusing on diverse land use and ecosystems, researchers selected HLS satellite images that represented various landscapes while avoiding lower-quality data caused by clouds or gaps. Urban areas were emphasized to ensure better coverage, and strict quality controls were applied to create a large, well-balanced dataset. The final dataset is significantly larger than previous versions, offering improved global representation and reliability for environmental analysis. These methods created a robust and representative dataset, ideal for reliable model training and analysis. 
      The Prithvi Geospatial foundation model has already proven valuable in several applications, including post-disaster flood mapping and detecting burn scars caused by fires.
      One application, the Multi-Temporal Cloud Gap Imputation, leverages the foundation model to reconstruct the gaps in satellite imagery caused by cloud cover, enabling a clearer view of Earth’s surface over time. This approach supports a variety of applications, including environmental monitoring and agricultural planning.  
      Another application, Multi-Temporal Crop Segmentation, uses satellite imagery to classify and map different crop types and land cover across the United States. By analyzing time-sequenced data and layering U.S. Department of Agriculture’s Crop Data, Prithvi Geospatial can accurately identify crop patterns, which in turn could improve agricultural monitoring and resource management on a large scale. 
      The flood mapping dataset can classify flood water and permanent water across diverse biomes and ecosystems, supporting flood management by training models to detect surface water. 
      Wildfire scar mapping combines satellite imagery with wildfire data to capture detailed views of wildfire scars shortly after fires occurred. This approach provides valuable data for training models to map fire-affected areas, aiding in wildfire management and recovery efforts.
      Burn scar mapping generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. This model has also been tested with additional downstream applications including estimation of gross primary productivity, above ground biomass estimation, landslide detection, and burn intensity estimations. 
      “The updates to this Prithvi Geospatial model have been driven by valuable feedback from users of the initial version,” said Rahul Ramachandran, AI foundation model for science lead and senior data science strategist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “This enhanced model has also undergone rigorous testing across a broader range of downstream use cases, ensuring improved versatility and performance, resulting in a version of the model that will empower diverse environmental monitoring applications, delivering significant societal benefits.”
      The Prithvi Geospatial Foundation Model was developed as part of an initiative of NASA’s Office of the Chief Science Data Officer to unlock the value of NASA’s vast collection of science data using AI. NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT), based at Marshall, IBM Research, and the Jülich Supercomputing Centre, Forschungszentrum, Jülich, designed the foundation model on the supercomputer Jülich Wizard for European Leadership Science (JUWELS), operated by Jülich Supercomputing Centre. This collaboration was facilitated by IEEE Geoscience and Remote Sensing Society.  
      For more information about NASA’s strategy of developing foundation models for science, visit https://science.nasa.gov/artificial-intelligence-science.
      Share








      Details
      Last Updated Dec 04, 2024 Related Terms
      Earth Science & Research Explore More
      9 min read Towards Autonomous Surface Missions on Ocean Worlds


      Article


      23 hours ago
      5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…


      Article


      23 hours ago
      1 min read Coming Spring 2025: Planetary Defenders Documentary
      ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…


      Article


      23 hours ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...