Jump to content

Liftoff! NASA’s SpaceX Crew-9 Launches to International Space Station


Recommended Posts

  • Publishers
Posted
screenshot-2024-09-28-133739.png?w=1920
NASA’s SpaceX Crew-9 mission launched at 1:17 p.m. EDT Sept. 28, 2024, from Space Launch Complex-40 at Cape Canaveral Space Force Station in Florida. Credits: NASA

The two crew members of NASA’s SpaceX Crew-9 mission launched at 1:17 p.m. EDT Saturday, for a science expedition aboard the International Space Station. This is the first human spaceflight mission launched from Space Launch Complex-40 at Cape Canaveral Space Force Station in Florida, and the agency’s ninth commercial crew rotation mission to the space station.

A SpaceX Falcon 9 rocket propelled the Dragon spacecraft into orbit carrying NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov. The spacecraft will dock autonomously to the forward-facing port of the station’s Harmony module at approximately 5:30 p.m., Sunday, Sept. 29, where Hague and Gorbunov will join Expedition 72 for a five-month stay aboard the orbiting laboratory.

“This mission required a lot of operational and planning flexibility. I congratulate the entire team on a successful launch today, and godspeed to Nick and Aleksandr as they make their way to the space station,” said NASA Administrator Bill Nelson. “Our NASA wizards and our commercial and international partners have shown once again the success that comes from working together and adapting to changing circumstances without sacrificing the safe and professional operations of the International Space Station.”

During Dragon’s flight, SpaceX will monitor a series of automatic spacecraft maneuvers from its mission control center in Hawthorne, California. NASA will monitor space station operations throughout the flight from the Mission Control Center at the agency’s Johnson Space Center in Houston.

NASA will provide live coverage of rendezvous, docking, and hatch opening, beginning at 3:30 p.m., Sept. 29, on NASA+ and the agency’s website. NASA also will broadcast the crew welcome ceremony once Hague and Gorbunov are aboard the orbital outpost. Learn how to stream NASA content through a variety of platforms, including social media.

The duo will join the space station’s Expedition 72 crew of NASA astronauts Michael Barratt, Matthew Dominick, Jeanette Epps, Don Pettit, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Alexander Grebenkin, Alexey Ovchinin, and Ivan Vagner. The number of crew aboard the space station will increase to 11 for a short time until Crew-8 members Barratt, Dominick, Epps, and Grebenkin depart the space station in early October.

The crewmates will conduct more than 200 scientific investigations, including blood clotting studies, moisture effects on plants grown in space, and vision changes in astronauts during their mission. Following their stay aboard the space station, Hague and Gorbunov will be joined by Williams and Wilmore to return to Earth in February 2025.

With this mission, NASA continues to maximize the use of the orbiting laboratory, where people have lived and worked continuously for more than 23 years, testing technologies, performing science, and developing the skills needed to operate future commercial destinations in low Earth orbit and explore farther from Earth. Research conducted at the space station benefits people on Earth and paves the way for future long-duration missions to the Moon under NASA’s Artemis campaign, and beyond.

More about Crew-9

Hague is the commander of Crew-9 and is making his second trip to the orbital outpost since his selection as an astronaut in 2013. He will serve as a mission specialist during Expedition 72/73 aboard the space station. Follow @AstroHague on X and Instagram.

Roscosmos cosmonaut Aleksandr Gorbunov is flying on his first mission. He will serve as a flight engineer during Expeditions 72/73.

Learn more about NASA’s SpaceX Crew-9 mission and the agency’s Commercial Crew Program at:

https://www.nasa.gov/commercialcrew

-end-

Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Steven Siceloff / Danielle Sempsrott / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / danielle.c.semprott@nasa.gov / stephanie.n.plucinsky@nasa.gov

Leah Cheshier / Sandra Jones
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov

Share

Details

Last Updated
Sep 28, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Victor Glover tests collection methods for ISS External Microorganisms in the Neutral Buoyancy Lab at Johnson Space Center.NASA Astronauts are scheduled to venture outside the International Space Station to collect microbiological samples during crew spacewalks for the ISS External Microorganisms experiment. This investigation focuses on sampling at sites near life support system vents to examine whether the spacecraft releases microorganisms, how many, and how far they may travel.
      This experiment could help researchers understand whether and how these microorganisms survive and reproduce in the harsh space environment and how they may perform at planetary destinations such as the Moon and Mars. Extremophiles, or microorganisms that can survive harsh environments, are also of interest to industries on Earth such as pharmaceuticals and agriculture.
      Spacecrafts and spacesuits are thoroughly sterilized before missions; however, humans carry their own microbiomes and continuously regenerate microbial communities. It’s important to understand and address how well current designs and processes prevent or limit the spread of human contamination.  The data could help determine whether changes are needed to crewed spacecraft, including spacesuits, that are used to explore destinations where life may exist now or in the past.
      Learn more about how researchers monitor microbes on the space station.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      International Space Station News
      Space Station Research Reference Materials
      Station Benefits for Humanity
      View the full article
    • By NASA
      Insights into metal alloy solidification

      Researchers report details of phase and structure in the solidification of metal alloys on the International Space Station, including formation of microstructures. Because these microstructures determine a material’s mechanical properties, this work could support improvements in techniques for producing coatings and additive manufacturing or 3D printing processes.

      METCOMP, an ESA (European Space Agency) investigation, studied solidification in microgravity using transparent organic mixtures as stand-ins for metal alloys. Conducting the research in microgravity removed the influence of convection and other effects of gravity. Results help scientists better understand and validate models of solidification mechanisms, enabling better forecasting of microstructures and improving manufacturing processes.
      Image from the METCOMP investigation of how a metal alloy could look like as it solidifies. E-USOC Measuring the height of upper-atmospheric electrical discharges

      Researchers determined the height of a blue discharge from a thundercloud using ground-based electric field measurements and space-based optical measurements from Atmosphere-Space Interactions Monitor (ASIM). This finding helps scientists better understand how these high-altitude lightning-related events affect atmospheric chemistry and could help improve atmospheric models and climate and weather predictions.

      ESA’s ASIM is an Earth observation facility that studies severe thunderstorms and upper-atmospheric lighting events and their role in the Earth’s atmosphere and climate. Upper-atmospheric lightning, also known as transient luminous events, occurs well above the altitudes of normal lightning and storm clouds. The data collected by ASIM could support research on the statistical properties of many upper atmosphere lightning events, such as comparison of peak intensities of blue and red pulses with reports from lightning detection networks.
      An artist’s impression of a blue jet as observed from the International Space Station.Mount Visual/University of Bergen/DTU Modeling a complex neutron star

      Scientists report that they can use modeling of neutron star PSRJ1231−1411’s X-ray pulses to infer its mass and radius and narrow the possible behaviors of the dense matter at its core. This finding provides a better understanding of the composition and structure of these celestial objects, improving models that help answer questions about conditions in the universe.

      The Neutron star Interior Composition Explorer provides high-precision measurements of pulses of X-ray radiation from neutron stars. This particular neutron star presented challenges in finding a fit between models and data, possibly due to fundamental issues with its pulse profile. The authors recommend a program of simulations using synthetic data to determine whether there are fundamental issues with this type of pulse profile that could prevent efforts to obtain tighter and more robust constraints.
      Concentrators on the Neutron star Interior Composition Explorer instrument.NASAView the full article
    • By Space Force
      This achievement was driven by the base's commitment to innovation, revising practices and procedures and close partnerships with launch and test mission partners.

      View the full article
    • By Amazing Space
      SpaceX STARSHIP 7th Test Flight LIVE
    • By NASA
      6 Min Read NASA International Space Apps Challenge Announces 2024 Global Winners
      The 2024 NASA Space Apps Challenge was hosted at 485 events in 163 countries and territories. Credits: NASA NASA Space Apps has named 10 global winners, recognizing teams from around the world for their exceptional innovation and collaboration during the 2024 NASA Space Apps Challenge. As the largest annual global hackathon, this event invites participants to leverage open data from NASA and its space agency partners to tackle real-world challenges on Earth and in space.
      Last year’s hackathon welcomed 93,520 registered participants, including space, science, technology, and storytelling enthusiasts of all ages. Participants gathered at local events in 163 countries and territories, forming teams to address the challenges authored by NASA subject matter experts. These challenges included subjects/themes/questions in ocean ecosystems, exoplanet exploration, Earth observation, planetary seismology, and more.
      The 2024 Global Winners were determined out of 9,996 project submissions and judged by subject matter experts from NASA and space agency partners.
      “These 10 exceptional teams created projects that reflect our commitment to understanding our planet and exploring beyond, with the potential to transform Earth and space science for the benefit of all,” said Dr. Keith Gaddis, NASA Space Apps Challenge program scientistat NASA Headquarters in Washington. “The NASA Space Apps Challenge showcases the potential of every idea and individual. I am excited to see how these innovators will shape and inspire the future of science and exploration.”
      You can watch the Global Winners Announcement here to meet these winning teams and learn about the inspiration behind their projects.
      2024 NASA Space Apps Challenge Global Winners
      Best Use of Science Award: WMPGang
      Team Members: Dakota C., Ian C., Maximilian V., Simon S.
      Challenge: Create an Orrery Web App that Displays Near-Earth Objects
      Country/Territory: Waterloo,Canada
      Using their skills in programming, data analysis, and visualization, WMPGang created a web app that identifies satellite risk zones using real-time data on Near-Earth Objects and meteor streams.
      Learn more about WMPGang’s SkyShield: Protecting Earth and Satellites from Space Hazards project Best Use of Data Award: GaamaRamma
      Team Members: Aakash H., Arun G., Arthur A., Gabriel A., May K.
      Challenge: Leveraging Earth Observation Data for Informed Agricultural Decision-Making
      Country/Territory: Universal Event, United States
      GaamaRamma’s team of tech enthusiasts aimed to create a sustainable way to help farmers efficiently manage water availability in the face of drought, pests, and disease.
      Learn more about GaamaRamma’s Waterwise project Best Use of Technology Award: 42 QuakeHeroes
      Team Members: Alailton A., Ana B., Gabriel C., Gustavo M., Gustavo T., Larissa M.
      Challenge: Seismic Detection Across the Solar System
      Country/Territory: Maceió, Brazil
      Team 42 QuakeHeroes employed a deep neural network model to identify the precise locations of seismic events within time-series data. They used advanced signal processing techniques to isolate and analyze unique components of non-stationary signals.
      Learn more about 42 QuakeHeroes’ project Galactic Impact Award: NVS-knot
      Team Members: Oksana M., Oleksandra M., Prokipchyn Y., Val K.
      Challenge:  Leveraging Earth Observation Data for Informed Agricultural Decision-Making
      Country/Territory: Kyiv, Ukraine
      The NVS-knot team assessed planting conditions using surface soil moisture and evapotranspiration data, then created an app that empowers farmers to manage planting risks.
      Learn more about NVS-knot’s 2plant | ! 2plant project Best Mission Concept Award: AsturExplorers
      Team Members: Coral M., Daniel C., Daniel V., Juan B., Samuel G., Vladimir C.
      Challenge: Landsat Reflectance Data: On the Fly and at Your Fingertips
      Country/Territory: Gijón, Spain
      AsturExplorers created Landsat Connect, a web app that provides a simple, intuitive way to track Landast satellites and access Landsat surface reflectance data. The app also allows users to set a target location and receive notifications when Landsat satellites pass over their area.
      Learn more about AsturExplorers’ Landsat Connect project Most Inspirational Award: Innovisionaries
      Team Members: Rikzah K., Samira K., Shafeeqa J., Umamah A.
      Challenge: SDGs in the Classroom
      Country/Territory: Sharjah, United Arab Emirates
      Innovisionaries developed Eco-Metropolis to inspire sustainability through gameplay. This city-building game engages players in making critical urban planning and resource management decisions based on real-world environmental data.
      Learn more about Innovisionaries’ Eco-Metropolis: Sustainable City Simulation project Best Storytelling Award: TerraTales
      Team Members: Ahmed R., Fatma E., Habiba A., Judy A., Maya M.
      Challenge: Tell Us a Climate Story!
      Country/Territory: Cairo, Egypt
      TerraTales shared stories of how Earth’s changing climate affects three unique regions: Egypt, Brazil, and Germany. The web app also features an artificial intelligence (AI) model for climate forecasting and an interactive game to encourage users to make eco-friendly choices.
      Learn more about TerraTale’s project Global Connection Award: Asteroid Destroyer
      Team Members: Kapeesh K., Khoi N., Sathyajit L., Satyam S.
      Challenge: Navigator for the Habitable Worlds Observatory (HWO): Mapping the Characterizable Exoplanets in our Galaxy
      Country/Territory: Saskatoon, Canada
      Team Asteroid Destroyer honed in on exoplanets, utilizing data processing and machine learning techniques to map exoplanets based on size, temperature, and distance.
      Learn more about Asteroid Destroyer’s project Art & Technology Award: Connected Earth Museum
      Team Members: Gabriel M., Luc R., Lucas R., Mattheus L., Pedro C., Riccardo S.
      Challenge: Imagine our Connected Earth
      Country/Territory: Campinas, Brazil
      Team Connected Earth Museum created an immersive virtual museum experience to raise awareness of Earth’s changing climate. An AI host guides users through an interactive gallery featuring 3D and 2D visualizations, including a time series on Earth and ocean temperatures, population density, wildfires, and more.
      Learn more about Connected Earth Museums’ project Local Impact Award: Team I.O.
      Team Members: Frank R., Jan K., Raphael R., Ryan Z., Victoria M.
      Challenge: Community Mapping
      Country/Territory: Florianópolis, Brazil
      Team I.O. bridges the gap between complex Geographic Information Systems data and user-friendly communication, making critical environmental information accessible to everyone, regardless of technical expertise.
      Learn more about Team I.O.’s G.R.O.W. (Global Recovery and Observation of Wildfires) project Want to take part in the 2025 NASA Space Apps Challenge? Mark your calendars for October 4 and 5! Registration will open in July. At that time, participants will be able to register for a local event hosted by NASA Space Apps leads from around the world. You can stay connected with NASA Space Apps on Facebook, Instagram, and X.
      Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.
      Share
      Details
      Last Updated Jan 16, 2025 Related Terms
      STEM Engagement at NASA Earth View the full article
  • Check out these Videos

×
×
  • Create New...