Jump to content

Launch Your Creativity with These Space Crafts!


Recommended Posts

  • Publishers
Posted

9 min read

Launch Your Creativity with These Space Crafts!

intro-collage-image.png?w=2048

In honor of the completion of our Nancy Grace Roman Space Telescope’s spacecraft — the vehicle that will maneuver the observatory to its place in space and enable it to function once there — we’re bringing you some space crafts you can complete at home!

Join us for a journey across the cosmos, starting right in your own pantry. 

slime-card.png?w=1800

Stardust Slime

Did you know that most of your household ingredients are made of stardust? And so are you! Nearly every naturally occurring element was forged by living or dying stars. 
Take the baking soda in this slime recipe, for example. It’s made up of sodium, hydrogen, carbon, and oxygen. The hydrogen was made during the big bang, right at the start of the universe. But the other three elements were created by dying stars. So when you show your friends your space-y slime, you can tell them it’s literally made of stardust!

Instructions:

  • 1 5 oz. bottle clear glue
  • ½ tablespoon baking soda
  • food coloring
  • 1 tablespoon contact lens solution
  • 1 tablespoon glitter

Directions:

Pour the glue into a bowl

Mix in the baking soda

Add food coloring (we recommend blue, purple, black, or a combination).

Add contact lens solution and use your hands to work it through the slime. It will initially be very sticky! You can add a little extra contact lens solution to make it firmer and less goopy.

Add glitter a teaspoon at a time, using as much or as little as you like!

sucker-card.png?w=1800

Space Suckers

Now let’s travel a little farther, past Earth’s atmosphere and into the realm of space. That’s where Roman is headed once the whole observatory is complete and passes all of its testing!

Roman will scan the skies from space to make it extra sensitive to faint infrared light. It’s harder to see from the ground because our atmosphere scatters and absorbs infrared radiation, which obscures observations. 
Some astronauts have reported that space smells metallic or like gunpowder, but don’t worry — you can choose a more pleasant flavor for your space suckers!

Ingredients

  • 2 cups sugar
  • 2/3 cup light corn syrup
  • 2/3 cup water
  • gel food coloring
  • flavor oil
  • edible glitter dust
  • sucker sticks
  • sucker mold

Directions

Prep the molds by adding sucker sticks.

Mix sugar, light corn syrup, and water together in a pot on the stove over medium heat.

Turn it up to medium-high heat and let it boil without stirring for about 6 minutes.

Quickly stir in the flavor oil of your choice, gel food coloring, plus as much edible glitter as you like (reserve some for dusting).

Carefully but quickly spoon the mixture into the molds. Spin the sticks so they’re evenly coated. Add a sprinkle of reserved edible glitter and allow to harden.” An image on the left side of the card shows the result: a deep purple sucker with silver glitter embedded.

fizzy-planet-card.png?w=1800

Fizzy Planets

As we move toward our outer solar system, we’ll pass the orbits of the gas giant planets Jupiter and Saturn. While they don’t actually fizz like the mini planets you can make at home, they do have some pretty exotic chemistry that stems from their extreme pressures, temperatures, and compositions. For example, the hydrogen in their cores behaves like liquid metal instead of a gas. It even conducts electricity!

Roman will use multiple planet-spotting techniques –– microlensing, transits, and direct imaging –– to help us study a variety of worlds, including both gas giants and rocky worlds similar to our own.

Ingredients

  • 3 cups baking soda
  • ¾ cup water
  • food coloring
  • ¼ cup vinegar

Directions

Mix a few drops of food coloring into ¼ cup of water and pour into a bowl with 1 cup of baking soda.

Repeat step one two more times using different colors.

Scoop together bits from each mixture to form small balls. Add an extra splash of water to any mixture that’s too crumbly.

Douse the balls with vinegar using an eye dropper or teaspoon and watch them fizz!

marshmallow-constellation-card-1.png?w=1

Marshmallow Constellations

As we venture farther out into space, we’ll reach some familiar stars! Constellations are groups of stars that appear close together in the sky as seen from Earth. But if you actually journeyed out to them, you might be surprised to discover that they’re often super far apart from each other!

Though constellations aren’t made of stars that are actually bound together in any way, they can still be useful for referencing a cosmic object’s location in the sky. For example, you can use a pair of binoculars or a telescope to take a look at the nebula found beneath Orion’s Belt, marked by the glitter patch in the recipe card above! You can find the constellation printables here.

Supplies

  • toothpicks or mini pretzel sticks
  • mini marshmallows
  • constellation printables
  • scissors

Directions

Attach marshmallows to toothpicks or pretzel sticks using the constellation cards as a guide. Carefully trim toothpicks or pretzel sticks as needed using scissors.

bath-bomb-card.png?w=1800

Black Hole Bath Bombs

Black holes –– objects with such strong gravity that not even light can escape their clutches –– lurk unseen throughout our galaxy. Stray too close to one and you’re in for a wild ride! But they aren’t cosmic vacuum cleaners, despite what you may have grown to believe. Just keep your distance and they’ll affect you the same way as any other object of the same mass.
Astronomers have found dozens of black holes in our galaxy by seeing how their gravity affects nearby objects. But there may be 100 million more that lack a visible companion to signal their presence. Roman will find some of these solitary black holes by seeing how their gravity focuses the light from farther stars.

Ingredients

  • 1 cup baking soda
  • ½ cup citric acid
  • ½ cup cornstarch
  • 2 tablespoons coconut oil
  • black food coloring
  • optional: 2 teaspoons essential oil for scent
  • optional: ½ cup Epsom salt

Directions

Mix the baking soda, citric acid, cornstarch, and Epsom salt (optional) together in a bowl.

In a separate bowl, mix the coconut oil, food coloring, and essential oil (optional).

Pour the liquid mixture into the dry mixture slowly while whisking it all together. Add a couple tiny splashes of water and whisk it in quickly.

Tightly press the mixture into round molds. Leave them for a few hours and then they’ll be ready to use!

galaxy-jar-card.png?w=1800

Galaxy in a Jar

Now let’s go so far we can see our Milky Way galaxy from the outside — something many astronomers probably wish they could do at times! 
Sort of like how Earth’s atmosphere can affect our view of space, dust in our galaxy can get in the way, too. That makes it easier to study other galaxies than our own in some ways! Roman’s combination of a large field of view, crisp resolution, and the ability to peer through dust make it the ideal instrument to study the Milky Way. The mission will build on previous observations to generate the most detailed map of our galaxy to date.

Ingredients

  • hot water
  • glitter glue
  • glitter
  • super glue (optional)

Directions

Mostly fill a 16 oz. glass jar with very hot water, leaving a couple inches of space at the top.

Add at least ¼ cup of glitter glue in colors of your choosing.

Add loose glitter a couple of teaspoons at a time, using as much or as little as you like! You can use a combination of fine and chunky glitter for an extended swirling effect.

Optional: Super glue the lid to the jar.

Once the water has sufficiently cooled, give the jar a gentle shake to see your galaxy swirl!

NOTE: Closely monitor children to ensure the jar doesn’t break.

pinwheel-card.png?w=1800

Pinwheel Galaxy Pinwheels

As we continue our cosmic excursion, you’ll see other galaxies sprinkled throughout space. Many are spiral galaxies, like our Milky Way and the Pinwheel Galaxy from the craft described above. (You can find more detailed instructions and the printout you’ll need here.)

But galaxies come in other varieties, too. Through Roman’s wide, deep surveys, astronomers are sure to see every type. Scientists will study the shapes and distances of billions of galaxies to help us understand dark energy — a mysterious pressure that’s speeding up the universe’s expansion. 

Supplies

  • Pinwheel Galaxy printout
  • pipe cleaner or chopsticks
  • scissors
  • popsicle stick
  • single hole puncher

Directions

Cut out the hexagonal shape for your galaxy pinwheel.

Make cuts down the white lines.

Punch holes in the white dots: six around the edges and one in the center.

Turn the paper so it’s face-down.

Thread a pipe cleaner through the center hole.

Going around the circle, fold each flap so the pipe cleaner goes through the hole.

Tie a knot in the pipe cleaner to secure the front of the pinwheel. Wrap the other side of the pipe cleaner around a popsicle stick.

universe-dough-card.png?w=1800

Universe Dough

We’re nearing the end of our voyage, having traveled so far through space and time that we can take in the whole universe! We’ve learned a lot about it, but there are still plenty of open questions. Some of its biggest components, dark energy and dark matter (invisible matter seen only via its gravitational influence), are huge mysteries Roman will explore. And since the observatory will reveal such large, deep swaths of space, who knows what new puzzles we’ll soon uncover!

  • Ingredients
  • 1 cup flour
  • ½ cup salt
  • 1 tablespoon vegetable oil
  • ½ cup hot water
  • food coloring
  • glitter

Directions

Mix flour and salt in a bowl.

Add several drops of food coloring to hot water, and stir into dry mixture along with the oil.

Add as much glitter as you like and knead it into the dough for several minutes.

Add water or flour as needed to adjust the consistency.

Still feeling crafty? Try your hand at these 3D and paper spacecraft models. If you’re eager for a more advanced space craft, check out these embroidery creations for inspiration! Or if you’re ready for a break, take a virtual tour of an interactive version of the Roman Space Telescope here.

Share

Details

Last Updated
Sep 27, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Gateway’s HALO module at Northrop Grumman’s facility in Gilbert, Arizona, on April 4, 2025, shortly after its arrival from Thales Alenia Space in Turin, Italy. NASA/Josh Valcarcel NASA continues to mark progress on plans to work with commercial and international partners as part of the Gateway program. The primary structure of HALO (Habitation and Logistics Outpost) arrived at Northrop Grumman’s facility in Gilbert, Arizona, where it will undergo final outfitting and verification testing.
      HALO will provide Artemis astronauts with space to live, work, and conduct scientific research. The habitation module will be equipped with essential systems including command and control, data handling, energy storage, power distribution, and thermal regulation.
      Following HALO’s arrival on April 1 from Thales Alenia Space in Turin, Italy, where it was assembled, NASA and Northrop Grumman hosted an April 24 event to acknowledge the milestone, and the module’s significance to lunar exploration. The event opened with remarks by representatives from Northrop Grumman and NASA, including NASA’s Acting Associate Administrator for Exploration Systems Development Lori Glaze, Gateway Program Manager Jon Olansen, and NASA astronaut Randy Bresnik. Event attendees, including Senior Advisor to the NASA Administrator Todd Ericson, elected officials, and local industry and academic leaders, viewed HALO and virtual reality demonstrations during a tour of the facilities.
      Dr. Lori Glaze, acting associate administrator for NASA’s Exploration Systems Development Mission Directorate, and Dr. Jon B. Olansen, Gateway Program manager, on stage during an April 24, 2025, event at Northrop Grumman’s facility in Gilbert, Arizona, commemorating HALO’s arrival in the United States. Northrop Grumman While the module is in Arizona, HALO engineers and technicians will install propellant lines for fluid transfer and electrical lines for power and data transfer. Radiators will be attached for the thermal control system, as well as racks to house life support hardware, power equipment, flight computers, and avionics systems. Several mechanisms will be mounted to enable docking of the Orion spacecraft, lunar landers, and visiting spacecraft.
      Launching on top of HALO is the ESA (European Space Agency)-provided Lunar Link system which will enable communication between crewed and robotic systems on the Moon and to mission control on Earth. Once these systems are installed, the components will be tested as an integrated spacecraft and subjected to thermal vacuum, acoustics, vibration, and shock testing to ensure the spacecraft is ready to perform in the harsh conditions of deep space.
      In tandem with HALO’s outfitting at Northrop Grumman, the Power and Propulsion Element – a powerful solar electric propulsion system – is being assembled at Maxar Space Systems in Palo Alto, California. Solar electric propulsion uses energy collected from solar panels converted to electricity to create xenon ions, then accelerates them to more than 50,000 miles per hour to create thrust that propels the spacecraft.
      The element’s central cylinder, which resembles a large barrel, is being attached to the propulsion tanks, and avionics shelves are being installed. The first of three 12-kilowatt thrusters has been delivered to NASA’s Glenn Research Center in Cleveland for acceptance testing before delivery to Maxar and integration with the Power and Propulsion Element later this year.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Linkedin logo @NASA Share
      Details
      Last Updated Apr 25, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station General Humans in Space Explore More
      2 min read NASA Welcomes Gateway Lunar Space Station’s HALO Module to US
      From Italy to Arizona: Gateway’s first habitation module takes a major step on its path…
      Article 3 weeks ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 2 months ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 3 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: Copernicus Sentinel-1 captured this radar image over French Guiana – home to Europe’s Spaceport in Kourou, where ESA’s Biomass mission is being prepared for liftoff on 29 April onboard a Vega-C rocket. View the full article
    • By European Space Agency
      ESA's Biomass mission is on the launch pad at Europe’s Spaceport in Kourou, French Guiana. Don’t miss the live coverage of liftoff on Tuesday 29 April, on ESA WebTV. Coverage will start at 10:55 CEST with commentary live from Kourou and ESA’s European Space Operations Centre in Germany. The Vega-C rocket carrying Biomass is scheduled for liftoff at 11:15.
      View the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Don Pettit sets up camera hardware to photograph research activities inside the International Space Station’s Kibo laboratory module on March 15, 2025.Credit: NASA Media are invited to a news conference at 2 p.m. EDT Monday, April 28, at NASA’s Johnson Space Center in Houston where astronaut Don Pettit will share details of his recent mission aboard the International Space Station.
      The news conference will stream live on NASA’s website. Learn how to stream NASA content through a variety of platforms.
      To participate in person, U.S. media must contact the NASA Johnson newsroom no later than 5 p.m. Thursday, April 24, at 281-483-5111 or jsccommu@mail.nasa.gov. Media wishing to participate by phone must contact the newsroom no later than two hours before the start of the event. To ask questions by phone, media must dial into the news conference no later than 10 minutes prior to the start of the call. NASA’s media accreditation policy is available online.
      Questions also may be submitted on social media during the news conference by using #AskNASA. Following the news conference, NASA will host a live question and answer session with Pettit on the agency’s Instagram. For more information, visit @NASA on social media.
      Pettit returned to Earth on April 19 (April 20, Kazakhstan time), along with Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. Pettit celebrated his 70th birthday on April 20. He spent 220 days in space as an Expedition 71/72 flight engineer, bringing his career total to 590 days in space during four spaceflights. Pettit and his crewmates completed 3,520 orbits of Earth over the course of their 93-million-mile journey. They also saw the arrival of six visiting spacecraft and the departure of seven.
      During his time on orbit, Pettit conducted hundreds of hours of scientific investigations, including research to enhance on-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions.
      He also spent time aboard the space station sharing his photography, often posting images to his X account. He took more than 670,000 photos during his stay.
      Learn more about International Space Station research and operations at:
      http://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Apr 23, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Humans in Space ISS Research Johnson Space Center View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying a Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 4:15 a.m. EDT on April 21 2025, on the company’s 32nd commercial resupply services mission for the agency to the International Space Station.Credit: NASA Following the successful launch of NASA’s SpaceX 32nd Commercial Resupply Services mission, new scientific experiments and supplies are bound for the International Space Station.
      The SpaceX Dragon spacecraft, carrying approximately 6,700 pounds of cargo to the orbiting laboratory for NASA, lifted off at 4:15 a.m. EDT Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Live coverage of the spacecraft’s arrival will begin at 6:45 a.m., Tuesday, April 22, on NASA+. Learn how to watch NASA content through a variety of platforms.
      The spacecraft is scheduled to autonomously dock at approximately 8:20 a.m. to the zenith, or space-facing, port of the space station’s Harmony module.
      The resupply mission will support dozens of research experiments during Expedition 73. Along with food and essential equipment for the crew, Dragon is delivering a variety of science experiments, including a demonstration of refined maneuvers for free-floating robots. Dragon also carries an enhanced air quality monitoring system that could help protect crew members on exploration missions to the Moon and Mars, and two atomic clocks to examine fundamental physics concepts, such as relativity, and test global synchronization of precision timepieces.
      These are just a sample of the hundreds of investigations conducted aboard the orbiting laboratory each year in the areas of biology and biotechnology, physical sciences, and Earth and space science. Such research benefits humanity and helps lay the groundwork for future human exploration through the agency’s Artemis campaign, which will send astronauts to the Moon to prepare for future missions to Mars.
      The Dragon spacecraft is scheduled to remain at the orbiting laboratory until May, when it will depart and return to Earth with time-sensitive research and cargo, splashing down off the coast of California.
      Learn more about the commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-spacex-crs-32/
      -end-
      Julian Coltre / Josh Finch
      Headquarters, Washington
      202-358-1100
      julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov
      Stephanie Plucinsky / Steven Siceloff
      Kennedy Space Center, Florida
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 21, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Kennedy Space Center SpaceX Commercial Resupply View the full article
  • Check out these Videos

×
×
  • Create New...