Jump to content

Launch Your Creativity with These Space Crafts!


Recommended Posts

  • Publishers
Posted

9 min read

Launch Your Creativity with These Space Crafts!

intro-collage-image.png?w=2048

In honor of the completion of our Nancy Grace Roman Space Telescope’s spacecraft — the vehicle that will maneuver the observatory to its place in space and enable it to function once there — we’re bringing you some space crafts you can complete at home!

Join us for a journey across the cosmos, starting right in your own pantry. 

slime-card.png?w=1800

Stardust Slime

Did you know that most of your household ingredients are made of stardust? And so are you! Nearly every naturally occurring element was forged by living or dying stars. 
Take the baking soda in this slime recipe, for example. It’s made up of sodium, hydrogen, carbon, and oxygen. The hydrogen was made during the big bang, right at the start of the universe. But the other three elements were created by dying stars. So when you show your friends your space-y slime, you can tell them it’s literally made of stardust!

Instructions:

  • 1 5 oz. bottle clear glue
  • ½ tablespoon baking soda
  • food coloring
  • 1 tablespoon contact lens solution
  • 1 tablespoon glitter

Directions:

Pour the glue into a bowl

Mix in the baking soda

Add food coloring (we recommend blue, purple, black, or a combination).

Add contact lens solution and use your hands to work it through the slime. It will initially be very sticky! You can add a little extra contact lens solution to make it firmer and less goopy.

Add glitter a teaspoon at a time, using as much or as little as you like!

sucker-card.png?w=1800

Space Suckers

Now let’s travel a little farther, past Earth’s atmosphere and into the realm of space. That’s where Roman is headed once the whole observatory is complete and passes all of its testing!

Roman will scan the skies from space to make it extra sensitive to faint infrared light. It’s harder to see from the ground because our atmosphere scatters and absorbs infrared radiation, which obscures observations. 
Some astronauts have reported that space smells metallic or like gunpowder, but don’t worry — you can choose a more pleasant flavor for your space suckers!

Ingredients

  • 2 cups sugar
  • 2/3 cup light corn syrup
  • 2/3 cup water
  • gel food coloring
  • flavor oil
  • edible glitter dust
  • sucker sticks
  • sucker mold

Directions

Prep the molds by adding sucker sticks.

Mix sugar, light corn syrup, and water together in a pot on the stove over medium heat.

Turn it up to medium-high heat and let it boil without stirring for about 6 minutes.

Quickly stir in the flavor oil of your choice, gel food coloring, plus as much edible glitter as you like (reserve some for dusting).

Carefully but quickly spoon the mixture into the molds. Spin the sticks so they’re evenly coated. Add a sprinkle of reserved edible glitter and allow to harden.” An image on the left side of the card shows the result: a deep purple sucker with silver glitter embedded.

fizzy-planet-card.png?w=1800

Fizzy Planets

As we move toward our outer solar system, we’ll pass the orbits of the gas giant planets Jupiter and Saturn. While they don’t actually fizz like the mini planets you can make at home, they do have some pretty exotic chemistry that stems from their extreme pressures, temperatures, and compositions. For example, the hydrogen in their cores behaves like liquid metal instead of a gas. It even conducts electricity!

Roman will use multiple planet-spotting techniques –– microlensing, transits, and direct imaging –– to help us study a variety of worlds, including both gas giants and rocky worlds similar to our own.

Ingredients

  • 3 cups baking soda
  • ¾ cup water
  • food coloring
  • ¼ cup vinegar

Directions

Mix a few drops of food coloring into ¼ cup of water and pour into a bowl with 1 cup of baking soda.

Repeat step one two more times using different colors.

Scoop together bits from each mixture to form small balls. Add an extra splash of water to any mixture that’s too crumbly.

Douse the balls with vinegar using an eye dropper or teaspoon and watch them fizz!

marshmallow-constellation-card-1.png?w=1

Marshmallow Constellations

As we venture farther out into space, we’ll reach some familiar stars! Constellations are groups of stars that appear close together in the sky as seen from Earth. But if you actually journeyed out to them, you might be surprised to discover that they’re often super far apart from each other!

Though constellations aren’t made of stars that are actually bound together in any way, they can still be useful for referencing a cosmic object’s location in the sky. For example, you can use a pair of binoculars or a telescope to take a look at the nebula found beneath Orion’s Belt, marked by the glitter patch in the recipe card above! You can find the constellation printables here.

Supplies

  • toothpicks or mini pretzel sticks
  • mini marshmallows
  • constellation printables
  • scissors

Directions

Attach marshmallows to toothpicks or pretzel sticks using the constellation cards as a guide. Carefully trim toothpicks or pretzel sticks as needed using scissors.

bath-bomb-card.png?w=1800

Black Hole Bath Bombs

Black holes –– objects with such strong gravity that not even light can escape their clutches –– lurk unseen throughout our galaxy. Stray too close to one and you’re in for a wild ride! But they aren’t cosmic vacuum cleaners, despite what you may have grown to believe. Just keep your distance and they’ll affect you the same way as any other object of the same mass.
Astronomers have found dozens of black holes in our galaxy by seeing how their gravity affects nearby objects. But there may be 100 million more that lack a visible companion to signal their presence. Roman will find some of these solitary black holes by seeing how their gravity focuses the light from farther stars.

Ingredients

  • 1 cup baking soda
  • ½ cup citric acid
  • ½ cup cornstarch
  • 2 tablespoons coconut oil
  • black food coloring
  • optional: 2 teaspoons essential oil for scent
  • optional: ½ cup Epsom salt

Directions

Mix the baking soda, citric acid, cornstarch, and Epsom salt (optional) together in a bowl.

In a separate bowl, mix the coconut oil, food coloring, and essential oil (optional).

Pour the liquid mixture into the dry mixture slowly while whisking it all together. Add a couple tiny splashes of water and whisk it in quickly.

Tightly press the mixture into round molds. Leave them for a few hours and then they’ll be ready to use!

galaxy-jar-card.png?w=1800

Galaxy in a Jar

Now let’s go so far we can see our Milky Way galaxy from the outside — something many astronomers probably wish they could do at times! 
Sort of like how Earth’s atmosphere can affect our view of space, dust in our galaxy can get in the way, too. That makes it easier to study other galaxies than our own in some ways! Roman’s combination of a large field of view, crisp resolution, and the ability to peer through dust make it the ideal instrument to study the Milky Way. The mission will build on previous observations to generate the most detailed map of our galaxy to date.

Ingredients

  • hot water
  • glitter glue
  • glitter
  • super glue (optional)

Directions

Mostly fill a 16 oz. glass jar with very hot water, leaving a couple inches of space at the top.

Add at least ¼ cup of glitter glue in colors of your choosing.

Add loose glitter a couple of teaspoons at a time, using as much or as little as you like! You can use a combination of fine and chunky glitter for an extended swirling effect.

Optional: Super glue the lid to the jar.

Once the water has sufficiently cooled, give the jar a gentle shake to see your galaxy swirl!

NOTE: Closely monitor children to ensure the jar doesn’t break.

pinwheel-card.png?w=1800

Pinwheel Galaxy Pinwheels

As we continue our cosmic excursion, you’ll see other galaxies sprinkled throughout space. Many are spiral galaxies, like our Milky Way and the Pinwheel Galaxy from the craft described above. (You can find more detailed instructions and the printout you’ll need here.)

But galaxies come in other varieties, too. Through Roman’s wide, deep surveys, astronomers are sure to see every type. Scientists will study the shapes and distances of billions of galaxies to help us understand dark energy — a mysterious pressure that’s speeding up the universe’s expansion. 

Supplies

  • Pinwheel Galaxy printout
  • pipe cleaner or chopsticks
  • scissors
  • popsicle stick
  • single hole puncher

Directions

Cut out the hexagonal shape for your galaxy pinwheel.

Make cuts down the white lines.

Punch holes in the white dots: six around the edges and one in the center.

Turn the paper so it’s face-down.

Thread a pipe cleaner through the center hole.

Going around the circle, fold each flap so the pipe cleaner goes through the hole.

Tie a knot in the pipe cleaner to secure the front of the pinwheel. Wrap the other side of the pipe cleaner around a popsicle stick.

universe-dough-card.png?w=1800

Universe Dough

We’re nearing the end of our voyage, having traveled so far through space and time that we can take in the whole universe! We’ve learned a lot about it, but there are still plenty of open questions. Some of its biggest components, dark energy and dark matter (invisible matter seen only via its gravitational influence), are huge mysteries Roman will explore. And since the observatory will reveal such large, deep swaths of space, who knows what new puzzles we’ll soon uncover!

  • Ingredients
  • 1 cup flour
  • ½ cup salt
  • 1 tablespoon vegetable oil
  • ½ cup hot water
  • food coloring
  • glitter

Directions

Mix flour and salt in a bowl.

Add several drops of food coloring to hot water, and stir into dry mixture along with the oil.

Add as much glitter as you like and knead it into the dough for several minutes.

Add water or flour as needed to adjust the consistency.

Still feeling crafty? Try your hand at these 3D and paper spacecraft models. If you’re eager for a more advanced space craft, check out these embroidery creations for inspiration! Or if you’re ready for a break, take a virtual tour of an interactive version of the Roman Space Telescope here.

Share

Details

Last Updated
Sep 27, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected SpaceX of Starbase, Texas, to provide launch services for the Near-Earth Object (NEO) Surveyor mission, which will detect and observe asteroids and comets that could potentially pose an impact threat to Earth.
      The firm fixed price launch service task order is being awarded under the indefinite delivery/indefinite quantity NASA Launch Services II contract. The total cost to NASA for the launch service is approximately $100 million, which includes the launch service and other mission related costs. The NEO Surveyor mission is targeted to launch no earlier than September 2027 on a SpaceX Falcon 9 rocket from Florida.
      The NEO Surveyor mission consists of a single scientific instrument: an almost 20-inch (50-centimeter) diameter telescope that will operate in two heat-sensing infrared wavelengths. It will be capable of detecting both bright and dark asteroids, the latter being the most difficult type to find with existing assets. The space telescope is designed to help advance NASA’s planetary defense efforts to discover and characterize most of the potentially hazardous asteroids and comets that come within 30 million miles of Earth’s orbit. These are collectively known as near-Earth objects, or NEOs.
      The mission will carry out a five-year baseline survey to find at least two-thirds of the unknown NEOs larger than 140 meters (460 feet). These are the objects large enough to cause major regional damage in the event of an Earth impact. By using two heat-sensitive infrared imaging channels, the telescope can also make more accurate measurements of the sizes of NEOs and gain information about their composition, shapes, rotational states, and orbits.
      The mission is tasked by NASA’s Planetary Science Division within the agency’s Science Mission Directorate at NASA Headquarters in Washington. Program oversight is provided by NASA’s Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center in Huntsville, Alabama, provides program management for NEO Surveyor. The project is being developed by NASA’s Jet Propulsion Laboratory in Southern California.
      Multiple aerospace and engineering companies are contracted to build the spacecraft and its instrumentation, including BAE Systems SMS (Space & Mission Systems), Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, will support operations, and the Infrared Processing and Analysis Center at the California Institute of Technology (Caltech) in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA. Mission team leadership includes the University of California, Los Angeles. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch service.
      For more information about NEO Surveyor, visit:
      https://science.nasa.gov/mission/neo-surveyor/
      -end-
      Tiernan Doyle / Joshua Finch
      Headquarters, Washington
      202-358-1600 / 202-358-1100
      tiernan.doyle@nasa.gov / joshua.a.finch@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated Feb 21, 2025 LocationNASA Headquarters Related Terms
      Kennedy Space Center Launch Services Office Launch Services Program NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Coordination Office Planetary Science Division Science Mission Directorate Space Operations Mission Directorate View the full article
    • By NASA
      NASA Expert Answers Your Questions About Asteroid 2024 YR4
    • By NASA
      Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has awarded a delivery order to BAE Systems Space & Mission Systems Inc. of Boulder, Colorado, to build spacecraft for the Lagrange 1 Series project as a part of NOAA’s Space Weather Next program.
      The award made under the Rapid Spacecraft Acquisition IV contract, has a total value of approximately $230.6 million with the period of performance running from February 2025 to February 2035. The work will take place at the awardee’s facility in Boulder.
      The firm-fixed-price delivery order covers all phases of the Lagrange 1 Series project operations including developing up to two spacecraft, instrument integration, satellite-level testing, training and support for the spacecraft flight operations team, and mission operations support. Rapid IV contracts serve as a fast and flexible means for the government to acquire spacecraft and related components, equipment, and services in support of NASA missions and other federal government agencies.
      The Space Weather Next program will maintain and extend space weather observations from various orbitally stable points such as Lagrange 1, which is about a million miles from Earth. The first Space Weather Next Lagrange 1 Series launch, planned in 2029, will be the first observatory under the program and will provide continuity of real-time coronal imagery and upstream solar wind measurements. Space Weather Next will provide uninterrupted data continuity when NOAA’s Space Weather Follow On Lagrange 1 mission comes to its end of operations.
      Observations of the Sun and the near-Earth space environment are important to protecting our technological infrastructure both on the ground and in space. The spacecraft will provide critical data to NOAA’s Space Weather Prediction Center which issues forecasts, warnings and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
      NASA and NOAA oversee the development, launch, testing, and operation of all the satellites in the Lagrange 1 Series project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Karen Fox/Liz Vlock
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      Share
      Details
      Last Updated Feb 21, 2025 LocationNASA Headquarters Related Terms
      Space Weather Heliophysics Joint Agency Satellite Division NOAA (National Oceanic and Atmospheric Administration) Science & Research Science Mission Directorate View the full article
    • By NASA
      Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Carrying NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the Intuitive Machines IM-2 mission is targeted to launch no earlier than Wednesday, Feb. 26. The mission will lift off on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

      Live launch coverage will air on NASA+ with prelaunch events starting Tuesday, Feb. 25. Learn how to watch NASA content through a variety of platforms, including social media. Follow all events at:
      https://www.nasa.gov/live
      After the launch, Intuitive Machines’ lunar lander, Athena, will spend approximately one week in transit to the Moon before landing on the lunar surface no earlier than Thursday, March 6. The lander will carry NASA science investigations and technology demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 

      Among the items on Intuitive Machines’ lander, the IM-2 mission will be one of the first on-site demonstrations of resource use on the Moon. A drill and mass spectrometer will measure the potential presence of volatiles or gases from lunar soil in Mons Mouton, a lunar plateau in the Moon’s South Pole. In addition, a passive Laser Retroreflector Array (LRA) on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone that can hop across the lunar surface.
      Launching as a rideshare with the IM-2 delivery, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.

      The deadline has passed for media accreditation for in-person coverage of this launch. The agency’s media accreditation policy is available online. More information about media accreditation is available by emailing: ksc-media-accreditat@mail.nasa.gov.

      Full coverage of this mission is as follows (all times Eastern):

      Tuesday, Feb. 25

      11 a.m. – Lunar science and technology media teleconference with the following participants:
      Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters Niki Werkheiser, director, technology maturation, Space Technology Mission Directorate, NASA Headquarters Jackie Quinn, Polar Resources Ice Mining Experiment 1 (PRIME-1) project manager, NASA Kennedy Daniel Cremons, LRA deputy principal investigator, NASA’s Goddard Space Flight Center Bethany Ehlmann, Lunar Trailblazer principal investigator, Caltech Trent Martin, senior vice president, space systems, Intuitive Machines Thierry Klein, president, Bell Labs Solution Research, Nokia Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Tuesday, Feb. 25, at: ksc-newsroom@mail.nasa.gov.

      Wednesday, Feb. 26


      11:30 a.m. – Lunar delivery readiness media teleconference with the following participants:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters Trent Martin, senior vice president, space systems, Intuitive Machines William Gerstenmaier, vice president, build and flight reliability, SpaceX Melody Lovin, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Wednesday, Feb. 26, at: ksc-newsroom@mail.nasa.gov.

      Launch coverage will begin on NASA+ approximately 45 minutes before liftoff. A specific time will be shared the week of Feb. 24.

      NASA Launch Coverage
      Audio only of the media teleconferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, the full mission broadcast can be heard on -1220 and -1240, while the countdown net only can be heard on -7135 beginning approximately one hour before the mission broadcast begins.

      On launch day, a “tech feed” of the launch without NASA TV commentary will be carried on the NASA TV media channel.

      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning Feb. 26, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468.

      NASA Virtual Guests for Launch
      Members of the public can register to attend this launch virtually. Registrants will receive mission updates and activities by email, including curated mission resources, schedule updates, and a virtual guest passport stamp following a successful launch. Print your passport and get ready to add your stamp!

      Watch, Engage on Social Media
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:

      X: @NASA, @NASAKennedy, @NASAArtemis, @NASAMoon

      Facebook: NASA, NASAKennedy, NASAArtemis

      Instagram: @NASA, @NASAKennedy, @NASAArtemis

      Coverage en Español
      Did you know NASA has a Spanish section called NASA en español? Check out NASA en español on X, Instagram, Facebook, and YouTube for additional mission coverage.

      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.

      For more information about the agency’s CLPS initiative, see:
      https://www.nasa.gov/clps
      -end-
      Karen Fox / Jasmine Hopkins
      Headquarters, Washington
      301-286-6284 / 321-432-4624
      karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov

      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Feb 21, 2025 Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) Science Mission Directorate Space Technology Mission Directorate View the full article
    • By NASA
      Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit. Thales Alenia Space Through the Artemis campaign, NASA will send astronauts on missions to and around the Moon. The agency and its international partners report progress continues on Gateway, the first space station that will permanently orbit the Moon, after visiting the Thales Alenia Space facility in Turin, Italy, where initial fabrication for one of two Gateway habitation modules is nearing completion.
      Leaders from NASA, ESA (European Space Agency), and the Italian Space Agency, as well as industry representatives from Northrop Grumman and Thales Alenia Space, were in Turin to assess Gateway’s HALO (Habitation and Logistics Outpost) module before its primary structure is shipped from Italy to Northrop Grumman’s Gilbert, Arizona site in March. Following final outfitting and verification testing, the module will be integrated with the Power and Propulsion Element at NASA’s Kennedy Space Center in Florida.
      “Building and testing hardware for Gateway is truly an international collaboration,” said Jon Olansen, manager, Gateway Program, at NASA’s Johnson Space Center in Houston. “We’re excited to celebrate this major flight hardware milestone, and this is just the beginning – there’s impressive and important progress taking shape with our partners around the globe, united by our shared desire to expand human exploration of our solar system while advancing scientific discovery.”
      Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit.Thales Alenia Space To ensure all flight hardware is ready to support Artemis IV — the first crewed mission to Gateway – NASA is targeting the launch of HALO and the Power and Propulsion Element no later than December 2027. These integrated modules will launch aboard a SpaceX Falcon Heavy rocket and spend about a year traveling uncrewed to lunar orbit, while providing scientific data on solar and deep space radiation during transit.
      Launching atop HALO will be ESA’s Lunar Link communication system, which will provide high-speed communication between the Moon and Gateway. The system is undergoing testing at another Thales Alenia Space facility in Cannes, France.
      Once in lunar orbit, Gateway will continue scientific observations while awaiting the arrival of Artemis IV astronauts aboard an Orion spacecraft which will deliver and dock Gateway’s second pressurized habitable module, the ESA-led Lunar I-Hab. Thales Alenia Space, ESA’s primary contractor for the Lunar I-Hab and Lunar View refueling module, has begun production of the Lunar I-Hab, and design of Lunar View in Turin.
      Teams from NASA and ESA (European Space Agency), including NASA astronaut Stan Love (far right) and ESA astronaut Luca Parmitano (far left) help conduct human factors testing inside a mockup of Gateway’s Lunar I-Hab module.Thales Alenia Space Northrop Grumman and its subcontractor, Thales Alenia Space, completed welding of HALO in 2024, and the module successfully progressed through pressure and stress tests to ensure its suitability for the harsh environment of deep space.
      Maxar Space Systems is assembling the Power and Propulsion Element, which will make Gateway the most powerful solar electric propulsion spacecraft ever flown. Major progress in 2024 included installation of Xenon and chemical propulsion fuel tanks, and qualification of the largest roll-out solar arrays ever built. NASA and its partners will complete propulsion element assembly, and acceptance and verification testing of next-generation electric propulsion thrusters this year.
      The main bus of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems SpaceX will provide both the Starship human landing system that will land astronauts on the lunar surface during NASA’s Artemis III mission and ferry astronauts from Gateway to the lunar South Pole region during Artemis IV, as well as provide logistics spacecraft to support crewed missions.
      NASA also has selected Blue Origin to develop Blue Moon, the human landing system for Artemis V, as well as logistics spacecraft for future Artemis missions. Having two distinct lunar landing designs provides flexibility and supports a regular cadence of Moon landings in preparation for future missions to Mars.
      CSA (Canadian Space Agency) is developing Canadarm3, an advanced robotics system, and JAXA (Japan Aerospace Exploration Agency) is designing and testing Lunar I-Hab’s vital life support systems, batteries, and a resupply and logistics vehicle called HTV-XG.
      NASA’s newest Gateway partner, the Mohammad Bin Rashid Space Centre (MBRSC) of the United Arab Emirates, kicked off early design for the Gateway Crew and Science Airlock that will be delivered on Artemis VI. The selection of Thales Alenia Space as its airlock prime contractor was announced by MBRSC on Feb. 4.
      Development continues to advance on three radiation-focused initial science investigations aboard Gateway. These payloads will help scientists better understand unpredictable space weather from the Sun and galactic cosmic rays that will affect astronauts and equipment during Artemis missions to the Moon and beyond.
      The Gateway lunar space station is a multi-purpose platform that offers capabilities for long-term exploration in deep space in support of NASA’s Artemis campaign and Moon to Mars objectives. Gateway will feature docking ports for a variety of visiting spacecraft, as well as space for crew to live, work, and prepare for lunar surface missions. As a testbed for future journeys to Mars, continuous investigations aboard Gateway will occur with and without crew to better understand the long-term effects of deep space radiation on vehicle systems and the human body as well as test and operate next generation spacecraft systems that will be necessary to send humans to Mars.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 21, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station Humans in Space Johnson Space Center Explore More
      2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
      A key element of the Gateway lunar space station has entered the cleanroom for final…
      Article 1 week ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 1 month ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 3 months ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
  • Check out these Videos

×
×
  • Create New...