Jump to content

Sentinel-2C captures stunning glimpse of the Moon


Recommended Posts

On 20 September, the Copernicus Sentinel-2C satellite captured its first stunning image of the Moon, achieved by rolling the satellite sideways in a unique manoeuvre. Although Sentinel-2C is primarily designed for Earth observation, this image – intended for calibration and cross-mission comparisons – exceeded expectations. Image: On 20 September, the Copernicus Sentinel-2C satellite captured its first stunning image of the Moon, achieved by rolling the satellite sideways in a unique manoeuvre. Although Sentinel-2C is primarily designed for Earth observation, this image – intended for calibration and cross-mission comparisons – exceeded expectations.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hubble Space Telescope Home Hubble Captures Steller… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Captures Steller Nurseries in a Majestic Spiral
      This NASA/ESA Hubble Space Telescope image features the spiral galaxy IC 1954. ESA/Hubble & NASA, D. Thilker, J. Lee and the PHANGS-HST Team This image from the NASA/ESA Hubble Space Telescope features the spiral galaxy IC 1954, located 45 million light-years from Earth in the constellation Horologium. It sports a glowing bar in its core, majestically winding spiral arms, and clouds of dark dust across it. Numerous glowing, pink spots across the disc of the galaxy are H-alpha regions that offer astronomers a view of star-forming nebulae, which are prominent emitters of red, H-alpha light. Some astronomers theorize that the galaxy’s ‘bar’ is actually an energetic star-forming region that just happens to lie over the galactic center.
      The data featured in this image come from a program that extends the cooperation among multiple observatories: Hubble, the infrared James Webb Space Telescope, and the Atacama Large Millimeter/submillimeter Array, a ground-based radio telescope. By surveying IC 1954 and over 50 other nearby galaxies in radio, infrared, optical, and ultraviolet light, astronomers aim to fully trace and reconstruct the path matter takes through stars, mapping the interstellar gas and dust in each galaxy. Hubble’s observing capabilities form an important part of this survey: it can capture younger stars and star clusters when they are brightest at ultraviolet and optical wavelengths, and its H-alpha filter effectively tracks emission from nebulae. The resulting dataset will form a treasure trove of research on the evolution of stars in galaxies, which Webb can build upon as it continues its science operations into the future.

      Download this image

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Sep 26, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Hubble Space Telescope Spiral Galaxies Stars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Science Behind the Discoveries



      Universe Uncovered


      View the full article
    • By NASA
      On Sept. 9 and 10, scientists and engineers tested NASA’s LEMS (Lunar Environment Monitoring Station) instrument suite in a “sandbox” of simulated Moon regolith at the Florida Space Institute’s Exolith Lab at the University of Central Florida in Orlando.





      Lunar regolith is a dusty, soil-like material that coats the Moon’s surface, and researchers wanted to observe how the material would interact with LEMS’s hardware, which is being developed to fly to the Moon with Artemis III astronauts in late 2026.
      Designed and built at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, LEMS is one of three science payloads chosen for development for Artemis III, which will be the first mission to land astronauts on the lunar surface since 1972.
      The LEMS instrument package can operate both day and night. It will carry two University of Arizona-built seismometers to the surface to perform long-term monitoring for moonquakes and meteorite impacts.
      Image credits: NASA/UCF/University of Arizona

      Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert


      NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training

      View the full article
    • By NASA
      NASA Science Live: Could Jupiter's Moon Europa Support Life?
    • By NASA
      4 Min Read ­­Robotic Moving ‘Crew’ Preps for Work on Moon 
      The LANDO system works by using onboard sensors to scan encoded markers (similar to a QR code) on a payload, which will reveal critical information about its position and orientation relative to the LSMS. This information is used to calculate where the robotic arm exists in space and plan the motion path to pick up and move payloads. Credits: NASA/David C. Bowman As NASA moves forward with efforts to establish a long-term presence on the Moon as part of the Artemis campaign, safely moving cargo from landers to the lunar surface is a crucial capability.  
      Whether the cargo, also known as payloads, are small scientific experiments or large technology to build infrastructure, there won’t be a crew on the Moon to do all the work, which is where robots and new software come in. 
      A team at NASA’s Langley Research Center in Hampton, Virginia, spent the last couple of years infusing existing robotic hardware with a software system that makes the robot operate autonomously. Earlier this month, that team, led by researcher Dr. Julia Cline of NASA Langley’s Research Directorate, ran demonstrations of their system called LANDO (Lightweight Surface Manipulation System AutoNomy capabilities Development for surface Operations and construction). 
      LANDO prepares to move its payload to a safe spot on the simulated lunar surface.NASA/David C. Bowman The demos took place in an area set up to look like the Moon’s surface, complete with fake boulders and a model lunar lander. During the first demo, the team placed the payload, a small metal box, on a black pedestal. The robotic arm stretched over the scene, with its dangling hook poised to grasp the box.
      As the team huddled nearby around computers, sensors on the arm scanned the surrounding area, looking for the metal box, which was outfitted with encoded markers — similar to QR codes — that revealed critical information about its position and orientation relative to the arm. Using a graphic user interface, team member Amelia Scott also chose a location for LANDO to place the payload.
      During a series of slow, methodical movements, LANDO transports a payload from a pedestal to a simulated lunar surface.NASA/Angelique Herring After locating the metal box and computing a safe path to move it, the arm began a slow, deliberate movement toward its target, coming in at a precise angle that allowed the hook to select a capture point on the payload. Once engaged, the arm slowly lifted the payload from the pedestal, moved right, and gently lowered the payload to the simulated lunar surface. With the payload safely on the surface, the system carefully disengaged the hook from the capture point and returned to its home position. The entire process took a few minutes. Shortly after the first demo was complete, the team did it again, but with a small model rover.  
      “What we demonstrated was the repeatability of the system,moving multiple payloads to show that we’re consistently and safely able to get them from point A to point B,” said Cline. “We also demonstrated the Lightweight Surface Manipulation System hardware – the ability to control the system through space and plan a path around obstacles.” 
      The system’s successful performance during the September demonstration marks the end of this project, but the first step in developing a larger system to go to the Moon. 
      Now that the team has determined how the system should function, Cline believes the next natural step would be to develop and test an engineering design unit on one of the landers going to the Moon as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative. The team is actively looking for industry partners who want to commercialize the capability. 
      Through CLPS, NASA is working with commercial companies to deliver science and technology demonstrations to the Moon.  
      The work behind LANDO could be directly infused into much larger versions of a lightweight surface manipulation system.
      The LANDO team, back row, left to right: Dominic Bisio, Joshua Moser, Walter Waltz, Jacob Martin, Ryan Bowers, Brace White and Iok Wong. And kneeling, left to right: Amelia Scott, Matthew Vaughan, Julia Cline, Jessica Friz and Javier Puig-Navarro.NASA/Ryan Hill “The overall control system we’ve developed would apply to larger versions of the technology,” said Cline. “When you think about the payloads we’ll have to offload for on the Moon, like habitats and surface power systems, this is the kind of general-purpose tool that could be used for those tasks.” 
      The LANDO system was funded through the Early Career Initiative in NASA’s Space Technology Mission Directorate (STMD). Through STMD, NASA supports and develops transformative space technologies to enable future missions. As NASA embarks on its next era of exploration with the Artemis campaign, STMD is helping advance technologies, developing new systems, and testing capabilities at the Moon that will be critical for crewed missions to Mars. 
      Explore More
      4 min read NASA Expands Small Business, Industry Engagement Resources
      Article 2 days ago 4 min read NASA’s Hidden Figures Honored with Congressional Gold Medals
      Article 6 days ago 3 min read Measuring Moon Dust to Fight Air Pollution
      Article 1 week ago Share
      Details
      Last Updated Sep 25, 2024 EditorJoe AtkinsonLocationNASA Langley Research Center Related Terms
      Langley Research Center Space Technology Mission Directorate View the full article
    • By NASA
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara won the $1 million grand prize in NASA’s Watts on the Moon Challenge. Their team developed a low-mass, high efficiency cable and featured energy storage batteries on both ends of their power transmission and energy storage system. Credit: NASA/GRC/Sara Lowthian-Hanna NASA has awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the agency’s Watts on the Moon Challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish long-term human presence on the Moon.
      This two-phase competition has challenged U.S. innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The final phase of the challenge concluded with a technology showcase and winners’ announcement ceremony Friday at Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland.
      “Congratulations to the finalist teams for developing impactful power solutions in support of NASA’s goal to sustain human presence on the Moon,” said Kim Krome-Sieja, acting program manager for NASA Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These technologies seek to improve our ability to explore and make discoveries in space and could have implications for improving power systems on Earth.”
      The winning teams are:
      First prize ($1 million): H.E.L.P.S.  (High Efficiency Long-Range Power Solution) of Santa Barbara, California Second prize ($500,000): Orbital Mining Corporation of Golden, Colorado Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The simulation required the teams’ power systems to demonstrate operability over six hours of solar daylight and 18 hours of darkness with the user three kilometers (nearly two miles) away from the power source.
      During this competition stage, judges scored the finalists’ solutions based on a Total Effective System Mass (TESM) calculation, which measures the effectiveness of the system relative to its size and weight – or mass – and the total energy provided by the power source. The highest-performing solution was identified based on having the lowest TESM value – imitating the challenges that space missions face when attempting to reduce mass while meeting the mission’s electrical power needs.
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara, won the grand prize for their hardware solution, which had the lowest mass and highest efficiency of all competitors. The technology also featured a special cable operating at 800 volts and an innovative use of energy storage batteries on both ends of the transmission system. They also employed a variable radiation shield to switch between conserving heat during cold periods and disposing of excess heat during high power modes. The final 48-hour test proved their system design effectively met the power transmission, energy storage, and thermal challenges in the final phase of competition.
      Orbital Mining Corporation, a space technology startup, received the second prize for its hardware solution that also successfully completed the 48-hour testwith high performance. They employed a high-voltage converter system coupled with a low-mass cable and a lithium-ion battery.
      “The energy solutions developed by the challenge teams are poised to address NASA’s space technology priorities,” said Amy Kaminski, program executive for Prizes, Challenges, and Crowdsourcing in NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “These solutions support NASA’s recently ranked civil space shortfalls, including in the top category of surviving and operating through the lunar night.”
      During the technology showcase and winners’ announcement ceremony, NASA experts, media, and members of the public gathered to see the finalist teams’ technologies and hear perspectives from the teams’ participation in the challenge. After the winners were announced, event attendees were also welcome to meet NASA astronaut Stephen Bowen.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall Space Flight Center manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA contracted HeroX to support the administration of this challenge.
      For more information on NASA’s Watts on the Moon Challenge, visit:
      https://www.nasa.gov/wattson
      -end-

      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034
      lane.e.figueroa@nasa.gov 
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-469-9726
      Brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Sep 20, 2024 LocationGlenn Research Center Related Terms
      Science Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...