Jump to content

NASA’s Hubble Finds that a Black Hole Beam Promotes Stellar Eruptions


Recommended Posts

  • Publishers
Posted

6 min read

NASA’s Hubble Finds that a Black Hole Beam Promotes Stellar Eruptions

An artist's concept looks down into the core of the galaxy M87, which is just left of center and appears as a large blue dot. A bright blue-white, narrow and linear jet of plasma transects the illustration from center left to upper right. It begins at the source of the jet, the galaxy’s black hole, which is surrounded by a blue spiral of material. At lower right is a red giant star that is far from the black hole and close to the viewer. A bridge of glowing gas links the star to a smaller white dwarf star companion immediately to its left. Engorged with infalling hydrogen from the red giant star, the smaller star exploded in a blue-white flash, which looks like numerous diffraction spikes emitted in all directions. Thousands of stars are in the background.
This is an artist’s concept looking down into the core of the giant elliptical galaxy M87. A supermassive black hole ejects a 3,000-light-year-long jet of plasma, traveling at nearly the speed of light. In the foreground, to the right is a binary star system. The system is far from the black hole, but in the vicinity of the jet. In the system an aging, swelled-up, normal star spills hydrogen onto a burned-out white dwarf companion star. As the hydrogen accumulates on the surface of the dwarf, it reaches a tipping point where it explodes like a hydrogen bomb. Novae frequently pop-off throughout the giant galaxy of 1 trillion stars, but those near the jet seem to explode more frequently. So far, it’s anybody’s guess why black hole jets enhance the rate of nova eruptions.
NASA, ESA, Joseph Olmsted (STScI)

In a surprise finding, astronomers using NASA’s Hubble Space Telescope have discovered that the blowtorch-like jet from a supermassive black hole at the core of a huge galaxy seems to cause stars to erupt along its trajectory. The stars, called novae, are not caught inside the jet, but apparently in a dangerous neighborhood nearby.

The finding is confounding researchers searching for an explanation. “We don’t know what’s going on, but it’s just a very exciting finding,” said lead author Alec Lessing of Stanford University. “This means there’s something missing from our understanding of how black hole jets interact with their surroundings.”

A nova erupts in a double-star system where an aging, swelled-up, normal star spills hydrogen onto a burned-out white dwarf companion star. When the dwarf has tanked up a mile-deep surface layer of hydrogen that layer explodes like a giant nuclear bomb. The white dwarf isn’t destroyed by the nova eruption, which ejects its surface layer and then goes back to siphoning fuel from its companion, and the nova-outburst cycle starts over again.

Hubble found twice as many novae going off near the jet as elsewhere in the giant galaxy during the surveyed time period. The jet is launched by a 6.5-billion-solar-mass central black hole surrounded by a disk of swirling matter. The black hole, engorged with infalling matter, launches a 3,000-light-year-long jet of plasma blazing through space at nearly the speed of light. Anything caught in the energetic beam would be sizzled. But being near its blistering outflow is apparently also risky, according to the new Hubble findings.

A Hubble image of galaxy M87, which resembles a translucent, fuzzy white cotton ball. The brightness decreases gradually out in all directions from a bright white point of light at the center. A wavy blue-white jet of material extends from the point-like core outward to the upper right, about halfway across the galaxy. Stars speckle the background.
A Hubble Space Telescope image of the giant galaxy M87 shows a 3,000-light-year-long jet of plasma blasting from the galaxy’s 6.5-billion-solar-mass central black hole. The blowtorch-like jet seems to cause stars to erupt along its trajectory. These novae are not caught inside the jet, but are apparently in a dangerous neighborhood nearby. During a recent 9-month survey, astronomers using Hubble found twice as many of these novae going off near the jet as elsewhere in the galaxy. The galaxy is the home of several trillion stars and thousands of star-like globular star clusters.
NASA, ESA, STScI, Alec Lessing (Stanford University), Mike Shara (AMNH); Acknowledgment: Edward Baltz (Stanford University); Image Processing: Joseph DePasquale (STScI)

The finding of twice as many novae near the jet implies that there are twice as many nova-forming double-star systems near the jet or that these systems erupt twice as often as similar systems elsewhere in the galaxy.

“There’s something that the jet is doing to the star systems that wander into the surrounding neighborhood. Maybe the jet somehow snowplows hydrogen fuel onto the white dwarfs, causing them to erupt more frequently,” said Lessing. “But it’s not clear that it’s a physical pushing. It could be the effect of the pressure of the light emanating from the jet. When you deliver hydrogen faster, you get eruptions faster. Something might be doubling the mass transfer rate onto the white dwarfs near the jet.” Another idea the researchers considered is that the jet is heating the dwarf’s companion star, causing it to overflow further and dump more hydrogen onto the dwarf. However, the researchers calculated that this heating is not nearly large enough to have this effect.

“We’re not the first people who’ve said that it looks like there’s more activity going on around the M87 jet,” said co-investigator Michael Shara of the American Museum of Natural History in New York City. “But Hubble has shown this enhanced activity with far more examples and statistical significance than we ever had before.”

Shortly after Hubble’s launch in 1990, astronomers used its first-generation Faint Object Camera (FOC) to peer into the center of M87 where the monster black hole lurks. They noted that unusual things were happening around the black hole. Almost every time Hubble looked, astronomers saw bluish “transient events” that could be evidence for novae popping off like camera flashes from nearby paparazzi. But the FOC’s view was so narrow that Hubble astronomers couldn’t look away from the jet to compare with the near-jet region. For over two decades, the results remained mysteriously tantalizing.

Compelling evidence for the jet’s influence on the stars of the host galaxy was collected over a nine-month interval of Hubble observing with newer, wider-view cameras to count the erupting novae. This was a challenge for the telescope’s observing schedule because it required revisiting M87 precisely every five days for another snapshot. Adding up all of the M87 images led to the deepest images of M87 that have ever been taken.

In a surprise finding, astronomers, using NASA’s Hubble Space Telescope have discovered that the jet from a supermassive black hole at the core of M87, a huge galaxy 54 million light years away, seems to cause stars to erupt along its trajectory.
NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris

Hubble found 94 novae in the one-third of M87 that its camera can encompass. “The jet was not the only thing that we were looking at — we were looking at the entire inner galaxy. Once you plotted all known novae on top of M87 you didn’t need statistics to convince yourself that there is an excess of novae along the jet. This is not rocket science. We made the discovery simply by looking at the images. And while we were really surprised, our statistical analyses of the data confirmed what we clearly saw,” said Shara.

This accomplishment is entirely due to Hubble’s unique capabilities. Ground-based telescope images do not have the clarity to see novae deep inside M87. They cannot resolve stars or stellar eruptions close to the galaxy’s core because the black hole’s surroundings are far too bright. Only Hubble can detect novae against the bright M87 background.

Novae are remarkably common in the universe. One nova erupts somewhere in M87 every day. But since there are at least 100 billion galaxies throughout the visible universe, around 1 million novae erupt every second somewhere out there.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Explore More:

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, MD
claire.andreoli@nasa.gov

Ray Villard
Space Telescope Science Institute, Baltimore, MD

Science Contact:

Alec Lessing
Stanford University, Stanford, CA

Michael Shara
American Museum of Natural History, New York, NY

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Unveils a Glittering View of Sh2-284
      Hubble’s infrared view of emission nebula Sh2-284 provides a glimpse of the brilliant young stars hidden within clouds of gas and dust. Credit: NASA, ESA, and M. Andersen (European Southern Observatory – Germany); Processing: Gladys Kober (NASA/Catholic University of America)
      Download this image

      A tiny fraction of the stellar nursery known as Sh2-284 is visible in this glittering, star-filled NASA Hubble Space Telescope image. This immense region of gas and dust is the birthing place of stars, which shine among the clouds. Bright clusters of newborn stars glow pink in infrared light, and clouds of gas and dust, resembling puffy cumulus clouds, are dotted with dark knots of denser dust.
      This image shows an infrared view from Hubble, giving an excellent view of the stars that might otherwise be obscured by Sh2-284’s clouds. Unlike visible light, infrared wavelengths can travel through clouds of gas and dust, providing a glimpse of the stars forming within the obscuring clouds.
      The nebula is shaped by a young central star cluster, Dolidze 25 (not visible in the Hubble image), whose stars range from 1.5 to 13 million years old (our Sun, in contrast, is 4.6 billion years old). The cluster blasts out ionizing winds and radiation, pushing at the gas and dust of the nebula and carving out intricate shapes and pillars, as seen in detail here. This ionizing radiation gives Sh2-284 its classification as an HII region, an emission nebula consisting primarily of ionized hydrogen. An emission nebula like Sh2-284 glows with its own light as stars within or nearby energize its gas with a flood of intense ultraviolet radiation.
      The ground-based image (top) of M24 shows the location of the Hubble view (bottom). The European Southern Observatory’s visible-light image shows prominent clouds of gas and dust, while the Hubble image’s infrared vision highlights the stars within and behind the clouds. Ground-based image: ESO/VPHAS+ Team; Hubble image: NASA, ESA, and M. Andersen (European Southern Observatory – Germany); Processing: Gladys Kober (NASA/Catholic University of America) Sh2-284 is also a low-metallicity region, which means it is poor in elements heavier than hydrogen and helium. These conditions mimic the early universe, when matter was mostly helium and hydrogen and heavier elements were just beginning to form via nuclear fusion within massive stars. Hubble took these images as part of an effort to examine how low metallicity influences stellar formation and how this would apply to the early universe.
      Sh2-284 resides 15,000 light-years away at the end of an outer spiral arm of our Milky Way galaxy, in the constellation Monoceros.
      Explore More

      Hubble’s Nebulae


      Exploring the Birth of Stars

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Mar 08, 2025 Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae Star-forming Nebulae The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Cosmic Adventure



      Hubble’s Night Sky Challenge



      Hubble’s 35th Anniversary


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 3 min read
      Hubble Jams With A Cosmic Guitar
      Elliptical galaxy NGC 3561B (upper left) and spiral galaxy NGC 3561A (lower right) form a shimmering guitar shape in the ongoing merger known collectively as Arp 105. NASA, ESA and M. West (Lowell Observatory); Processing: Gladys Kober (NASA/Catholic University of America) Arp 105 is a dazzling ongoing merger between an elliptical galaxy and a spiral galaxy drawn together by gravity, characterized by a long, drawn out tidal tail of stars and gas more than 362,000 light-years long. The immense tail, which extends beyond this image from NASA’s Hubble Space Telescope, was pulled from the two galaxies by their gravitational interactions and is embedded with star clusters and dwarf galaxies. The distinctively shaped arrangement of galaxies and tail gives the grouping its nickname: The Guitar.
      The gravitational dance between elliptical galaxy NGC 3561B and spiral galaxy NGC 3561A creates a wealth of fascinating colliding galaxy features. A long lane of dark dust emerging from the elliptical galaxy ends in, and may be feeding, a bright blue area of star formation on the base of the guitar known as Ambartsumian’s Knot. Ambartsumian’s Knot is a tidal dwarf galaxy, a type of star-forming system that develops from the debris in tidal arms of interacting galaxies.
      Two more bright blue areas of star formation are obvious in the Hubble image at the edges of the distorted spiral galaxy. The region to the left in the spiral galaxy is likely very similar to Ambartsumian’s Knot, a knot of intense star formation triggered by the merger. The region to the right is still under investigation ― it could be part of the collision, but its velocity and spectral data (indicating distance) are different from the rest of the system, so it may be a foreground galaxy.
      Thin, faint tendrils of gas and dust are just barely visible stretching between and connecting the two galaxies. These tendrils are particularly interesting to astronomers since they may help define the timescale of the evolution of this collision.
      A multitude of more-distant background galaxies are visible around and even through this merging duo. The bright blue blob of stars to the left of Ambartsumian’s Knot may be a particularly bright background galaxy.
      Arp 105 is one of the brightest objects in the crowded galaxy cluster Abell 1185 in the constellation Ursa Major. Abell 1185, located around 400 million light-years away, is a chaotic cluster of at least 82 galaxies, many of which are interacting, as well as a number of wandering globular clusters that are not gravitationally attached to any particular galaxy. This Hubble image was taken as part of a study of the ongoing creation of galactic and intergalactic stellar populations in Abell 1185.
      Explore More

      Hubble’s Galaxies


      Galaxy Details and Mergers


      Hubble Focus E-Book: Galaxies through Space and Time

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Mar 08, 2025 Editor NASA Hubble Mission Team Location NASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Astrophysics Astrophysics Division Elliptical Galaxies Hubble Space Telescope Interacting Galaxies Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Partners in Science



      Hubble’s Night Sky Challenge



      Hubble’s Galaxies


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Spies a Spectacular Starburst Galaxy
      Starburst spiral NGC 4536 is bright with blue clusters of star formation and pink clumps of ionized hydrogen. NASA, ESA, and J. Lee (Space Telescope Science Institute); Processing: Gladys Kober (NASA/Catholic University of America)  Sweeping spiral arms extend from NGC 4536, littered with bright blue clusters of star formation and red clumps of hydrogen gas shining among dark lanes of dust. The galaxy’s shape may seem a little unusual, and that’s because it’s what’s known as an “intermediate galaxy”: not quite a barred spiral, but not exactly an unbarred spiral, either ― a hybrid of the two.
      NGC 4536 is also a starburst galaxy, in which star formation is happening at a tremendous rate that uses up the gas in the galaxy relatively quickly, by galactic standards. Starburst galaxies can happen due to gravitational interactions with other galaxies or ― as seems to be the case for NGC 4536 ― when gas is packed into a small region. The bar-like structure of NGC 4536 may be driving gas inwards toward the nucleus, giving rise to a crescendo of star formation in a ring around the nucleus. Starburst galaxies birth lots of hot blue stars that burn fast and die quickly in explosions that unleash intense ultraviolet light (visible in blue), turning their surroundings into glowing clouds of ionized hydrogen, called HII regions (visible in red).
      NGC 4536 is approximately 50 million light-years away in the constellation Virgo. It was discovered in 1784 by astronomer William Herschel. Hubble took this image of NGC 4536 as part of a project to study galactic environments to understand connections between young stars and cold gas, particularly star clusters and molecular clouds, throughout the local universe.

      Download the image

      Explore More

      Hubble’s Galaxies


      Galaxy Details and Mergers


      Hubble Focus E-Book: Galaxies through Space and Time

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Mar 08, 2025 Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Cosmic Adventure



      Hubble’s Night Sky Challenge



      Hubble’s 35th Anniversary


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Examines Stars Ensconced in a Cocoon of Gas
      NGC 460 is an open cluster of stars within a greater collection of nebulae and star clusters known as the N83-84-85 complex. NASA, ESA, and C. Lindberg (The Johns Hopkins University); Processing: Gladys Kober (NASA/Catholic University of America)
      Download this image

      An open cluster of stars shines through misty, cocoon-like gas clouds in this Hubble Space Telescope image of NGC 460.
      NGC 460 is located in a region of the Small Magellanic Cloud, a dwarf galaxy that orbits the Milky Way. This particular region contains a number of young star clusters and nebulae of different sizes ― all likely related to each other. The clouds of gas and dust can give rise to stars as portions of them collapse, and radiation and stellar winds from those hot, young bright stars in turn shape and compress the clouds, triggering new waves of star formation. The hydrogen clouds are ionized by the radiation of nearby stars, causing them to glow.
      The NGC 460 star cluster resides in one of the youngest parts of this interconnected complex of stellar clusters and nebulae, which is also home to a number of O-type stars: the brightest, hottest and most massive of the normal, hydrogen-burning stars (called main-sequence stars) like our Sun. O-type stars are rare ― out of more than 4 billion stars in the Milky Way, only about 20,000 are estimated to be O-type stars. The area that holds NGC 460, known as N83, may have been created when two hydrogen clouds in the region collided with one another, creating several O-type stars and nebulae.
      Open clusters like NGC 460 are made of anywhere from a few dozen to a few thousand stars loosely knitted together by gravity. Open clusters generally contain young stars, which may migrate outward into their galaxies as time progresses. NGC 460’s stars may someday disperse into the Small Magellanic Cloud, one of the Milky Way’s closest galactic neighbors at about 200,000 light-years away. Because it is both close and bright, it offers an opportunity to study phenomena that are difficult to examine in more distant galaxies.
      Six overlapping observations from a study of the gas and dust between stars, called the interstellar medium, were combined to create this Hubble image. The study aims to understand how gravitational forces between interacting galaxies can foster bursts of star formation. This highly detailed 65 megapixel mosaic includes both visible and infrared wavelengths. Download the 400 MB file and zoom in to see some of the intricacies captured by Hubble.
      Explore More

      Hubble’s Star Clusters

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Mar 08, 2025 Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Magellanic Clouds Star Clusters Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Cosmic Adventure



      Hubble’s Night Sky Challenge



      Hubble’s 35th Anniversary


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Spies a Spiral in the Water Snake
      This NASA/ESA Hubble Space Telescope features the spiral galaxy called NGC 5042 ESA/Hubble & NASA, D. Thilker
      Download this image

      This NASA/ESA Hubble Space Telescope image of a vibrant spiral galaxy called NGC 5042 resides about 48 million light-years from Earth in the constellation Hydra (the water snake). The galaxy nicely fills the frame of this Hubble image, while a single, foreground star from the Milky Way shines with cross-shaped diffraction spikes near the galaxy’s edge toward the top, center of the image.
      Hubble observed NGC 5042 in six wavelength bands from the ultraviolet to infrared to create this multicolored portrait. The galaxy’s cream-colored center is packed with ancient stars, and the galaxy’s spiral arms are decorated with patches of young, blue stars. The elongated yellow-orange objects scattered around the image are background galaxies far more distant than NGC 5042.
      Perhaps NGC 5042’s most striking feature is its collection of brilliant pink gas clouds studded throughout its spiral arms. These flashy clouds are H II (pronounced “H-two” or hydrogen-two) regions, and they get their distinctive color from hydrogen atoms that were ionized by ultraviolet light. If you look closely at this image, you’ll see that many of these reddish clouds are associated with clumps of blue stars, often appearing to form a shell around the stars.
      H II regions arise in expansive clouds of hydrogen gas, and only hot and massive stars produce enough high-energy, ultraviolet light to create a H II region. Because the stars capable of creating H II regions only live for a few million years — just a blink of an eye in galactic terms — this image represents a fleeting snapshot of this galaxy.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Mar 07, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Reshaping Our Cosmic View: Hubble Science Highlights



      Hubble’s Galaxies



      Hubble’s 35th Anniversary


      View the full article
  • Check out these Videos

×
×
  • Create New...