Jump to content

Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A group of 24 college students, eight mentors, and additional staff pose together in front of a glass building. All participants are wearing professional clothing in a variety of colors.
The Student Airborne Research Program (SARP) 2024 West Coast cohort poses in front of the natural sciences building at UC Irvine, during their final presentations on August 12, 2024.
NASA Ames/Milan Loiacono

On August 12-13, 24 students from the West Coast cohort of NASA’s Student Airborne Research Program (SARP) gathered at University of California, Irvine (UCI) to present their final research to a room of mentors, professors, family, and NASA personnel.

SARP is an eight-week summer internship for undergraduate students, hosted in two cohorts: SARP West operates out of Ontario Airport and UCI in California, while SARP East operates out of Wallops Flight Facility and Christopher Newport University in Virginia. After research introductions from faculty, instrument scientists, and staff, students are assigned one of four research categories: for SARP West, these categories are aerosols, terrestrial ecology,  whole air sampling (WAS), or oceans. Each group is led by a dedicated researcher who is a specialist in that field, along with a graduate student mentor. Over the course of the summer, each intern develops their own research project as they conduct field work, collect data, and fly onboard either the P-3 or B200 NASA flying laboratories.

“You really see them become scientists in their own right,” said Stephanie Olaya, Program Manager for SARP East and West. “A lot of these projects are PhD level: they are researching and making novel discoveries for the field. They don’t even realize the magnitude of the things they’ve accomplished until the end of the program.”

You really see them become scientists in their own right. A lot of these projects are PhD level: they are researching and making novel discoveries for the field.

Stephanie olaya

Stephanie olaya

SARP Program Manager

Research is not the only focus of the program, however. Faculty and mentors alike commented on the confidence they watched grow in the cohort over the two month internship, and the sense of camaraderie with their peers. Olaya says building a sense of community is a primary goal of the program, which encourages close friendships through communal living, regular group dinners, and weekend trips, in addition to the hours of team fieldwork, data collection, and laboratory analysis.  

The final presentations are another critical facet of the program, as it teaches students how to communicate scientific research and results to a non-scientific audience. “We want to impress on these students that science is not just for scientists,” Olaya said. “Science is for everyone.”

The event finished with closing remarks by Barry Lefer, Tropospheric Composition Program Manager at NASA Headquarters. “I want to welcome you to the SARP family,” Lefer said, “and to the NASA family.”

To watch videos of these student’s presentations and/or read their research abstracts, please follow the links below.

2023 SARP West Research Presentation Topics:

Oceans Group

Introduced by Oceans Group PhD student mentor Lori Berberian, University Of California, Los Angeles

  • Leveraging high resolution PlanetScope imagery to quantify oil slick spatiotemporal variability in the Santa Barbara Channel
    • Emory Gaddis, Colgate University
  • Investigating airborne LiDAR retrievals of an emergent South African macroalgae
    • Rachel Emery, The University of Oklahoma
  • Vertical structure of the aquatic light field based on half a century of oceanographic records from the Southern California current
    • Brayden Lipscomb, West Virginia University
  • Comparing SWOT and PACE satellite observations to assess modification of phytoplankton biomass and assemblage by North Atlantic ocean eddies
    • Dominic Bentley, Pennsylvania State University
  • Assessing EMIT observations of harmful algae in the Salton Sea
    • Abigail Heiser, University of Wisconsin- Madison
  • Reassessing multidecadal trends in water clarity for the Central and Southern California current system
    • Emma Iacono, North Carolina State University

Atmospheric Aerosols Group

Introduced by Atmospheric Aerosols PhD student mentor Madison Landi, University of California, Irvine

  • A comparative analysis of tropospheric NO2: Evaluating TEMPO satellite data against airborne measurements
    • Maya Niyogi, Johns Hopkins University
  • Investigating the atmospheric burden of black carbon over the past decade in the Los Angeles Basin
    • Benjamin Wells, San Diego State University
  • Tracking methane and aerosols in relation to health effects in the San Joaquin Valley
    • Devin Keith, Mount Holyoke College
  • Investigating the effects of aerosols on photosynthesis using satellite imaging
    • Lily Lyons, Brandeis University
  • Validating the performance of CMAQ in simulating the vertical distribution of trace gases
    • Ryleigh Czajkowski, South Dakota School of Mines and Technology
  • Estimating aerosol optical properties using Mie Theory and analyzing their impact on radiative forcing in California
    • Alison Thieberg, Emory University

Whole Air Sampling (WAS) Group

Introduced by WAS PhD student mentor Katherine Paredero, Georgia Institute of Technology

  • Urban planning initiative: Investigation of isoprene emissions by tree species in the LA Basin
    • Mikaela Vaughn, Virginia Commonwealth University
  • VOC composition and ozone formation potential observed over Long Beach, California
    • Joshua Lozano, Sonoma State University
  • Investigating enhanced methane and ethane emissions over the Long Beach Airport
    • Sean Breslin, University of Delaware
  • Investigating elevated levels of toluene during winter in the Imperial Valley
    • Katherine Skeen, University of North Carolina at Charlotte
  • Characterizing volatile organic compound (VOC) emissions from surface expressions of the Salton Sea Geothermal System (SSGS)
    • Ella Erskine, Tufts University
  • Airborne and ground-based analysis of Los Angeles County landfill gas emissions
    • Amelia Brown, Hamilton College

Terrestrial Ecology Group

Introduced by Terrestrial Ecology PhD student mentor Megan Ward-Baranyay, San Diego State University

  • Predicting ammonia plume presence at feedlots in the San Joaquin Valley from VSWIR spectroscopy of the land surface
    • Gerrit Hoving, Carleton College
  • Burn to bloom: Assessing the impact of coastal wildfires on phytoplankton dynamics in California
    • Benjamin Marshburn, California Polytechnic State University- San Luis Obispo
  • Species-specific impact on maximum fire temperature in prescribed burns at Sedgwick Reserve
    • Hannah Samuelson, University of St. Thomas
  • Quantifying the influence of soil type, slope, and aspect on live fuel load in Sedgwick Reserve
    • Angelina Harris, William & Mary
  • From canopy to chemistry: Exploring the relationship between vegetation phenology and isoprene emission
    • Emily Rogers, Bellarmine University
  • Keeping it fresh(water): Understanding the influence of surface mineralogy on groundwater quality within volcanic aquifer systems
    • Sydney Kent, Miami University

About the Author

Milan Loiacono

Milan Loiacono

Science Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Share

Details

Last Updated
Sep 25, 2024
Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: This image shows Webb’s recent observation of the asteroid 2024 YR4 using both its Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). Data from NIRCam shows reflected light, while the MIRI observations show thermal light.
      On 8 March 2025, the NASA/ESA/CSA James Webb Space Telescope turned its watchful eye toward asteroid 2024 YR4, which we now know poses no significant threat to Earth in 2032 and beyond.
      This is the smallest object targeted by Webb to date, and one of the smallest objects to have its size directly measured.
      Observations were taken to study the thermal properties of 2024 YR4, including how quickly it heats up and cools down and how hot it is at its current distance from the Sun. These measurements indicate that this asteroid does not share properties observed in larger asteroids. This is likely a combination of its fast spin and lack of fine-grained sand on its surface. Further research is needed, however this is considered consistent with a surface dominated by rocks that are roughly fist-sized or larger.
      Asteroid 2024 YR4 was recently under close watch by the team at ESA's Near Earth Objects Coordination Centre, located in Italy. Planetary defence experts from the Agency's Space Safety programme worked with NASA and the international asteroid community to closely watch this object and refine its orbit, which was eventually determined to not pose a risk of Earth impact. Read details on this unusual campaign via ESA's Rocket Science blog and in news articles here and here.
      Webb’s observations indicate that the asteroid measures roughly 60 meters (comparable to the height of a 15-story building).
      The new observations from Webb not only provide unique information about 2024 YR4’s size, but can also complement ground-based observations of the object's position to help improve our understanding of the object’s orbit and future trajectory.
      Note: This post highlights data from Webb science in progress, which has not yet been through the peer-review process.
      [Image description: A collage of three images showing the black expanse of space. Two-thirds of the collage is taken up by the black background sprinkled with small, blurry galaxies in orange, blue, and white. There are two images in a column at the right side of the collage. On the right side of the main image, not far from the top, a very faint dot is outlined with a white square. At the right, there are two zoomed in views of this area. The top box is labeled NIRCam and shows a fuzzy dot at the center of the inset. The bottom box is labeled MIRI and shows a fuzzy pinkish dot.]
      View the full article
    • By NASA
      The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and more than 40 other partner organizations across the country that created the Parker Solar Probe mission has been awarded the 2024 Robert J. Collier Trophy by the National Aeronautic Association (NAA). This annual award recognizes the most exceptional achievement in aeronautics and astronautics in America with respect to improving the performance, efficiency, and safety of air or space vehicles in the previous year.   
      “Congratulations to the entire Parker Solar Probe team for this well-earned recognition,” said NASA acting Administrator Janet Petro. “This mission’s trailblazing research is rewriting the textbooks on solar science by going to a place no human-made object has ever been and advancing NASA’s efforts to better understand our solar system and the Sun’s influence, with lasting benefits for us all. As the first to touch the Sun and fastest human-made object ever built, Parker Solar Probe is a testament to human ingenuity and discovery.”
      An artist’s concept of NASA’s Parker Solar Probe. NASA On Dec. 24, 2024, Parker Solar Probe made its closest approach to the Sun, passing deep within the Sun’s corona, just 3.8 million miles above the Sun’s surface and at a top speed of close to 430,000 mph, ushering in a new era of scientific discovery and space exploration.
      “This award is a recognition of the unrelenting dedication and hard work of the Parker Solar Probe team. I am so proud of this team and honored to have been a part of it,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “By studying the Sun closer than ever before, we continue to advance our understanding of not only our closest star, but also stars across our universe. Parker Solar Probe’s historic close approaches to the Sun are a testament to the incredible engineering that made this record-breaking journey possible.”
      Three novel aerospace technology advancements were critical to enabling this record performance: The first is the Thermal Protection System, or heat shield, that protects the spacecraft and is built to withstand brutal temperatures as high as 2,500 degrees Fahrenheit. The Thermal Protection System allows Parker’s electronics and instruments to operate close to room temperature.
      Additional Parker innovations included first-of-their-kind actively cooled solar arrays that protect themselves from overexposure to intense solar energy while powering the spacecraft, and a fully autonomous spacecraft system that can manage its own flight behavior, orientation, and configuration for months at a time. Parker has relied upon all of these vital technologies every day since its launch almost seven years ago, in August 2018.
      “I am thrilled for the Parker Solar Probe team on receiving this well-deserved award,” said Joe Westlake, director of the Heliophysics Division at NASA Headquarters. “The new information about the Sun made available through this mission will improve our ability to prepare for space weather events across the solar system, as well as better understand the very star that makes life possible for us on Earth.”
      Parker’s close-up observations of solar events, such as coronal mass ejections and solar particle events, are critical to advancing our understanding of the science of our Sun and the phenomena that drive high-energy space weather events that pose risks to satellites, air travel, astronauts, and even power grids on Earth. Understanding the fundamental physics behind events which drive space weather will enable more reliable predictions and lower astronaut exposure to hazardous radiation during future deep space missions to the Moon and Mars.
      “This amazing team brought to life an incredibly difficult space science mission that had been studied, and determined to be impossible, for more than 60 years. They did so by solving numerous long-standing technology challenges and dramatically advancing our nation’s spaceflight capabilities,” said APL Director Ralph Semmel. “The Collier Trophy is well-earned recognition for this phenomenal group of innovators from NASA, APL, and our industry and research partners from across the nation.”
      First awarded in 1911, the Robert J. Collier Trophy winner is selected by a group of aviation leaders chosen by the NAA. The Collier Trophy is housed in the Smithsonian’s National Air and Space Museum in Washington.
      “Traveling three times closer to the Sun and seven times faster than any spacecraft before, Parker’s technology innovations enabled humanity to reach inside the Sun’s atmosphere for the first time,” said Bobby Braun, head of APL’s Space Exploration Sector. “We are all immensely proud that the Parker Solar Probe team will join a long legacy of prestigious aerospace endeavors that redefined technology and changed history.”
      “The Parker Solar Probe team’s achievement in earning the 2024 Collier is a shining example of determination, genius, and teamwork,” said NAA President and CEO Amy Spowart. “It’s a distinct honor for the NAA to acknowledge and celebrate the remarkable team that turned the impossible into reality.”
      Parker Solar Probe was developed as part of NASA’s Living With a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Applied Physics Laboratory designed, built, and operates the spacecraft and manages the mission for NASA.
      By Geoff Brown
      Johns Hopkins University Applied Physics Laboratory
      Share








      Details
      Last Updated Mar 25, 2025 Editor Sarah Frazier Contact Abbey Interrante abbey.a.interrante@nasa.gov Location Goddard Space Flight Center Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Parker Solar Probe (PSP) The Sun Explore More
      5 min read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun


      Article


      3 months ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      5 months ago
      11 min read NASA Enters the Solar Atmosphere for the First Time, Bringing New Discoveries
      A major milestone and new results from NASA’s Parker Solar Probe were announced on Dec.…


      Article


      3 years ago
      View the full article
    • By NASA
      Main Menu Videos For Educators For Students TBD News About Help learners STEMify their summer through hands-on and engaging activities curated by the NASA eClips team. You’ll find something for everyone – Earth-based and out-of-this-world. This issue includes eClips videos, resources, and design challenges as well as partner activities and other recommended summer activities. We have organized them by the amount of time the activity will take so you can easily plan your day around them! Enjoy!
      Downloads
      Summer 2024 newsletter
      Mar 17, 2025
      PDF (4.91 MB)


      View the full article
    • By NASA
      Main Menu Videos For Educators For Students TBD News About Fall back to school with this edition of the NASA eClips newsletter! Educators are provided with a host of resources to help engineer a great school year! Videos and activities focus on comparing science and engineering practices. Two new Spotlite Design Challenges are launched on climate change and Earth-observing satellites! And a fun activity for learners to work in groups to design their own mission patches.
      Downloads
      Newsletter_June_2024_508
      Mar 17, 2025
      PDF (13.52 MB)


      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Communities in coastal areas such as Florida, shown in this 1992 NASA image, are vulnerable to the effects of sea level rise, including high-tide flooding. A new agency-led analysis found a higher-than-expected rate of sea level rise in 2024, which was also the hottest year on record.NASA Last year’s increase was due to an unusual amount of ocean warming, combined with meltwater from land-based ice such as glaciers.
      Global sea level rose faster than expected in 2024, mostly because of ocean water expanding as it warms, or thermal expansion. According to a NASA-led analysis, last year’s rate of rise was 0.23 inches (0.59 centimeters) per year, compared to the expected rate of 0.17 inches (0.43 centimeters) per year.
      “The rise we saw in 2024 was higher than we expected,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “Every year is a little bit different, but what’s clear is that the ocean continues to rise, and the rate of rise is getting faster and faster.”
      This graph shows global mean sea level (in blue) since 1993 as measured by a series of five satellites. The solid red line indicates the trajectory of this increase, which has more than doubled over the past three decades. The dotted red line projects future sea level rise.NASA/JPL-Caltech In recent years, about two-thirds of sea level rise was from the addition of water from land into the ocean by melting ice sheets and glaciers. About a third came from thermal expansion of seawater. But in 2024, those contributions flipped, with two-thirds of sea level rise coming from thermal expansion.
      “With 2024 as the warmest year on record, Earth’s expanding oceans are following suit, reaching their highest levels in three decades,” said Nadya Vinogradova Shiffer, head of physical oceanography programs and the Integrated Earth System Observatory at NASA Headquarters in Washington.
      Since the satellite record of ocean height began in 1993, the rate of annual sea level rise has more than doubled. In total, global sea level has gone up by 4 inches (10 centimeters) since 1993.
      This long-term record is made possible by an uninterrupted series of ocean-observing satellites starting with TOPEX/Poseidon in 1992. The current ocean-observing satellite in that series, Sentinel-6 Michael Freilich, launched in 2020 and is one of an identical pair of spacecraft that will carry this sea level dataset into its fourth decade. Its twin, the upcoming Sentinel-6B satellite, will continue to measure sea surface height down to a few centimeters for about 90% of the world’s oceans.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This animation shows the rise in global mean sea level from 1993 to 2024 based on da-ta from five international satellites. The expansion of water as it warms was responsible for the majority of the higher-than-expected rate of rise in 2024.NASA’s Scientific Visualization Studio Mixing It Up
      There are several ways in which heat makes its way into the ocean, resulting in the thermal expansion of water. Normally, seawater arranges itself into layers determined by water temperature and density. Warmer water floats on top of and is lighter than cooler water, which is denser. In most places, heat from the surface moves very slowly through these layers down into the deep ocean.
      But extremely windy areas of the ocean can agitate the layers enough to result in vertical mixing. Very large currents, like those found in the Southern Ocean, can tilt ocean layers, allowing surface waters to more easily slip down deep.
      The massive movement of water during El Niño — in which a large pool of warm water normally located in the western Pacific Ocean sloshes over to the central and eastern Pacific — can also result in vertical movement of heat within the ocean.
      Learn more about sea level:
      https://sealevel.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2025-036
      Share
      Details
      Last Updated Mar 13, 2025 Related Terms
      Sentinel-6 Michael Freilich Satellite Climate Science Jet Propulsion Laboratory Oceans Explore More
      6 min read Cosmic Mapmaker: NASA’s SPHEREx Space Telescope Ready to Launch
      Article 6 days ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission
      Article 1 week ago 3 min read University High Knows the Answers at NASA JPL Regional Science Bowl
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...