Jump to content

SARP West 2024 Whole Air Sampling (WAS) Group


Recommended Posts

  • Publishers
Posted

10 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A group of nine people. the first eight college age and the last one a professor with white hair, stand in a line in professional attire. Behind them is a glass building with glass doors, reflecting green trees.
The Whole Air Sampling (WAS) group, from the 2024 Student Airborne Research Program (SARP) West Coast cohort, poses in front of the natural sciences building at UC Irvine, during their final presentations on August 13, 2024.
NASA Ames/Milan Loiacono

Faculty Advisor: Dr. Donald Blake, University of California, Irvine

Graduate Mentor: Katherine Paredero, Georgia Institute of Technology

Katherine Paredero, Graduate Mentor

Katherine Paredero, graduate student mentor for the 2024 SARP West Whole Air Sampling (WAS) group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.

Mikaela Vaughn

Urban Planning Initiative: Investigation of Isoprene Emissions by Tree Species in the LA Basin

Mikaela Vaughn, Virginia Commonwealth University

Elevated ozone concentrations have been a concern in Southern California for decades. The interaction between volatile organic compounds (VOC) and nitrous oxides (𝑁𝑂!) in the presence of sunlight leads to enhanced formation of tropospheric ozone (𝑂”) and secondary organic aerosols (SOA). This can lead to increased health hazards, exposing humans to aerosols that can enter and be absorbed by the lungs, as well as a warming effect caused by ozone’s role as a greenhouse gas in the lower levels of the atmosphere. This study will focus on a VOC that is of particular interest, isoprene, which has an atmospheric lifetime of one hour, making it highly reactive in the presence of the hydroxyl radical (OH) and resulting in rapid ozone formation. Isoprene is a biogenic volatile organic compound (BVOC) emitted by vegetation as a byproduct of photosynthesis. This BVOC has been overlooked but should be investigated further because of its potential to form large sums of ozone. In this study the reactivity of isoprene with OH dominated ozone formation as compared to other VOCs. Ambient isoprene concentrations were measured aboard NASA’s airborne science laboratory (King Air B200) along with whole air sampling canisters. Additionally, isoprene emissions of varying tree species, with one to three samples per type, were compared to propose certain trees to plant in urban areas. Results indicated that Northern Red Oaks and the Palms family emitted the most isoprene out of the nineteen species documented. The species with the lowest observed isoprene emissions was the Palo Verde and the Joshua trees. The difference in isoprene emissions between the Northern Red Oak and Joshua trees is approximately by a factor of 45. These observations show the significance of considering isoprene emissions when selecting tree species to plant in the LA Basin to combat tropospheric ozone formation.

Joshua Lozano

VOC Composition and Ozone Formation Potential Observed Over Long Beach, California

Joshua Lozano, Sonoma State University

Volatile organic compounds (VOCs), when released into the atmosphere, undergo chemical reactions in the presence of sunlight that can generate tropospheric ozone, which can have various health effects. We can gauge this ozone formation by multiplying the observed mixing ratios of VOCs by their respective rate constants (with respect to OH radicals). The OH radical reacts very quickly in the atmosphere and accounts for a large sum of ozone formation from VOCs as a result, giving us an idea of the ozone formation potential (OFP) for each VOC. In this study, we investigate observed mixing ratios of VOCs in order to estimate their contribution to OFP over Long Beach, California. The observed species of VOCs with the highest mixing ratios differs from the observed species with the highest OFP, which highlights that higher mixing ratios of certain VOCs in the atmosphere do not necessarily equate to a higher contribution to ozone formation. This underscores the importance of understanding mixing ratios of VOC species and their reaction rates with OH to gauge impacts on ozone formation. In the summer there were significantly lower VOC concentrations compared to the winter, which was expected because of differences in boundary layer height within the seasons. Additionally, a decrease in average mixing ratios was observed between the summer of 2014 and the summer of 2022. A similar trend was observed in OFP, but by a much smaller factor. This may indicate that even though overall VOC emissions are decreasing in Long Beach, the species that dominate in recent years have a higher OFP. This research provides a more comprehensive view of how VOCs contribute to air quality issues across different seasons and over time, stressing the need for targeted strategies to mitigate ozone pollution based on current and accurate VOC composition and reactivity.

Sean Breslin

Investigating Enhanced Methane and Ethane Emissions over the Long Beach Airport

Sean Breslin, University of Delaware

As climate change continues to worsen, the investigation and tracking of greenhouse gas emissions has become increasingly important. Methane, the second most impactful greenhouse gas, has accounted for over 20% of planetary warming since preindustrial times. Methane emissions primarily originate from biogenic and thermogenic sources, such as dairy farms and natural gas extraction. Ethane, an abundant hydrocarbon emitted from biomass burning and natural gas, contributes to the formation of tropospheric ozone. The data for this project was collected in December 2021 and June 2022 aboard the DC-8 aircraft, where whole air samples were taken during low approaches to find potential sources of methane and ethane emissions. Analysis of these samples using gas chromatography revealed a noticeable increase in methane and ethane concentrations over Long Beach Airport, an area surrounded by numerous plugged oil and gas wells extracting crude oil and natural gas. In this study, we observe that methane and ethane concentrations were lower in the summer and higher in the winter, which can be primarily attributed to seasonal variations in the Atmospheric Boundary Layer height. Our results show that in both summer and winter campaigns, the ratio of these two gases over the airport was approximately 0.03, indicating that for every 100 methane molecules, there are 3 ethane molecules. This work identifies methane and ethane hotspots and provides a critical analysis on potential fugitive emission sources in the Long Beach area. These results emphasize a need to perform in depth analyses on potential point sources of greenhouse gas emissions in the Long Beach area.

Katherine Skeen

Investigating Elevated Levels of Toluene during Winter in the Imperial Valley

Katherine Skeen, University of North Carolina at Charlotte

The Imperial County in Southern California experiences pollutants that do not meet the National Ambient Air Quality Standards, and as a result, residents are suffering from adverse health effects. Volatile organic compounds (VOCs) are compounds with a high vapor pressure at room temperature. They are readily emitted into the atmosphere and form ground level ozone. Toluene is a VOC and exposure poses significant health risks, including neurological and respiratory effects. This study aims to use airborne data to investigate areas with high toluene concentrations and investigate potential source. Flights over the Imperial Valley were conducted in the B200 King Air. Whole air canisters were used to collect ambient air samples from outside the plane. These Whole Air Canisters were put through the UCI Rowland Blake Lab’s gas chromatograph mass spectrometer, which identifies different gasses and quantifies their concentrations. Elevated values of toluene were found in the winter as compared to the summer in the Imperial Valley, with the town of Brawley having the most elevated amounts in the air. Excel and QGIS were utilized to analyze data trends. Additionally, a backward trajectory calculated using the NOAA HYSPLIT model revealed the general air flow on days exhibiting high toluene concentrations. Here we suggest Long Beach may be a source of enhanced toluene levels in Brawley. Both areas exhibited enhanced levels of toluene with slightly lower concentrations observed in Brawley. We additionally observed other VOCs commonly emitted in urban areas, and saw a similar decrease in gasses from Long Beach to Brawley. This trend may indicate transport of toluene from Long Beach to Brawley. Further research could be done to investigate the potential for other regions that may contribute to high toluene concentrations in Brawley. My study contributes valuable insights to the poor air quality in the Imperial Valley, providing a foundation for future studies on how residents are specifically being affected.

Ella Erskine

Characterizing Volatile Organic Compound (VOC) Emissions from Surface Expressions of the Salton Sea Geothermal System (SSGS)

Ella Erskine, Tufts University

At the southeastern end of the Salton Sea, surface expressions of an active geothermal system are emitting an assemblage of potentially toxic and tropospheric ozone-forming gasses. Gas measurements were taken from ~1 to 8 ft tall mud cones, called gryphons, in the Davis-Schrimpf seep field (~50,000 ft2). The gaseous compounds emitted from the gryphons were collected using whole air sampling canisters. The canisters were then sent to the Rowland-Blake laboratory for analysis using gas chromatography techniques. Samples from June of 2022, 2023, and 2024 were utilized for a time-series analysis of VOC distribution. Originally, an emission makeup similar to petroleum was expected, as it has previously been found in some of the seeps. It is thought that hydrothermal fluid can rapidly mature organic matter into hydrothermal petroleum, so it is logical that the emission makeup could be similar. However, unexpectedly high levels of the VOC benzene were recorded, unlike concentrations generally observed in crude oil emissions. This may indicate a difference between the two sources in regard to their formation process or parent material composition. A possible cause of the elevated benzene could be its relatively high aqueous solubility compared to other hydrocarbons, which could allow it to be more readily incorporated into the hydrothermal fluid. Since the gryphons attract almost daily visitors, it is important to quantify their human health effects. Benzene harms the bone marrow, which can result in anemia. It is also a carcinogen. Additionally, benzene can react with the OH radical to form ozone, an additional health hazard. Future studies should revisit the Davis-Schrimpf field to continue the time series analysis and collect samples of the water seeps. Additionally, drone and ground studies should be conducted in the geothermal power plant adjacent to the gryphons to determine if benzene is being emitted from drilling activities.

Amelia Brown

Airborne and Ground-Based Analysis of Los Angeles County Landfill Gas Emissions

Amelia Brown, Hamilton College

California has the highest number of landfills of any individual US state. These landfills are concentrated in densely populated areas of California, especially within the Los Angeles metropolitan area. Landfills produce three main byproducts: heat, leachate, and landfill gas (LFG). LFG is primarily composed of methane (CH₄) and carbon dioxide (CO₂), with small concentrations of volatile organic compounds (VOCs) and other trace gases. The CH4 and CO2 components of LFG are well documented, but the VOCs and trace gases in LFG remain underexplored. This study investigates the emission of trace gases from four landfills in Los Angeles County, with a particular focus on substances known to have high Ozone Depletion Potentials (ODPs) and Global Warming Potentials (GWPs). The four landfills sampled were Chiquita Canyon Landfill, Lopez Canyon Landfill, Sunshine Canyon Landfill, and Toyon Canyon Landfill. Airborne samples were taken above the four landfills and ground samples were taken at Lopez Canyon as this was the only site accessible by our research team. The substances of interest were chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), and halons. Airborne CH4 and CO2 measurements over the four landfills were obtained using the Picarro instrument onboard NASA’s B-200 aircraft. Ground samples were collected using whole air sampling canisters and were analyzed to determine the concentrations of these gases. The analytical approach for the ground samples combined Gas Chromatography-Mass Spectrometry (GCMS) with Flame Ionization Detection (FID) and Mass Selective Detection (MSD), providing a comprehensive profile of the emitted compounds. Findings reveal elevated levels of substances with high ODP and GWP, which were banned under the Montreal Protocol of 1987 and its subsequent amendments due to their contributions to stratospheric ozone depletion and climate change. These results underscore the importance of monitoring and mitigating landfill gas emissions, particularly for those containing potent greenhouse gases and ozone-depleting substances.

Click here watch the Atmospheric Aerosols Group presentations.

Click here watch the Terrestrial Ecology Group presentations.

Click here watch the Ocean Group presentations.

Share

Details

Last Updated
Sep 25, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Jeremy Johnson, a research pilot and aviation safety officer, poses in front of a PC-12 aircraft inside the hangar at NASA’s Glenn Research Center in Cleveland on Thursday, April 17, 2025. Johnson flies NASA planes to support important scientific research and testing.Credit: NASA/Sara Lowthian-Hanna Jeremy Johnson laces his black, steel-toed boots and zips up his dark blue flight suit. Having just finished a pre-flight mission briefing with his team, the only thing on his mind is heading to the aircraft hangar and getting a plane in the air.
      As he eases a small white-and-blue propeller aircraft down the hangar’s ramp and onto the runway, he hears five essential words crackle through his headset: “NASA 606, cleared for takeoff.”
      This is a typical morning for Johnson, a research pilot and aviation safety officer at NASA’s Glenn Research Center in Cleveland. Johnson flies NASA planes to support important scientific research and testing, working with researchers to plan and carry out flights that will get them the data they need while ensuring safety.
      Johnson hasn’t always flown in NASA planes. He comes to the agency from the U.S. Air Force, where he flew missions all over the world in C-17 cargo aircraft, piloted unmanned reconnaissance operations out of California, and trained young aviators in Oklahoma on the fundamentals of flying combat missions.

      Jeremy Johnson stands beside a C-17 aircraft before a night training flight in Altus, Oklahoma, in 2020. Before supporting vital flight research at NASA through a SkillBridge fellowship, which gives transitioning service members the opportunity to gain civilian work experience, Johnson served in the U.S. Air Force and flew C-17 airlift missions all over the world.Credit: Courtesy of Jeremy Johnson He’s at Glenn for a four-month Department of Defense SkillBridge fellowship. The program gives transitioning service members an opportunity to gain civilian work experience through training, apprenticeships, or internships during their last 180 days of service before separating from the military.
      “I think SkillBridge has been an amazing tool to help me transition into what it’s like working somewhere that isn’t the military,” Johnson said. “In the Air Force, flying the mission was the mission. At NASA Glenn, the science—the research—is the mission.”
      By flying aircraft outfitted with research hardware or carrying test equipment, Johnson has contributed to two vital projects at NASA so far. One is focused on testing how well laser systems can transmit signals for communication and navigation. The other, part of NASA’s research under Air Mobility Pathfinders, explores how 5G telecommunications infrastructure can help electric air taxis of the future be safely incorporated into the national airspace. This work, and the data that scientists can collect through flights, supports NASA’s research to advance technology and innovate for the benefit of all.
      Jeremy Johnson pilots NASA Glenn Research Center’s PC-12 aircraft during a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna “It’s really exciting to see research hardware come fresh from the lab, and then be strapped onto an aircraft and taken into flight to see if it actually performs in a relevant environment,” Johnson said. “Every flight you do is more than just that flight—it’s one little part of a much bigger, much more ambitious project that’s going on. You remember, this is a small little piece of something that is maybe going to change the frontier of science, the frontier of discovery.”
      Johnson has always had a passion for aviation. In college, he worked as a valet to pay for flying lessons. To hone his skills before Air Force training, one summer he flew across the country in a Cessna with his aunt, a commercial pilot. They flew down the Hudson River as they watched the skyscrapers of New York City whizz by and later to Kitty Hawk, North Carolina, where the Wright brothers made their historic first flight. Johnson even flew skydivers part-time while he was stationed in California.
      Jeremy Johnson in the cockpit of a PC-12 aircraft as it exits the hangar at NASA’s Glenn Research Center in Cleveland before a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna Although he’s spent countless hours flying, he still takes the window seat on commercial flights whenever he can so he can look out the window and marvel at the world below.
      Despite his successes, Johnson’s journey to becoming a pilot wasn’t always smooth. He recalls that as he was about to land after his first solo flight, violent crosswinds blew his plane off the runway and sent him bouncing into the grass. Though he eventually got back behind the stick for another flight, he said that in that moment he wondered whether he had the strength and skills to overcome his self-doubt.
      “I don’t know anyone who flies for a living that had a completely easy path into it,” Johnson said. “To people who are thinking about getting into flying, just forge forward with it. Make people close doors on you, don’t close them on yourself, when it comes to flying or whatever you see yourself doing in the future. I just kept knocking on the door until there was a crack in it.”
      Explore More
      2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
      Article 19 hours ago 3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge
      NASA has named nine finalists out of the 45 semifinalist student essays in the Power…
      Article 2 days ago 4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace
      Article 3 days ago View the full article
    • By Space Force
      Department of the Air Force senior leaders from across the IT and acquisitions community emphasized the importance of investing in critical infrastructure and information systems across Air and Space Force installations.
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to ECF Home
      Transformational Advanced Energetic Propulsion
      Omid Beik
      Colorado School of Mines
      Development of a MW-Scale High-Voltage Multiphase Dual-Rotor Generator and Rectifier for a PMAD in an NEP System Ognjen Ilic
      University of Minnesota
      Concept Demonstration of Directed Energy Propulsion with Metasurface Lightsails Kenshiro Oguri
      Purdue University
      Origami-inspired Diffractive Sail for Directed Energy Propulsion Thomas Underwood
      University of Texas, Austin
      Stabilized Z-Pinch Fusion Driven Electromagnetic Propulsion Power Systems to Enable Small System Operations in Permanently Shadowed Lunar Regions
      Manan Arya
      Stanford University
      Lightweight Deployable Solar Reflectors Jessica Boles
      University of California, Berkeley
      Piezoelectric-Based Power Conversion for Lunar Surface Systems Christopher McGuirk
      Colorado School of Mines
      Power on the Dark Side: Stimulus-Responsive Adsorbents for Low-Energy Controlled Storage and Delivery of Low Boiling Fuels to Mobile Assets in Permanently Shaded Regions Shuolong Yang
      University of Chicago
      Developing Oxychalcogenide Membranes for Superconducting Power Transmission
      View the full article
    • By NASA
      NASA researchers are sending three air quality monitors to the International Space Station to test them for potential future use on the Moon.Credit: NASA/Sara Lowthian-Hanna As NASA prepares to return to the Moon, studying astronaut health and safety is a top priority. Scientists monitor and analyze every part of the International Space Station crew’s daily life—down to the air they breathe. These studies are helping NASA prepare for long-term human exploration of the Moon and, eventually, Mars.

      As part of this effort, NASA’s Glenn Research Center in Cleveland is sending three air quality monitors to the space station to test them for potential future use on the Moon. The monitors are slated to launch on Monday, April 21, aboard the 32nd SpaceX commercial resupply services mission for NASA.

      Like our homes here on Earth, the space station gets dusty from skin flakes, clothing fibers, and personal care products like deodorant. Because the station operates in microgravity, particles do not have an opportunity to settle and instead remain floating in the air. Filters aboard the orbiting laboratory collect these particles to ensure the air remains safe and breathable.

      Astronauts will face another air quality risk when they work and live on the Moon—lunar dust.
      “From Apollo, we know lunar dust can cause irritation when breathed into the lungs,” said Claire Fortenberry, principal investigator, Exploration Aerosol Monitors project, NASA Glenn. “Earth has weather to naturally smooth dust particles down, but there is no atmosphere on the Moon, so lunar dust particles are sharper and craggier than Earth dust. Lunar dust could potentially impact crew health and damage hardware.”

      Future space stations and lunar habitats will need monitors capable of measuring lunar dust to ensure air filtration systems are functioning properly. Fortenberry and her team selected commercially available monitors for flight and ground demonstration to evaluate their performance in a spacecraft environment, with the goal of providing a dust monitor for future exploration systems.
      NASA Glenn Research Center’s Claire Fortenberry holds a dust sample collected from International Space Station air filters.Credit: NASA/Sara Lowthian-Hanna Glenn is sending three commercial monitors to the space station to test onboard air quality for seven months. All three monitors are small: no bigger than a shoe box. Each one measures a specific property that provides a snapshot of the air quality aboard the station. Researchers will analyze the monitors based on weight, functionality, and ability to accurately measure and identify small concentrations of particles in the air.

      The research team will receive data from the space station every two weeks. While those monitors are orbiting Earth, Fortenberry will have three matching monitors at Glenn. Engineers will compare functionality and results from the monitors used in space to those on the ground to verify they are working as expected in microgravity. Additional ground testing will involve dust simulants and smoke.

      Air quality monitors like the ones NASA is testing also have Earth-based applications. The monitors are used to investigate smoke plumes from wildfires, haze from urban pollution, indoor pollution from activities like cooking and cleaning, and how virus-containing droplets spread within an enclosed space.

      Results from the investigation will help NASA evaluate which monitors could accompany astronauts to the Moon and eventually Mars. NASA will allow the manufacturers to review results and ensure the monitors work as efficiently and effectively as possible. Testing aboard the space station could help companies investigate pollution problems here on Earth and pave the way for future missions to the Red Planet.
      NASA Glenn Research Center’s Claire Fortenberry demonstrates how space aerosol monitors analyze the quality of the air.Credit: NASA/Sara Lowthian-Hanna “Going to the Moon gives us a chance to monitor for planetary dust and the lunar environment,” Fortenberry said. “We can then apply what we learn from lunar exploration to predict how humans can safely explore Mars.”
      NASA commercial resupply missions to the International Space Station deliver scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      Learn more about NASA and SpaceX’s 32nd commercial resupply mission to the space station:
      https://www.nasa.gov/nasas-spacex-crs-32/
      Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 17 hours ago 4 min read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
      Article 1 day ago 1 min read Recognizing Employee Excellence 
      Article 1 day ago View the full article
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman spoke to hundreds of cadets and national leaders during the 2025 National Conclave for Arnold Air Society and Silver Wings, emphasizing the evolving role of the Space Force in the future fight.
      View the full article
  • Check out these Videos

×
×
  • Create New...