Jump to content

SARP West 2024 Whole Air Sampling (WAS) Group


Recommended Posts

  • Publishers
Posted

10 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A group of nine people. the first eight college age and the last one a professor with white hair, stand in a line in professional attire. Behind them is a glass building with glass doors, reflecting green trees.
The Whole Air Sampling (WAS) group, from the 2024 Student Airborne Research Program (SARP) West Coast cohort, poses in front of the natural sciences building at UC Irvine, during their final presentations on August 13, 2024.
NASA Ames/Milan Loiacono

Faculty Advisor: Dr. Donald Blake, University of California, Irvine

Graduate Mentor: Katherine Paredero, Georgia Institute of Technology

Katherine Paredero, Graduate Mentor

Katherine Paredero, graduate student mentor for the 2024 SARP West Whole Air Sampling (WAS) group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.

Mikaela Vaughn

Urban Planning Initiative: Investigation of Isoprene Emissions by Tree Species in the LA Basin

Mikaela Vaughn, Virginia Commonwealth University

Elevated ozone concentrations have been a concern in Southern California for decades. The interaction between volatile organic compounds (VOC) and nitrous oxides (𝑁𝑂!) in the presence of sunlight leads to enhanced formation of tropospheric ozone (𝑂”) and secondary organic aerosols (SOA). This can lead to increased health hazards, exposing humans to aerosols that can enter and be absorbed by the lungs, as well as a warming effect caused by ozone’s role as a greenhouse gas in the lower levels of the atmosphere. This study will focus on a VOC that is of particular interest, isoprene, which has an atmospheric lifetime of one hour, making it highly reactive in the presence of the hydroxyl radical (OH) and resulting in rapid ozone formation. Isoprene is a biogenic volatile organic compound (BVOC) emitted by vegetation as a byproduct of photosynthesis. This BVOC has been overlooked but should be investigated further because of its potential to form large sums of ozone. In this study the reactivity of isoprene with OH dominated ozone formation as compared to other VOCs. Ambient isoprene concentrations were measured aboard NASA’s airborne science laboratory (King Air B200) along with whole air sampling canisters. Additionally, isoprene emissions of varying tree species, with one to three samples per type, were compared to propose certain trees to plant in urban areas. Results indicated that Northern Red Oaks and the Palms family emitted the most isoprene out of the nineteen species documented. The species with the lowest observed isoprene emissions was the Palo Verde and the Joshua trees. The difference in isoprene emissions between the Northern Red Oak and Joshua trees is approximately by a factor of 45. These observations show the significance of considering isoprene emissions when selecting tree species to plant in the LA Basin to combat tropospheric ozone formation.

Joshua Lozano

VOC Composition and Ozone Formation Potential Observed Over Long Beach, California

Joshua Lozano, Sonoma State University

Volatile organic compounds (VOCs), when released into the atmosphere, undergo chemical reactions in the presence of sunlight that can generate tropospheric ozone, which can have various health effects. We can gauge this ozone formation by multiplying the observed mixing ratios of VOCs by their respective rate constants (with respect to OH radicals). The OH radical reacts very quickly in the atmosphere and accounts for a large sum of ozone formation from VOCs as a result, giving us an idea of the ozone formation potential (OFP) for each VOC. In this study, we investigate observed mixing ratios of VOCs in order to estimate their contribution to OFP over Long Beach, California. The observed species of VOCs with the highest mixing ratios differs from the observed species with the highest OFP, which highlights that higher mixing ratios of certain VOCs in the atmosphere do not necessarily equate to a higher contribution to ozone formation. This underscores the importance of understanding mixing ratios of VOC species and their reaction rates with OH to gauge impacts on ozone formation. In the summer there were significantly lower VOC concentrations compared to the winter, which was expected because of differences in boundary layer height within the seasons. Additionally, a decrease in average mixing ratios was observed between the summer of 2014 and the summer of 2022. A similar trend was observed in OFP, but by a much smaller factor. This may indicate that even though overall VOC emissions are decreasing in Long Beach, the species that dominate in recent years have a higher OFP. This research provides a more comprehensive view of how VOCs contribute to air quality issues across different seasons and over time, stressing the need for targeted strategies to mitigate ozone pollution based on current and accurate VOC composition and reactivity.

Sean Breslin

Investigating Enhanced Methane and Ethane Emissions over the Long Beach Airport

Sean Breslin, University of Delaware

As climate change continues to worsen, the investigation and tracking of greenhouse gas emissions has become increasingly important. Methane, the second most impactful greenhouse gas, has accounted for over 20% of planetary warming since preindustrial times. Methane emissions primarily originate from biogenic and thermogenic sources, such as dairy farms and natural gas extraction. Ethane, an abundant hydrocarbon emitted from biomass burning and natural gas, contributes to the formation of tropospheric ozone. The data for this project was collected in December 2021 and June 2022 aboard the DC-8 aircraft, where whole air samples were taken during low approaches to find potential sources of methane and ethane emissions. Analysis of these samples using gas chromatography revealed a noticeable increase in methane and ethane concentrations over Long Beach Airport, an area surrounded by numerous plugged oil and gas wells extracting crude oil and natural gas. In this study, we observe that methane and ethane concentrations were lower in the summer and higher in the winter, which can be primarily attributed to seasonal variations in the Atmospheric Boundary Layer height. Our results show that in both summer and winter campaigns, the ratio of these two gases over the airport was approximately 0.03, indicating that for every 100 methane molecules, there are 3 ethane molecules. This work identifies methane and ethane hotspots and provides a critical analysis on potential fugitive emission sources in the Long Beach area. These results emphasize a need to perform in depth analyses on potential point sources of greenhouse gas emissions in the Long Beach area.

Katherine Skeen

Investigating Elevated Levels of Toluene during Winter in the Imperial Valley

Katherine Skeen, University of North Carolina at Charlotte

The Imperial County in Southern California experiences pollutants that do not meet the National Ambient Air Quality Standards, and as a result, residents are suffering from adverse health effects. Volatile organic compounds (VOCs) are compounds with a high vapor pressure at room temperature. They are readily emitted into the atmosphere and form ground level ozone. Toluene is a VOC and exposure poses significant health risks, including neurological and respiratory effects. This study aims to use airborne data to investigate areas with high toluene concentrations and investigate potential source. Flights over the Imperial Valley were conducted in the B200 King Air. Whole air canisters were used to collect ambient air samples from outside the plane. These Whole Air Canisters were put through the UCI Rowland Blake Lab’s gas chromatograph mass spectrometer, which identifies different gasses and quantifies their concentrations. Elevated values of toluene were found in the winter as compared to the summer in the Imperial Valley, with the town of Brawley having the most elevated amounts in the air. Excel and QGIS were utilized to analyze data trends. Additionally, a backward trajectory calculated using the NOAA HYSPLIT model revealed the general air flow on days exhibiting high toluene concentrations. Here we suggest Long Beach may be a source of enhanced toluene levels in Brawley. Both areas exhibited enhanced levels of toluene with slightly lower concentrations observed in Brawley. We additionally observed other VOCs commonly emitted in urban areas, and saw a similar decrease in gasses from Long Beach to Brawley. This trend may indicate transport of toluene from Long Beach to Brawley. Further research could be done to investigate the potential for other regions that may contribute to high toluene concentrations in Brawley. My study contributes valuable insights to the poor air quality in the Imperial Valley, providing a foundation for future studies on how residents are specifically being affected.

Ella Erskine

Characterizing Volatile Organic Compound (VOC) Emissions from Surface Expressions of the Salton Sea Geothermal System (SSGS)

Ella Erskine, Tufts University

At the southeastern end of the Salton Sea, surface expressions of an active geothermal system are emitting an assemblage of potentially toxic and tropospheric ozone-forming gasses. Gas measurements were taken from ~1 to 8 ft tall mud cones, called gryphons, in the Davis-Schrimpf seep field (~50,000 ft2). The gaseous compounds emitted from the gryphons were collected using whole air sampling canisters. The canisters were then sent to the Rowland-Blake laboratory for analysis using gas chromatography techniques. Samples from June of 2022, 2023, and 2024 were utilized for a time-series analysis of VOC distribution. Originally, an emission makeup similar to petroleum was expected, as it has previously been found in some of the seeps. It is thought that hydrothermal fluid can rapidly mature organic matter into hydrothermal petroleum, so it is logical that the emission makeup could be similar. However, unexpectedly high levels of the VOC benzene were recorded, unlike concentrations generally observed in crude oil emissions. This may indicate a difference between the two sources in regard to their formation process or parent material composition. A possible cause of the elevated benzene could be its relatively high aqueous solubility compared to other hydrocarbons, which could allow it to be more readily incorporated into the hydrothermal fluid. Since the gryphons attract almost daily visitors, it is important to quantify their human health effects. Benzene harms the bone marrow, which can result in anemia. It is also a carcinogen. Additionally, benzene can react with the OH radical to form ozone, an additional health hazard. Future studies should revisit the Davis-Schrimpf field to continue the time series analysis and collect samples of the water seeps. Additionally, drone and ground studies should be conducted in the geothermal power plant adjacent to the gryphons to determine if benzene is being emitted from drilling activities.

Amelia Brown

Airborne and Ground-Based Analysis of Los Angeles County Landfill Gas Emissions

Amelia Brown, Hamilton College

California has the highest number of landfills of any individual US state. These landfills are concentrated in densely populated areas of California, especially within the Los Angeles metropolitan area. Landfills produce three main byproducts: heat, leachate, and landfill gas (LFG). LFG is primarily composed of methane (CH₄) and carbon dioxide (CO₂), with small concentrations of volatile organic compounds (VOCs) and other trace gases. The CH4 and CO2 components of LFG are well documented, but the VOCs and trace gases in LFG remain underexplored. This study investigates the emission of trace gases from four landfills in Los Angeles County, with a particular focus on substances known to have high Ozone Depletion Potentials (ODPs) and Global Warming Potentials (GWPs). The four landfills sampled were Chiquita Canyon Landfill, Lopez Canyon Landfill, Sunshine Canyon Landfill, and Toyon Canyon Landfill. Airborne samples were taken above the four landfills and ground samples were taken at Lopez Canyon as this was the only site accessible by our research team. The substances of interest were chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), and halons. Airborne CH4 and CO2 measurements over the four landfills were obtained using the Picarro instrument onboard NASA’s B-200 aircraft. Ground samples were collected using whole air sampling canisters and were analyzed to determine the concentrations of these gases. The analytical approach for the ground samples combined Gas Chromatography-Mass Spectrometry (GCMS) with Flame Ionization Detection (FID) and Mass Selective Detection (MSD), providing a comprehensive profile of the emitted compounds. Findings reveal elevated levels of substances with high ODP and GWP, which were banned under the Montreal Protocol of 1987 and its subsequent amendments due to their contributions to stratospheric ozone depletion and climate change. These results underscore the importance of monitoring and mitigating landfill gas emissions, particularly for those containing potent greenhouse gases and ozone-depleting substances.

Click here watch the Atmospheric Aerosols Group presentations.

Click here watch the Terrestrial Ecology Group presentations.

Click here watch the Ocean Group presentations.

Share

Details

Last Updated
Sep 25, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA instruments and aircraft are helping identify potential sources of critical minerals across vast swaths of California, Nevada, and other Western states. Pilots gear up to reach altitudes about twice as high as those of a cruising passenger jet.NASA NASA and the U.S. Geological Survey have been mapping the planets since Apollo. One team is searching closer to home for minerals critical to national security and the economy.
      If not for the Joshua trees, the tan hills of Cuprite, Nevada, would resemble Mars. Scalded and chemically altered by water from deep underground, the rocks here are earthly analogs for understanding ancient Martian geology. The hills are also rich with minerals. They’ve lured prospectors for more than 100 years and made Cuprite an ideal place to test NASA technology designed to map the minerals, craters, crusts, and ices of our solar system.
      Sensors that discovered lunar water, charted Saturn’s moons, even investigated ground zero in New York City were all tested and calibrated at Cuprite, said Robert Green, a senior research scientist at NASA’s Jet Propulsion Laboratory in Southern California. He’s honed instruments in Nevada for decades.
      One of Green’s latest projects is to find and map rocky surfaces in the American West that could contain minerals crucial to the nation’s economy and security. Currently, the U.S. is dependent on imports of 50 critical minerals, which include lithium and rare earth elements used in everything from rechargeable batteries to medicine.
      Scientists from the U.S. Geological Survey (USGS) are searching nationwide for domestic sources. NASA is contributing to this effort with high-altitude aircraft and sensors capable of detecting the molecular fingerprints of minerals across vast, treeless expanses in wavelengths of light not visible to human eyes.
      The hills of Cuprite, Nevada, appear pink and tan to the eye (top image) but they shine with mica, gypsum, and alunite among other types of minerals when imaged spectroscopically (lower image). NASA sensors used to study Earth and other rocky worlds have been tested there.USGS/Ray Kokaly The collaboration is called GEMx, the Geological Earth Mapping Experiment, and it’s likely the largest airborne spectroscopic survey in U.S. history. Since 2023, scientists working on GEMx have charted more than 190,000 square miles (500,000 square kilometers) of North American soil.
      Mapping Partnership Started During Apollo
      As NASA instruments fly in aircraft 60,000 feet (18,000 meters) overhead, Todd Hoefen, a geophysicist, and his colleagues from USGS work below. The samples of rock they test and collect in the field are crucial to ensuring that the airborne observations match reality on the ground and are not skewed by the intervening atmosphere.
      The GEMx mission marks the latest in a long history of partnerships between NASA and USGS. The two agencies have worked together to map rocky worlds — and keep astronauts and rovers safe — since the early days of the space race.
      For example, geologic maps of the Moon made in the early 1960s at the USGS Astrogeology Science Center in Flagstaff, Arizona, helped Apollo mission planners select safe and scientifically promising sites for the six crewed landings that occurred from 1969 to 1972. Before stepping onto the lunar surface, NASA’s Moon-bound astronauts traveled to Flagstaff to practice fieldwork with USGS geologists. A version of those Apollo boot camps continues today with astronauts and scientists involved in NASA’s Artemis mission.
      Geophysicist Raymond Kokaly, who leads the GEMx campaign for USGS, is pictured here conducting ground-based hyperspectral imaging of rock in Cuprite, Nevada, in April 2019.USGS/Todd Hoefen The GEMx mission marks the latest in a long history of partnerships between NASA and USGS. The two agencies have worked together to map rocky worlds — and keep astronauts and rovers safe — since the early days of the space race.
      Rainbows and Rocks
      To detect minerals and other compounds on the surfaces of rocky bodies across the solar system, including Earth, scientists use a technology pioneered by JPL in the 1980s called imaging spectroscopy. One of the original imaging spectrometers built by Robert Green and his team is central to the GEMx campaign in the Western U.S.
      About the size and weight of a minifridge and built to fly on planes, the instrument is called AVIRIS-Classic, short for Airborne Visible/Infrared Imaging Spectrometer. Like all imaging spectrometers, it takes advantage of the fact that every molecule reflects and absorbs light in a unique pattern, like a fingerprint. Spectrometers detect these molecular fingerprints in the light bouncing off or emitted from a sample or a surface.  
      In the case of GEMx, that’s sunlight shimmering off different kinds of rocks.  
      Compared to a standard digital camera, which “sees” three color channels (red, green, and blue), imaging spectrometers can see more than 200 channels, including infrared wavelengths of light that are invisible to the human eye.
      NASA spectrometers have orbited or flown by every major rocky body in our solar system. They’ve helped scientists investigate methane lakes on Titan, Saturn’s largest moon, and study Pluto’s thin atmosphere. One JPL-built spectrometer is currently en route to Europa, an icy moon of Jupiter, to help search for chemical ingredients necessary to support life.
      “One of the cool things about NASA is that we develop technology to look out at the solar system and beyond, but we also turn around and look back down,” said Ben Phillips, a longtime NASA program manager who led GEMx until he retired in 2025.
      The Newest Instrument
      More than 200 hours of GEMx flights are scheduled through fall 2025. Scientists will process and validate the data, with the first USGS mineral maps to follow. During these flights, an ER-2 research aircraft from NASA’s Armstrong Flight Research Center in Edwards, California, will cruise over the Western U.S. at altitudes twice as high as a passenger jet flies.
      At such high altitudes, pilot Dean Neeley must wear a spacesuit similar to those used by astronauts. He flies solo in the cramped cockpit but will be accompanied by state-of-the-art NASA instruments. In the belly of the plane rides AVIRIS-Classic, which will be retiring soon after more than three decades in service. Carefully packed in the plane’s nose is its successor: AVIRIS-5, taking flight for the first time in 2025.
      Together, the two instruments provide 10 times the performance of the older spectrometer alone, but even by itself AVIRIS-5 marks a leap forward. It can sample areas ranging from about 30 feet (10 meters) to less than a foot (30 centimeters).
      “The newest generation of AVIRIS will more than live up to the original,” Green said.
      More About GEMx
      The GEMx research project will last four years and is funded by the USGS Earth Mapping Resources Initiative. The initiative will capitalize on both the technology developed by NASA for spectroscopic imaging, as well as the agency’s expertise in analyzing the datasets and extracting critical mineral information from them.
      Data collected by GEMx is available here.
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      Karen Fox / Elizabeth Vlock
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
      Written by Sally Younger
      2025-086
      Share
      Details
      Last Updated Jul 10, 2025 Related Terms
      Earth Science Earth Jet Propulsion Laboratory NASA Aircraft Explore More
      3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
      Article 22 hours ago 2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
      Citizen science projects result in an overwhelmingly positive impact on the polar tourism experience. That’s…
      Article 1 day ago 4 min read NASA Mission Monitoring Air Quality from Space Extended 
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Since launching in 2023, NASA’s Tropospheric Emissions: Monitoring of Pollution mission, or TEMPO, has been measuring the quality of the air we breathe from 22,000 miles above the ground. June 19 marked the successful completion of TEMPO’s 20-month-long initial prime mission, and based on the quality of measurements to date, the mission has been extended through at least September 2026. The TEMPO mission is NASA’s first to use a spectrometer to gather hourly air quality data continuously over North America during daytime hours. It can see details down to just a few square miles, a significant advancement over previous satellites.
      “NASA satellites have a long history of missions lasting well beyond the primary mission timeline. While TEMPO has completed its primary mission, the life for TEMPO is far from over,” said Laura Judd, research physical scientist and TEMPO science team member at NASA’s Langley Research Center in Hampton, Virginia. “It is a big jump going from once-daily images prior to this mission to hourly data. We are continually learning how to use this data to interpret how emissions change over time and how to track anomalous events, such as smoggy days in cities or the transport of wildfire smoke.” 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      By measuring nitrogen dioxide (NO2) and formaldehyde (HCHO), TEMPO can derive the presence of near-surface ozone. On Aug. 2, 2024 over Houston, TEMPO observed exceptionally high ozone levels in the area. On the left, NO2 builds up in the atmosphere over the city and over the Houston Ship Channel. On the right, formaldehyde levels are seen reaching a peak in the early afternoon. Formaldehyde is largely formed through the oxidation of hydrocarbons, an ingredient of ozone production, such as those that can be emitted by petrochemical facilities found in the Houston Ship Channel. Trent Schindler/NASA's Scientific Visualization Studio When air quality is altered by smog, wildfire smoke, dust, or emissions from vehicle traffic and power plants, TEMPO detects the trace gases that come with those effects. These include nitrogen dioxide, ozone, and formaldehyde in the troposphere, the lowest layer of Earth’s atmosphere.
      “A major breakthrough during the primary mission has been the successful test of data delivery in under three hours with the help of NASA’s Satellite Needs Working Group. This information empowers decision-makers and first responders to issue timely air quality warnings and help the public reduce outdoor exposure during times of higher pollution,” said Hazem Mahmoud, lead data scientist at NASA’s Atmospheric Science Data Center located at Langley Research Center.
      …the substantial demand for TEMPO's data underscores its critical role…
      hazem mahmoud
      NASA Data Scientist
      TEMPO data is archived and distributed freely through the Atmospheric Science Data Center. “The TEMPO mission has set a groundbreaking record as the first mission to surpass two petabytes, or 2 million gigabytes, of data downloads within a single year,” said Mahmoud. “With over 800 unique users, the substantial demand for TEMPO’s data underscores its critical role and the immense value it provides to the scientific community and beyond.” Air quality forecasters, atmospheric scientists, and health researchers make up the bulk of the data users so far.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      On April 14, strong winds triggered the formation of a huge dust storm in the U.S. central plains and fueled the ignition of grassland fires in Oklahoma. On the left, the NO2 plumes originating from the grassland fires are tracked hour-by-hour by TEMPO. Smoke can be discerned from dust as a source since dust is not a source of NO2. The animation on the right shows the ultraviolet (UV) aerosol index, which indicates particulates in the atmosphere that absorb UV light, such as dust and smoke. Trent Schindler/NASA's Scientific Visualization Studio The TEMPO mission is a collaboration between NASA and the Smithsonian Astrophysical Observatory, whose Center for Astrophysics Harvard & Smithsonian oversees daily operations of the TEMPO instrument and produces data products through its Instrument Operations Center.
      Datasets from TEMPO will be expanded through collaborations with partner agencies like the National Oceanic and Atmospheric Administration (NOAA), which is deriving aerosol products that can distinguish between smoke and dust particles and offer insights into their altitude and concentration.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      On May 5, TEMPO measured NO2 emissions over the Twin Cities in the center of Minnesota during morning rush hour. The NO2 increases seen mid-day through the early evening hours are illustrated by the red and black shaded areas at the Red River Valley along the North Dakota state line. These levels are driven by emissions from the soils in agriculturally rich areas. Agricultural soil emissions are influenced by environmental factors like temperature and moisture as well as fertilizer application. Small fires and enhancements from mining activities can also be seen popping up across the region through the afternoon.Trent Schindler/NASA's Scientific Visualization Studio “These datasets are being used to inform the public of rush-hour pollution, air quality alerts, and the movement of smoke from forest fires,” said Xiong Liu, TEMPO’s principal investigator at the Center for Astrophysics Harvard & Smithsonian. “The library will soon grow with the important addition of aerosol products. Users will be able to use these expanded TEMPO products for air quality monitoring, improving forecast models, deriving pollutant amounts in emissions and many other science applications.”
      The TEMPO mission detects and highlights movement of smoke originating from fires burning in Manitoba on June 2. Seen in purple hues are observations made by TEMPO in the ultraviolet spectrum compared to Advanced Baseline Imagers (ABIs) on NOAA’s GOES-R series of weather satellites that do not have the needed spectral coverage. The NOAA GOES-R data paired with NASA’s TEMPO data enhance state and local agencies’ ability to provide near-real-time smoke and dust impacts in local air quality forecasts.NOAA/NESDIS/Center for Satellite Applications and Research “The TEMPO data validation has truly been a community effort with over 20 agencies at the federal and international level, as well as a community of over 200 scientists at research and academic institutions,” Judd added. “I look forward to seeing how TEMPO data will help close knowledge gaps about the timing, sources, and evolution of air pollution from this unprecedented space-based view.”
      An agency review will take place in the fall to assess TEMPO’s achievements and extended mission goals and identify lessons learned that can be applied to future missions.
      The TEMPO mission is part of NASA’s Earth Venture Instrument program, which includes small, targeted science investigations designed to complement NASA’s larger research missions. The instrument also forms part of a virtual constellation of air quality monitors for the Northern Hemisphere which includes South Korea’s Geostationary Environment Monitoring Spectrometer and ESA’s (European Space Agency) Sentinel-4 satellite. TEMPO was built by BAE Systems Inc., Space & Mission Systems (formerly Ball Aerospace). It flies onboard the Intelsat 40e satellite built by Maxar Technologies. The TEMPO Instrument Operations Center and the Science Data Processing Center are operated by the Smithsonian Astrophysical Observatory, part of the Center for Astrophysics | Harvard & Smithsonian in Cambridge.


      For more information about the TEMPO instrument and mission, visit:
      https://science.nasa.gov/mission/tempo/

      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Jul 03, 2025 LocationNASA Langley Research Center Related Terms
      Tropospheric Emissions: Monitoring of Pollution (TEMPO) Earth Earth Science Earth Science Division General Langley Research Center Missions Science Mission Directorate Explore More
      2 min read Hubble Observations Give “Missing” Globular Cluster Time to Shine
      A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope…
      Article 15 minutes ago 5 min read NASA Advances Pressure Sensitive Paint Research Capability
      Article 1 hour ago 5 min read How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      The Department of the Air Force achieved 100% of its annual recruitment goal three months ahead of schedule, a testament to the enduring appeal of service and the effectiveness of modernized recruiting strategies.

      View the full article
    • By European Space Agency
      Asteroid 2024 YR4 made headlines earlier this year when its probability of impacting Earth in 2032 rose as high as 3%. While an Earth impact has now been ruled out, the asteroid’s story continues.
      The final glimpse of the asteroid as it faded out of view of humankind’s most powerful telescopes left it with a 4% chance of colliding with the Moon on 22 December 2032.
      The likelihood of a lunar impact will now remain stable until the asteroid returns to view in mid-2028. In this FAQ, find out why we are left with this lingering uncertainty and how ESA's planned NEOMIR space telescope will help us avoid similar situations in the future.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4580-4581: Something in the Air…
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on June 23, 2025 — Sol 4578, or Martian day 4,578 of the Mars Science Laboratory mission — at 02:38:50 UTC. NASA/JPL-Caltech Written by Scott VanBommel, Planetary Scientist at Washington University in St. Louis
      Earth planning date: Monday, June 23, 2025
      Curiosity was back at work on Monday, with a full slate of activities planned. While summer has officially arrived for much of Curiosity’s team back on Earth, Mars’ eldest active rover is recently through the depths of southern Mars winter and trending toward warmer temperatures itself. Warmer temperatures mean less component heating is required and therefore more power is freed up for science and driving. However, the current cooler temperatures do present an opportunity to acquire quality short-duration APXS measurements first thing in the morning, which is what Curiosity elected to do once again.
      Curiosity’s plan commenced by brushing a rock target with potential cross-cutting veins, “Hornitos,” and subsequently analyzing it with APXS. A sequence of Mastcam images followed on targets such as “Volcán Peña Blanca,” “La Pacana,” “Iglesia de Jarinilla de Umatia,” and “Ayparavi.” ChemCam, returning to action after a brief and understood hiatus, rounded out the morning’s chemical analysis activities with a 5-point analysis of Ayparavi. After some images of the brush, and a handful of MAHLI snaps of Hornitos, Curiosity was on its way with a planned drive of about 37 meters (about 121 feet).Curiosity’s night would not be spent entirely dreaming of whatever rovers dream, but rather conducting a lengthy APXS analysis of the atmosphere. These analyses enable Curiosity’s team to assess the abundance of argon in the atmosphere — from a volume about the size of a pop can (or soda can, depending on your unit of preference) — which can be used to trace global circulation patterns and better understand modern Mars. Recently, Curiosity has been increasing the frequency of these measurements and pairing them with ChemCam “Passive Sky” observations. These ChemCam activities do not utilize the instrument’s laser, but instead use its other components to characterize the air above the rover. By combining APXS and ChemCam observations of the atmosphere, Curiosity’s team is able to better assess daily and seasonal trends in gases around Gale crater. A ChemCam “Passive Sky” was the primary observation in the second sol of the plan, with Curiosity spending much of the remaining time recharging and eagerly awaiting commands from Wednesday’s team.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jun 26, 2025 Related Terms
      Blogs Explore More
      2 min read Clay Minerals From Mars’ Most Ancient Past?


      Article


      3 days ago
      4 min read Curiosity Blog, Sols 4577-4579: Watch the Skies


      Article


      6 days ago
      2 min read Curiosity Blog, Sols 4575-4576: Perfect Parking Spot


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...