Jump to content

NASA Wallops to Support Sounding Rocket Launch


NASA

Recommended Posts

  • Publishers

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Aerial view of NASA's Wallops Flight Facility's launch range structures along the coastline of Wallops Island, Virginia. Ocean, bay and marsh lands surround the range.
This September 2024 aerial photograph shows the coastal launch range at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Wallops is the agency’s only owned-and-operated launch range.
Courtesy Patrick J. Hendrickson; used with permission

NASA’s Wallops Flight Facility in Virginia is scheduled to support the launch of a suborbital sounding rocket for the Department of Defense during a launch window that runs 1:45 to 6:30 p.m. EDT each day from Sept. 26 to 30. 

No real-time launch status updates will be available and the launch will not be livestreamed. 

The rocket launch may be visible from the Chesapeake Bay region.

Share

Details

Last Updated
Sep 25, 2024
Editor
Olivia F. Littleton
Contact
Jeremy Eggers
Location
Wallops Flight Facility

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      9 min read
      Launch Your Creativity with These Space Crafts!
      In honor of the completion of our Nancy Grace Roman Space Telescope’s spacecraft — the vehicle that will maneuver the observatory to its place in space and enable it to function once there — we’re bringing you some space crafts you can complete at home!
      Join us for a journey across the cosmos, starting right in your own pantry. 
      Stardust Slime
      Did you know that most of your household ingredients are made of stardust? And so are you! Nearly every naturally occurring element was forged by living or dying stars. 
      Take the baking soda in this slime recipe, for example. It’s made up of sodium, hydrogen, carbon, and oxygen. The hydrogen was made during the big bang, right at the start of the universe. But the other three elements were created by dying stars. So when you show your friends your space-y slime, you can tell them it’s literally made of stardust!
      Instructions:
      1 5 oz. bottle clear glue ½ tablespoon baking soda food coloring 1 tablespoon contact lens solution 1 tablespoon glitter Directions:
      Pour the glue into a bowl
      Mix in the baking soda
      Add food coloring (we recommend blue, purple, black, or a combination).
      Add contact lens solution and use your hands to work it through the slime. It will initially be very sticky! You can add a little extra contact lens solution to make it firmer and less goopy.
      Add glitter a teaspoon at a time, using as much or as little as you like!
      Space Suckers
      Now let’s travel a little farther, past Earth’s atmosphere and into the realm of space. That’s where Roman is headed once the whole observatory is complete and passes all of its testing!
      Roman will scan the skies from space to make it extra sensitive to faint infrared light. It’s harder to see from the ground because our atmosphere scatters and absorbs infrared radiation, which obscures observations. 
      Some astronauts have reported that space smells metallic or like gunpowder, but don’t worry — you can choose a more pleasant flavor for your space suckers!
      Ingredients
      2 cups sugar 2/3 cup light corn syrup 2/3 cup water gel food coloring flavor oil edible glitter dust sucker sticks sucker mold Directions
      Prep the molds by adding sucker sticks.
      Mix sugar, light corn syrup, and water together in a pot on the stove over medium heat.
      Turn it up to medium-high heat and let it boil without stirring for about 6 minutes.
      Quickly stir in the flavor oil of your choice, gel food coloring, plus as much edible glitter as you like (reserve some for dusting).
      Carefully but quickly spoon the mixture into the molds. Spin the sticks so they’re evenly coated. Add a sprinkle of reserved edible glitter and allow to harden.” An image on the left side of the card shows the result: a deep purple sucker with silver glitter embedded.
      Fizzy Planets
      As we move toward our outer solar system, we’ll pass the orbits of the gas giant planets Jupiter and Saturn. While they don’t actually fizz like the mini planets you can make at home, they do have some pretty exotic chemistry that stems from their extreme pressures, temperatures, and compositions. For example, the hydrogen in their cores behaves like liquid metal instead of a gas. It even conducts electricity!
      Roman will use multiple planet-spotting techniques –– microlensing, transits, and direct imaging –– to help us study a variety of worlds, including both gas giants and rocky worlds similar to our own.
      Ingredients
      3 cups baking soda ¾ cup water food coloring ¼ cup vinegar Directions
      Mix a few drops of food coloring into ¼ cup of water and pour into a bowl with 1 cup of baking soda.
      Repeat step one two more times using different colors.
      Scoop together bits from each mixture to form small balls. Add an extra splash of water to any mixture that’s too crumbly.
      Douse the balls with vinegar using an eye dropper or teaspoon and watch them fizz!
      Marshmallow Constellations
      As we venture farther out into space, we’ll reach some familiar stars! Constellations are groups of stars that appear close together in the sky as seen from Earth. But if you actually journeyed out to them, you might be surprised to discover that they’re often super far apart from each other!
      Though constellations aren’t made of stars that are actually bound together in any way, they can still be useful for referencing a cosmic object’s location in the sky. For example, you can use a pair of binoculars or a telescope to take a look at the nebula found beneath Orion’s Belt, marked by the glitter patch in the recipe card above! You can find the constellation printables here.
      Supplies
      toothpicks or mini pretzel sticks mini marshmallows constellation printables scissors Directions
      Attach marshmallows to toothpicks or pretzel sticks using the constellation cards as a guide. Carefully trim toothpicks or pretzel sticks as needed using scissors.
      Black Hole Bath Bombs
      Black holes –– objects with such strong gravity that not even light can escape their clutches –– lurk unseen throughout our galaxy. Stray too close to one and you’re in for a wild ride! But they aren’t cosmic vacuum cleaners, despite what you may have grown to believe. Just keep your distance and they’ll affect you the same way as any other object of the same mass.
      Astronomers have found dozens of black holes in our galaxy by seeing how their gravity affects nearby objects. But there may be 100 million more that lack a visible companion to signal their presence. Roman will find some of these solitary black holes by seeing how their gravity focuses the light from farther stars.
      Ingredients
      1 cup baking soda ½ cup citric acid ½ cup cornstarch 2 tablespoons coconut oil black food coloring optional: 2 teaspoons essential oil for scent optional: ½ cup Epsom salt Directions
      Mix the baking soda, citric acid, cornstarch, and Epsom salt (optional) together in a bowl.
      In a separate bowl, mix the coconut oil, food coloring, and essential oil (optional).
      Pour the liquid mixture into the dry mixture slowly while whisking it all together. Add a couple tiny splashes of water and whisk it in quickly.
      Tightly press the mixture into round molds. Leave them for a few hours and then they’ll be ready to use!
      Galaxy in a Jar
      Now let’s go so far we can see our Milky Way galaxy from the outside — something many astronomers probably wish they could do at times! 
      Sort of like how Earth’s atmosphere can affect our view of space, dust in our galaxy can get in the way, too. That makes it easier to study other galaxies than our own in some ways! Roman’s combination of a large field of view, crisp resolution, and the ability to peer through dust make it the ideal instrument to study the Milky Way. The mission will build on previous observations to generate the most detailed map of our galaxy to date.
      Ingredients
      hot water glitter glue glitter super glue (optional) Directions
      Mostly fill a 16 oz. glass jar with very hot water, leaving a couple inches of space at the top.
      Add at least ¼ cup of glitter glue in colors of your choosing.
      Add loose glitter a couple of teaspoons at a time, using as much or as little as you like! You can use a combination of fine and chunky glitter for an extended swirling effect.
      Optional: Super glue the lid to the jar.
      Once the water has sufficiently cooled, give the jar a gentle shake to see your galaxy swirl!
      NOTE: Closely monitor children to ensure the jar doesn’t break.
      Pinwheel Galaxy Pinwheels
      As we continue our cosmic excursion, you’ll see other galaxies sprinkled throughout space. Many are spiral galaxies, like our Milky Way and the Pinwheel Galaxy from the craft described above. (You can find more detailed instructions and the printout you’ll need here.)
      But galaxies come in other varieties, too. Through Roman’s wide, deep surveys, astronomers are sure to see every type. Scientists will study the shapes and distances of billions of galaxies to help us understand dark energy — a mysterious pressure that’s speeding up the universe’s expansion. 
      Supplies
      Pinwheel Galaxy printout pipe cleaner or chopsticks scissors popsicle stick single hole puncher Directions
      Cut out the hexagonal shape for your galaxy pinwheel.
      Make cuts down the white lines.
      Punch holes in the white dots: six around the edges and one in the center.
      Turn the paper so it’s face-down.
      Thread a pipe cleaner through the center hole.
      Going around the circle, fold each flap so the pipe cleaner goes through the hole.
      Tie a knot in the pipe cleaner to secure the front of the pinwheel. Wrap the other side of the pipe cleaner around a popsicle stick.
      Universe Dough
      We’re nearing the end of our voyage, having traveled so far through space and time that we can take in the whole universe! We’ve learned a lot about it, but there are still plenty of open questions. Some of its biggest components, dark energy and dark matter (invisible matter seen only via its gravitational influence), are huge mysteries Roman will explore. And since the observatory will reveal such large, deep swaths of space, who knows what new puzzles we’ll soon uncover!
      Ingredients 1 cup flour ½ cup salt 1 tablespoon vegetable oil ½ cup hot water food coloring glitter Directions
      Mix flour and salt in a bowl.
      Add several drops of food coloring to hot water, and stir into dry mixture along with the oil.
      Add as much glitter as you like and knead it into the dough for several minutes.
      Add water or flour as needed to adjust the consistency.
      Still feeling crafty? Try your hand at these 3D and paper spacecraft models. If you’re eager for a more advanced space craft, check out these embroidery creations for inspiration! Or if you’re ready for a break, take a virtual tour of an interactive version of the Roman Space Telescope here.
      Share








      Details
      Last Updated Sep 27, 2024 Related Terms
      For Kids and Students Nancy Grace Roman Space Telescope NASA STEM Projects View the full article
    • By NASA
      4 min read
      Pioneer of Change: America Reyes Wang Makes NASA Space Biology More Open
      America Reyes Wang, the lead of the the Space Biology Biospecimen Sharing Program at NASA’s Ames Research Center in California’s Silicon Valley, stands beside a spacesuit display. Photo courtesy of America Reyes Wang As humans return to the Moon and push on toward Mars, scientists are ramping up research into the effects of space on the body to make sure astronauts stay healthy on longer missions. This research often involves spaceflight studies of rodents, insects, and other models in orbiting laboratories such as the International Space Station. However, space-related biological samples are difficult to get, meaning that researchers who want to study space biology are frequently out of luck.
      America Reyes Wang, a KBR employee and the lead of the Space Biology Biospecimen Sharing Program at NASA’s Ames Research Center in California’s Silicon Valley, oversees the team that has changed that. Birthed from an initiative first pioneered in the 1960s, the Biospecimen Sharing Program collects samples and data from NASA non-human space biology studies and makes them available in the public, open NASA Open Science Data Repository (OSDR). 
      To derive the most benefit from the precious few biology studies taking place in space, Reyes Wang arranges collaborations on space biology dissections with NASA-funded researchers so that her team can collect and preserve unutilized biospecimens for others to use. Outside researchers can request the samples to study in person by writing and submitting proposals. Once analyzed, researchers share their data back with the NASA OSDR for other investigators to access and study.
      The ethos of open science is central to Reyes Wang’s approach to her work. “The samples that we work with are so precious,” she said. “To me, it’s a no-brainer — why not share what we can share?”
      America Reyes Wang wears personal protective equipment (PPE) while working on an activity for NASA’s Biospecimen Sharing Program. Photo courtesy of America Reyes Wang Reyes Wang aspired to work in the scientific or medical field from a young age, driven by her desire to help people. Her father, who was born in El Salvador and dreamed of being an astronaut after watching the 1969 Moon landing, inspired Reyes Wang to fall in love with space. She also credited her Salvadoran and Mexican family with teaching her the value of understanding different experiences. 
      “To me, being Hispanic, especially as a Latina in STEM, means recognizing and building upon the hard work and sacrifices of those who came before me, as well as extending a helping hand to those around me for the betterment of us all,” Reyes Wang said. “It also means enjoying and sharing our vibrant cultures.” 
      As a student at Stanford University, Reyes Wang conducted neurobiology research with rodents, but assumed she would have to choose her love of biology over her love of space. The field of space biology allowed her to combine those interests. Having quietly dreamed of working for NASA for years, she was also thrilled to find that she could work on NASA missions as a space biologist.
      If we want to keep up with the pace of humanity’s aspirations to travel further and for longer … open science is one of the best tools we have for achieving those dreams.
      America Reyes Wang
      Biospecimen Sharing Program Lead
      Reyes Wang first found a role supporting NASA as an experiment support scientist for the agency’s Rodent Research Program. While she no longer facilitates research on the International Space Station in her current position, she uses her scientific expertise and collaborative outlook to guide the Biospecimen Sharing Program in a direction that will most help advance science. 
      Despite space biology’s status as a relatively niche field, Reyes Wang has noted its tremendous impact on the biological sciences, medicine, and technology as a whole. For example, spaceflown biological samples are often used to investigate diseases that affect people on Earth. Reyes Wang’s involvement in accelerating these studies captures her long-held desire to help people.
      “Open science gives the world an opportunity to get these important answers much more quickly,” Reyes Wang said. “If we want to keep up with the pace of humanity’s aspirations to travel further and for longer, we need to pick up the pace when it comes to getting the answers, and I think open science is one of the best tools we have for achieving those dreams.”
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer
      Share








      Details
      Last Updated Sep 26, 2024 Related Terms
      Biological & Physical Sciences Open Science Space Biology Explore More
      1 min read Women in Astronomy Citizen Science Webinar This Thursday


      Article


      3 days ago
      4 min read NASA Awards 15 Grants to Support Open-Source Science


      Article


      1 month ago
      2 min read Geospatial AI Foundation Model Team Receives NASA Marshall Group Achievement Award 


      Article


      1 month ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Water piping is installed near the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center in December 2014. The project to replace and upgrade the center’s high pressure industrial water system was a key milestone in preparations to test the SLS (Space Launch System) core stage ahead of the successful Artemis I launch.NASA/Danny Nowlin Employees install a 96-inch valve near the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center as part of a high-pressure industrial water upgrade project in March 2015.NASA/Danny Nowlin In this March 2022 photo, crews use a shoring system to hold back soil as they install new 75-inch piping leading from the NASA Stennis High Pressure Industrial Water Facility to the valve vault pit serving the Fred Haise Test Stand.NASA/Danny Nowlin Crews use a specially designed tool to place a new pipeline liner inside the existing carrier pipe near the Fred Haise Test Stand in 2024 in the last phase of updating the original test complex industrial water system at NASA’s Stennis Space Center.NASA/Danny Nowlin Crews prepare new pipeline liner sections for installation near the Fred Haise Test Stand in 2024 in the last phase of updating the original test complex industrial water system at NASA’s Stennis Space Center.NASA/Danny Nowlin For almost 60 years, NASA’s Stennis Space Center has tested rocket systems and engines to help power the nation’s human space exploration dreams. Completion of a critical water system infrastructure project helps ensure the site can continue that frontline work moving forward.
      “The infrastructure at NASA Stennis is absolutely critical for rocket engine testing for the agency and commercial companies,” said NASA project manager Casey Wheeler. “Without our high pressure industrial water system, testing does not happen. Installing new underground piping renews the lifespan and gives the center a system that can be operated for the foreseeable future, so NASA Stennis can add to its nearly six decades of contributions to space exploration efforts.”
      The high pressure industrial water system delivers hundreds of thousands of gallons of water per minute through underground pipes to cool rocket engine exhaust and provide fire suppression capabilities during testing. Without the water flow, the engine exhaust, reaching as hot as 6,000 degrees Fahrenheit, could melt the test stand’s steel flame deflector.
      Each test stand also features a FIREX system that holds water in reserve for use in the event of a mishap or fire. During SLS (Space Launch System) core stage testing, water also was used to create a “curtain” around the test hardware, dampening the high levels of noise generated during hot fire and lessening the video-acoustic impact that can cause damage to infrastructure and the test hardware.
      Prior to the system upgrade, the water flow was delivered by the site’s original piping infrastructure built in the 1960s. However, that infrastructure had well exceeded its expected 30-year lifespan.

      Scope of the Project
      The subsequent water system upgrade was planned across multiple phases over a 10-year span. Crews worked around ever-changing test schedules to complete three major projects representing more than $50 million in infrastructure investment.
      “Many people working the construction jobs for these projects are from the Gulf Coast area, so it has created jobs and work for the people doing the construction,” Wheeler said. “Some of the specialty work has had people coming in from all over the country, as well as vendors and suppliers that are supplying the materials, so that has an economic impact here too.”
      Crews started by replacing large sections of piping, including a 96-inch line, from the 66-million-gallon onsite reservoir to the Thad Cochran (B-1/B-2) Test Stand. This phase also included the installation of a new 25,000-gallon electric pump at the High Pressure Industrial Water Facility to increase water flow capacity. The upgrades were critical for NASA Stennis to conduct Green Run testing of the SLS core stage in 2020-21 ahead of the successful Artemis I launch.
      Work in the A Test Complex followed with crews replacing sections of 75-inch piping from the water plant and installing several new 66-inch gate valves. 
      In the final phase, crews used an innovative approach to install new steel liners within existing pipes leading to the Fred Haise Test Stand (formerly A-1 Test Stand). The work followed NASA’s completion of a successful RS-25 engine test campaign last April for future Artemis missions to the Moon and beyond. The stand now is being prepared to begin testing of new RS-25 flight engines.
      Overall, the piping project represents a significant upgrade in design and materials. The new piping is made from carbon steel, with protective linings to prevent corrosion and gate valves designed to be more durable.

      Importance of Water
      It is hard to overstate the importance of the work to ensure ongoing water flow. For a typical 500-second RS-25 engine test on the Fred Haise Test Stand, around 5 million gallons of water is delivered from the NASA Stennis reservoir through a quarter-of-a-mile of pipe before entering the stand to supply the deflector and cool engine exhaust.
      “Without water to cool the deflector and the critical parts of the test stand that will get hot from the hot fire itself, the test stand would need frequent corrective maintenance,” Wheeler said. “This system ensures the test stands remain in a condition where continuous testing can happen.”
      Share
      Details
      Last Updated Sep 26, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      7 min read Lagniappe for September 2024
      Article 3 weeks ago 5 min read Lagniappe for August 2024
      Article 2 months ago 4 min read NASA Stennis Flashback: Shuttle Team Achieves Unprecedented Milestone
      Article 2 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds that… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   6 min read
      NASA’s Hubble Finds that a Black Hole Beam Promotes Stellar Eruptions
      This is an artist’s concept looking down into the core of the giant elliptical galaxy M87. A supermassive black hole ejects a 3,000-light-year-long jet of plasma, traveling at nearly the speed of light. In the foreground, to the right is a binary star system. The system is far from the black hole, but in the vicinity of the jet. In the system an aging, swelled-up, normal star spills hydrogen onto a burned-out white dwarf companion star. As the hydrogen accumulates on the surface of the dwarf, it reaches a tipping point where it explodes like a hydrogen bomb. Novae frequently pop-off throughout the giant galaxy of 1 trillion stars, but those near the jet seem to explode more frequently. So far, it’s anybody’s guess why black hole jets enhance the rate of nova eruptions. NASA, ESA, Joseph Olmsted (STScI)
      Download this image

      In a surprise finding, astronomers using NASA’s Hubble Space Telescope have discovered that the blowtorch-like jet from a supermassive black hole at the core of a huge galaxy seems to cause stars to erupt along its trajectory. The stars, called novae, are not caught inside the jet, but apparently in a dangerous neighborhood nearby.
      The finding is confounding researchers searching for an explanation. “We don’t know what’s going on, but it’s just a very exciting finding,” said lead author Alec Lessing of Stanford University. “This means there’s something missing from our understanding of how black hole jets interact with their surroundings.”
      A nova erupts in a double-star system where an aging, swelled-up, normal star spills hydrogen onto a burned-out white dwarf companion star. When the dwarf has tanked up a mile-deep surface layer of hydrogen that layer explodes like a giant nuclear bomb. The white dwarf isn’t destroyed by the nova eruption, which ejects its surface layer and then goes back to siphoning fuel from its companion, and the nova-outburst cycle starts over again.
      Hubble found twice as many novae going off near the jet as elsewhere in the giant galaxy during the surveyed time period. The jet is launched by a 6.5-billion-solar-mass central black hole surrounded by a disk of swirling matter. The black hole, engorged with infalling matter, launches a 3,000-light-year-long jet of plasma blazing through space at nearly the speed of light. Anything caught in the energetic beam would be sizzled. But being near its blistering outflow is apparently also risky, according to the new Hubble findings.
      A Hubble Space Telescope image of the giant galaxy M87 shows a 3,000-light-year-long jet of plasma blasting from the galaxy’s 6.5-billion-solar-mass central black hole. The blowtorch-like jet seems to cause stars to erupt along its trajectory. These novae are not caught inside the jet, but are apparently in a dangerous neighborhood nearby. During a recent 9-month survey, astronomers using Hubble found twice as many of these novae going off near the jet as elsewhere in the galaxy. The galaxy is the home of several trillion stars and thousands of star-like globular star clusters. NASA, ESA, STScI, Alec Lessing (Stanford University), Mike Shara (AMNH); Acknowledgment: Edward Baltz (Stanford University); Image Processing: Joseph DePasquale (STScI)
      Download this image

      The finding of twice as many novae near the jet implies that there are twice as many nova-forming double-star systems near the jet or that these systems erupt twice as often as similar systems elsewhere in the galaxy.
      “There’s something that the jet is doing to the star systems that wander into the surrounding neighborhood. Maybe the jet somehow snowplows hydrogen fuel onto the white dwarfs, causing them to erupt more frequently,” said Lessing. “But it’s not clear that it’s a physical pushing. It could be the effect of the pressure of the light emanating from the jet. When you deliver hydrogen faster, you get eruptions faster. Something might be doubling the mass transfer rate onto the white dwarfs near the jet.” Another idea the researchers considered is that the jet is heating the dwarf’s companion star, causing it to overflow further and dump more hydrogen onto the dwarf. However, the researchers calculated that this heating is not nearly large enough to have this effect.
      “We’re not the first people who’ve said that it looks like there’s more activity going on around the M87 jet,” said co-investigator Michael Shara of the American Museum of Natural History in New York City. “But Hubble has shown this enhanced activity with far more examples and statistical significance than we ever had before.”
      Shortly after Hubble’s launch in 1990, astronomers used its first-generation Faint Object Camera (FOC) to peer into the center of M87 where the monster black hole lurks. They noted that unusual things were happening around the black hole. Almost every time Hubble looked, astronomers saw bluish “transient events” that could be evidence for novae popping off like camera flashes from nearby paparazzi. But the FOC’s view was so narrow that Hubble astronomers couldn’t look away from the jet to compare with the near-jet region. For over two decades, the results remained mysteriously tantalizing.
      Compelling evidence for the jet’s influence on the stars of the host galaxy was collected over a nine-month interval of Hubble observing with newer, wider-view cameras to count the erupting novae. This was a challenge for the telescope’s observing schedule because it required revisiting M87 precisely every five days for another snapshot. Adding up all of the M87 images led to the deepest images of M87 that have ever been taken.
      In a surprise finding, astronomers, using NASA’s Hubble Space Telescope have discovered that the jet from a supermassive black hole at the core of M87, a huge galaxy 54 million light years away, seems to cause stars to erupt along its trajectory.
      NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris Hubble found 94 novae in the one-third of M87 that its camera can encompass. “The jet was not the only thing that we were looking at — we were looking at the entire inner galaxy. Once you plotted all known novae on top of M87 you didn’t need statistics to convince yourself that there is an excess of novae along the jet. This is not rocket science. We made the discovery simply by looking at the images. And while we were really surprised, our statistical analyses of the data confirmed what we clearly saw,” said Shara.
      This accomplishment is entirely due to Hubble’s unique capabilities. Ground-based telescope images do not have the clarity to see novae deep inside M87. They cannot resolve stars or stellar eruptions close to the galaxy’s core because the black hole’s surroundings are far too bright. Only Hubble can detect novae against the bright M87 background.
      Novae are remarkably common in the universe. One nova erupts somewhere in M87 every day. But since there are at least 100 billion galaxies throughout the visible universe, around 1 million novae erupt every second somewhere out there.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More:

      Hubble’s Messier Catalog: M87


      Hubble Black Holes


      Monster Black Holes are Everywhere

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Alec Lessing
      Stanford University, Stanford, CA
      Michael Shara
      American Museum of Natural History, New York, NY
      Share








      Details
      Last Updated Sep 26, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Black Holes Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble E-books



      Hubble’s Messier Catalog



      Hubble Online Activities


      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying the company’s Dragon spacecraft is launched on NASA’s SpaceX Crew-8 mission to the International Space Station with NASA astronauts Matthew Dominick, Michael Barratt, and Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin onboard, Sunday, March 3, 2024, at NASA’s Kennedy Space Center in Florida.NASA/Aubrey Gemignani NASA invites the public to participate as virtual guests in the launch of the agency’s SpaceX Crew-9 mission. NASA astronaut Nick Hague, commander, and Roscosmos cosmonaut Aleksandr Gorbunov, mission specialist, will embark on a flight aboard a SpaceX Dragon spacecraft, launching no earlier than 1:17 p.m. EDT on Saturday, Sept. 28, from Space Launch Complex-40 at Cape Canaveral Space Force Station in Florida.
      Members of the public can register to attend the launch virtually. Virtual guests for this mission will receive curated resources, interactive opportunities, updates with the latest news, and a mission-specific collectible stamp for their virtual guest passport after liftoff. Don’t have a passport yet? Print yours here and get ready to add a stamp!
      Live coverage and countdown commentary will begin at 9:10 a.m. EDT Saturday, Sept. 28, streaming on NASA+  agency’s website. Learn how to stream NASA content on a variety of platforms, including social media.
      Want to learn more about the mission and NASA’s Commercial Crew Program? Follow along on the mission blog, Commercial Crew blog, @commercial_crew on X, or check out Commercial Crew on Facebook.
      View the full article
  • Check out these Videos

×
×
  • Create New...