Jump to content

NASA’s Art Program is Back


NASA

Recommended Posts

  • Publishers
An image of two murals painted on loading dock garage doors. The murals include bold, bright colors and geometric shapes. The image to the left features Earth with a satellite that features the NASA logo. The mural on the right has an image of a child in an astronaut suit playing with toys.
NASA/Joel Kowsky

NASA launched its reimagined art program by unveiling two murals on Sept. 23, 2024. The murals, titled “To the Moon, and Back,” were created by New York-based artist team Geraluz and WERC and use geometrical patterns to invite deeper reflection on the exploration, creativity, and connection with the cosmos. The vision of this next phase is to inspire and engage the Artemis Generation with community murals and other art projects for the benefit of humanity.

NASA has long used art to tell the story of its awe-inspiring missions. Soon after its inception, the agency started a formal program commissioning artists to develop inspiring pieces like portraits and paintings that highlighted an unexpected side of the agency. In 1962, NASA’s then Administrator James Webb tasked staffer and artist James Dean with implementing the new program, and with the help of the National Gallery of Art, Dean laid the framework to artistically capture the inspiration of NASA’s Apollo program. As the NASA Art Program continues to evolve, the agency remains focused on inspiring and engaging the next generation of explorers – the Artemis Generation – in new and unexpected ways, including through art.

Image Credit: NASA/Joel Kowsky

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The inaugural murals for the relaunched NASA Art Program appear side-by-side at 350 Hudson Street, Monday, Sept. 23, 2024, in New York City. The murals, titled “To the Moon, and Back,” were created by New York-based artist team Geraluz and WERC and use geometrical patterns to invite deeper reflection on the exploration, creativity, and connection with the cosmos. NASA/Joel Kowsky NASA launched the next phase of its art program with two new space-themed murals in New York’s Hudson Square neighborhood in Manhattan. The vision of the reimagined NASA Art Program is to inspire and engage the Artemis Generation with community murals and other art projects for the benefit of humanity. 
      “To continue pushing the boundaries of discovery and exploration we’ll need future generations to think critically and use creativity and ingenuity to solve some of our biggest challenges, and art is essential in preparing young minds for this task,” said NASA Deputy Administrator Pam Melroy. “I am thrilled that NASA’s Art Program is returning with such an impactful project that will inspire the next generation – the Artemis Generation – to be curious, dream big, and hopefully join us in our work at NASA someday.”
      For its inaugural project NASA collaborated with the Hudson Square Business Improvement District on an open call for New York-based artists to design and install a large-scale mural inspired by NASA’s work and missions.
      The two side-by-side murals, titled To the Moon, and Back, are located at 350 Hudson Street and were created by New York-based artist team Geraluz and WERC. The team received a small award for design fees, materials, labor, and equipment, with a portion of funds provided by NASA and matched by Hudson Square Business Improvement District.
      The piece illustrates a cosmic future with a universe of possibilities expressed through the dreams and aspirations of children. The use of geometrical patterns invites deeper reflection on the exploration, creativity, and our connection with the cosmos.
      “We are thrilled to partner with NASA on this visionary project, bringing together the exciting world of space exploration and the vibrant, creative energy of Hudson Square. This installation is not just a celebration of NASA’s incredible mission, but a continuation of our commitment to transforming the public realm through groundbreaking public art,” said Samara Karasyk, president of Hudson Square Business Improvement District. “It will inspire the next generation, ignite curiosity about space exploration, and strengthen our neighborhood’s identity as a limitless hub for creativity, mirroring the infinite possibilities of outer space. We can’t wait to see how this installation captivates both locals and visitors alike.”
      NASA has long used art to tell the story of its awe-inspiring missions. Soon after its inception, the agency started a formal program commissioning artists to develop inspiring pieces like portraits and paintings that highlighted an unexpected side of the agency. In 1962, NASA’s then Administrator James Webb tasked staffer and artist James Dean with implementing the new program, and with the help of the National Gallery of Art, Dean laid the framework to artistically capture the inspiration of NASA’s Apollo program. As the NASA Art Program continues to evolve, the agency remains focused on inspiring and engaging the next generation of explorers – the Artemis Generation – in new and unexpected ways, including through art.
      For more information on the NASA missions that will inspire future projects:
      https://www.nasa.gov
      Share
      Details
      Last Updated Sep 24, 2024 Related Terms
      General Explore More
      4 min read Educational Activities in Space
      Article 3 hours ago 2 min read Station Science Top News: September 20, 2024
      Article 1 day ago 2 min read NASA Ames Stars of the Month: September 2024
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4314-4315: Wait, What Was That Back There?
      A view of the right-middle wheel of NASA’s Mars rover Curiosity, one of the rover’s six well-traveled wheels. Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on Sept. 22, 2024, sol 4312 (Martian day 4,312) of the Mars Science Laboratory Mission, at 18:37:41 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Sept. 23, 2024
      After a busy weekend of activities, Curiosity is ready for another week of planning. One of the activities over the weekend was our periodic check-in on our wheels to see how they are holding up on the rough terrain. The image shows the MAHLI view of the right-middle (RM) wheel, which is still holding up well despite taking some of the worst abuse from Mars.
      We are planning contact science with APXS and MAHLI on “Burst Rock,” which is a target that has an interesting texture and has bright-toned clasts and a gray coating. It is part of the Gediz Vallis Ridge channel deposits and will help out understanding of the channel. Unfortunately, it was too rough to brush, but it is clean enough that we can still get good science data.
      We are doing a lot of imaging and remote science today. We are taking Mastcam mosaics of multiple targets. “Log Meadow” is a target designed to get a look at the distribution of the white stones in the channel. “Grand Sentinel” is a target on the opposite side of our previous workspace, allowing us to document it from a different angle. “Tunnel Rock” and “Tombstone Ridge” are sedimentary rocks that may have ripple-like layers; examining the layer contours helps inform how rocks were formed. Lastly, “Gravel Ridge” is a target in “Arc Pass” where we are continuing to examine clasts and sedimentary layers. We also take a ChemCam LIBS observation of Log Meadow and a long-distance RMI image of “Chanbank,” another area of white stones. We round it off with a Navcam mosaic of the rover to monitor dust on the deck. 
      After wrapping up the targeted and contact science, we’re ready to drive. As the science team had time to look a bit more at the data collected in that region, they discovered this target that was worth going back for. We are driving back to the area of the white stones to do more contact science on rocks that look similar to the elemental sulfur we saw earlier this year. Planning ahead, I got to scout this drive on Friday, laying out the safest path and looking for parking spots that were both good for communications as well as for doing contact science. The target “Sheep Creek” is about 50 meters (about 164 feet) to the northeast, which makes the drive a challenge — the resolution of our imagery at that range makes it harder to pinpoint these small rocks. We do have really good imaging in that direction, and the terrain isn’t super scary, so the Rover Planners are going to try to make it in one drive. During the drive, we will be taking a MARDI “sidewalk” movie (a series of images looking below the rover for the entire length of the drive), which will help document the channel. On the second sol of the plan, we do some additional atmospheric and untargeted science. We have a Navcam suprahorizon movie (looking at the crater rim to evaluate dust in the atmosphere) and a dust devil movie. We also have a ChemCam AEGIS observation, where the rover will autonomously select a target to image. Overnight, CheMin does an “empty cell” analysis to confirm that the system is cleaned out and ready for the next sampling campaign.
      Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Sep 24, 2024 Related Terms
      Blogs Explore More
      3 min read A Striped Surprise
      Last week, team scientists and the internet alike were amazed when Perseverance spotted a black-and-white…


      Article


      1 day ago
      3 min read Sols 4311–4313: A Weekend of Engineering Curiosity


      Article


      1 day ago
      3 min read Sols 4309–4310: Leaning Back, Driving Back


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      The NASA Science Activation (SciAct) Program has been selected to receive the American Geophysical Union (AGU) 2024 Excellence in Earth and Space Science Education Award. This prestigious, annual award, established in 1995, honors a mid-career or senior scientist team, individual, or group that has demonstrated a sustained commitment to broad, positive impact on Earth and space science education at any education level from kindergarten through postgraduate studies.
      SciAct engages learners of all ages in all 50 states and 4 US territories with Earth and space science. Through an extensive network of nearly 600 partners, SciAct develops, co-creates, validates, and disseminates effective learning resources and activities to support the needs of learners in their pursuit of knowledge, including specific underrepresented groups such as: Black, blind and low vision, community college, differently abled, Hispanic, immigrant, Indigenous, multilingual, neurodiverse, rural, and other underserved communities. Furthermore, SciAct project teams share lessons-learned and best practices across the SciAct community to facilitate ongoing learning and growth for the entire SciAct community, ensuring the implementation of ever-more effective approaches for reaching all learners. 
      Since SciAct began in January 2016, its network has grown in strength and capacity. When reach data were collected for the first time in 2019, SciAct reported 15 million learner interactions. Four years later, in 2023, SciAct reported nearly 76 million learner interactions, a 506% increase. With many SciAct resources freely available online, 10 million of those interactions occurred across 170 other countries. In April 2024 alone, as part of a larger NASA-led eclipse mobilization, SciAct reported more than 62 million learner interactions, intentionally bringing the excitement of that celestial event to people in all 50 states, as well as Puerto Rico, Mexico, and Canada, to include learners far beyond the path of totality.
      The SciAct model is built on a foundation of NASA science. NASA Earth and space science research content areas, missions, scientists and other technical experts, and data are the building blocks of all SciAct learning resources and activities. Nearly 1,000 subject matter experts support the SciAct program to ensure science content is accurate, up-to-date, and – working with education/learning experts – accessible to diverse learner communities. Through these interactions, SciAct also influences scientists, showing them effective ways to contribute towards learning goals and reach new audiences. An increasing number of activities are specifically focused on giving scientists – especially early career scientists – the skills and knowledge to connect with learners outside the research community. 
      SciAct began as an experiment for conducting NASA Science education and outreach in a new, more coordinated way. Eight years later, that experiment has given rise to a powerful and effective approach for sharing the wonder of NASA science, content, and experts with the world. It is an honor for the NASA Science Activation program to be recognized by AGU, the world’s largest Earth and space science association, for its role in advancing science, transforming our understanding of the world, impacting our everyday lives, improving our communities, and contributing to solutions for a sustainable future.
      Share








      Details
      Last Updated Sep 23, 2024 Related Terms
      Science Activation Explore More
      2 min read NASA Summer Camp Inspires Future Climate Leaders


      Article


      2 weeks ago
      2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics


      Article


      3 weeks ago
      2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects


      Article


      3 weeks ago
      View the full article
    • By European Space Agency
      The Sentinel-1B satellite, the second satellite of the Copernicus Sentinel-1 mission, completed its disposal process – which included lowering its orbit and passivating its systems to ensure re-entry into Earth’s atmosphere within 25 years.
      This careful operation highlights the European Union’s and ESA’s commitment to space safety and sustainability and provides valuable experience for the disposal of current and future spacecraft.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4309–4310: Leaning Back, Driving Back
      NASA’s Mars rover Curiosity captured this image of a large fractured slab of bedrock, taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4307  — Martian day 4,307 of the Mars Science Laboratory Mission — on Sept. 17, 2024 at 15:50:36 UTC. Earth planning date: Wednesday, Sept. 18, 2024
      The lengthy drive planned on Monday executed as expected, and we came in today to find our rover parked at a jaunty angle on a sloped ridge. There were some worries that the slope might limit our ability to use the arm for contact science in this plan (we don’t want to do anything that might cause the rover to slide down the slope!), but after some careful consideration, we received the good news that all six of our wheels are holding on firmly to the ground, so there was no risk of slipping.
      On Monday, two different options for today’s plan were laid out. The first option, a “full contact science” plan where we don’t drive, was to be executed if Monday’s drive put us exactly where we hoped. The second, a “touch-and-go” plan where we do some light contact science before driving away, was to be executed if the drive didn’t put us where we wanted to be. As it happened, the rover was a little too enthusiastic about driving, and actually put our desired workspace under its body rather than in front where the arm could reach it. There’s always a little uncertainty in the final position after such a long drive! So, we decided to stick with a touch-and-go plan that includes a tiny backwards drive of less than a metre to reposition our desired target in front of the rover.
      Although we need to re-position, we aren’t slowing down on science for even a second. We are parked in front of a large fractured slab of bedrock, which can be seen in the above image. This slab became the contact science target for this plan with DRT and APXS activities on “The Minster.” Mastcam is getting a workout today as well, with large mosaics of “North Channel,” “Buckeye Ridge,” “Quinn,” and “Island Pass.” These mosaics are all documenting various aspects of the ridge we’re sat on and the edge of the Gediz Vallis Channel, including sedimentary rocks, white sulphate materials, and gravels and fine-grained materials. ChemCam is also taking a turn on the bedrock slab with a LIBS activity on “Grand Sentinel” and a mosaic of some exposed white stones off in the distance.
      The second sol of the plan, after our short drive, is largely taken over by environmental science activities, though there is our usual post-drive ChemCam AEGIS. These activities include a Mastcam tau and Navcam line-of-sight to measure the amount of dust in the atmosphere around and above us, as well as a dust devil movie, suprahorizon cloud movie, and some Navcam deck monitoring to see if our driving or the wind is moving around any of the sand and dust on the rover deck. The team is also taking the usual set of REMS, RAD, and DAN observations.
      Written by Conor Hayes, Graduate Student at York University
      Share








      Details
      Last Updated Sep 19, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4307-4308: Bright Rocks Catch Our Eyes


      Article


      2 days ago
      2 min read Reaching New Heights to Unravel Deep Martian History!


      Article


      3 days ago
      5 min read Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...