Jump to content

NASA Michoud Continues Work on Evolved Stage of SLS Rocket for Future Artemis Missions


NASA

Recommended Posts

  • Publishers

Manufacturing equipment that will be used to build components for NASA’s SLS (Space Launch System) rocket for future Artemis missions is being installed at the agency’s Michoud Assembly Facility in New Orleans, Louisiana.

The novel tooling will be used to produce the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area. The EUS will serve as the upper, or in-space, stage for all Block 1B and Block 2 SLS flights in both crew and cargo configurations.

In tandem, NASA and Boeing, the SLS lead contractor for the core stage and exploration upper stage, are producing structural test articles and flight hardware structures for the upper stage at Michoud and the agency’s Marshall Space Flight Center in Huntsville, Alabama. Early manufacturing is already underway at Michoud while preparations for an engine-firing test series for the upper stage are in progress at nearby Stennis Space Center in Bay St. Louis, Mississippi.

“The newly modified manufacturing space for the exploration upper stage signifies the start of production for the next evolution of SLS Moon rockets at Michoud,” said Hansel Gill, director at Michoud. “With Orion spacecraft manufacturing and SLS core stage assembly in flow at Michoud for the past several years, standing up a new production line and enhanced capability at Michoud for EUS is a significant achievement and a reason for anticipation and enthusiasm for Michoud and the SLS Program.”

The advanced upper stage for SLS is planned to make its first flight with Artemis IV and replaces the single-engine Interim Cryogenic Propulsion Stage (ICPS) that serves as the in-space stage on the initial SLS Block 1 configuration of the rocket. With its larger liquid hydrogen and liquid oxygen propellant tanks feeding four L3 Harris Technologies- built RL10C-3 engines, the EUS generates nearly four times the thrust of the ICPS, providing unrivaled lift capability to the SLS Block 1B and Block 2 rockets and making a new generation of crewed lunar missions possible.

This upgraded and more powerful rocket will increase the SLS rocket’s payload to the Moon by 40%, from 27 metric tons (59,525 lbs.) with Block 1 to 38 metric tons (83,776 lbs.) in the crew configuration.  Launching crewed missions along with other large payloads enables multiple large-scale objectives to be accomplished in a single mission.

Through the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon. The rocket is part of NASA’s deep space exploration plans, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, Gateway in orbit around the Moon, and commercial human landing systems. NASA’s SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.

For more on SLS, visit: 

https://www.nasa.gov/humans-in-space/space-launch-system

News Media Contact

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Sandra Connelly, deputy associate administrator for NASA’s Science Mission Directorate, left, Lori Glaze, acting deputy associate administrator for NASA’s Exploration Systems Development Mission Directorate, Robyn Gatens, director of the International Space Station at NASA Headquarters, and Carrie Olsen, manager of the Next Gen STEM project for NASA’s Office of STEM Engagement, discuss key takeaways at the conclusion of NASA’s LEO Microgravity Strategy Industry and Academia Workshop, Friday, Sept. 13, 2024, at Convene in Washington. NASA’s LEO Microgravity Strategy effort aims to develop and document an objectives-based approach toward the next generation of human presence in low Earth orbit to advance microgravity science, technology, and exploration.NASA/Joel Kowsky As part of NASA’s effort to advance microgravity science, technology, and exploration in low Earth orbit (LEO), the agency conducted two stakeholder workshops in London and Washington to solicit feedback from the international community, including NASA’s international partners, American industry, and academia on Sept. 6 and Sept. 13, respectively.
      The agency released a draft set of 42 objectives in late August, seeking input from U.S. industry, academia, international communities, NASA employees, and others to ensure its framework for the next generation of human presence in low Earth orbit, set to be finalized this winter, includes ideas and contributions from a range of stakeholders. The objectives span six categories: science, exploration-enabling research and technology development, commercial low Earth orbit infrastructure, operations, international cooperation, and workforce and engagement.
      “As we chart the future of human exploration, it’s vital that we harness the insights and expertise of our diverse stakeholders,” said NASA Deputy Administrator Pam Melroy. “These workshops provide an invaluable platform for stakeholders to share their insights, helping us create a strategy that reflects our shared ambitions for the future of space exploration.”
      Consultation is a fundamental aspect of NASA’s LEO Microgravity Strategy, emphasizing the importance of collaboration and the integration of diverse perspectives in advancing scientific research and technology development in low Earth orbit. By actively engaging with stakeholders –including scientists, industry partners, and educational institutions –NASA aims to gather valuable insights and align its objectives with the broader goals of the space community.
      “Engaging with a wide array of voices allows us to tap into innovative ideas that will enhance our missions,” stated Robyn Gatens, director of the International Space Station and acting director of Commercial Spaceflight. “This collaborative approach not only strengthens our current initiatives but also lays the groundwork for future advancements in space exploration.”
      To contribute to NASA’s low Earth orbit microgravity strategy, visit: www.leomicrogravitystrategy.org
      View the full article
    • By NASA
      Illustration of NASA’s BioSentinel spacecraft as it enters a heliocentric orbit. BioSentinel collected data during the May 2024 geomagnetic storm that hit Earth to learn more about the impacts of radiation in deep space.NASA/Daniel Rutter In May 2024, a geomagnetic storm hit Earth, sending auroras across the planet’s skies in a once-in-a-generation light display. These dazzling sights are possible because of the interaction of coronal mass ejections – explosions of plasma and magnetic field from the Sun – with Earth’s magnetic field, which protects us from the radiation the Sun spits out during turbulent storms.
      But what might happen to humans beyond the safety of Earth’s protection? This question is essential as NASA plans to send humans to the Moon and on to Mars. During the May storm, the small spacecraft BioSentinel was collecting data to learn more about the impacts of radiation in deep space.
      “We wanted to take advantage of the unique stage of the solar cycle we’re in – the solar maximum, when the Sun is at its most active – so that we can continue to monitor the space radiation environment,” said Sergio Santa Maria, principal investigator for BioSentinel’s spaceflight mission at NASA’s Ames Research Center in California’s Silicon Valley. “These data are relevant not just to the heliophysics community but also to understand the radiation environment for future crewed missions into deep space.”
      BioSentinel – a small satellite about the size of a cereal box – is currently over 30 million miles from Earth, orbiting the Sun, where it weathered May’s coronal mass ejection without protection from a planetary magnetic field. Preliminary analysis of the data collected indicates that even though this was an extreme geomagnetic storm, that is, a storm that disturbs Earth’s magnetic field, it was considered just a moderate solar radiation storm, meaning it did not produce a great increase in hazardous solar particles. Therefore, such a storm did not pose any major issue to terrestrial lifeforms, even if they were unprotected as BioSentinel was. These measurements provide useful information for scientists trying to understand how solar radiation storms move through space and where their effects – and potential impacts on life beyond Earth – are most intense.
      NASA’s Solar Dynamics Observatory captured this image of a solar flare on May 11, 2024. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares.NASA/SDO The original mission of BioSentinel was to study samples of yeast in deep space. Though these yeast samples are no longer alive, BioSentinel has adapted and continues to be a novel platform for studying the potential impacts of deep space conditions on life beyond the protection of Earth’s atmosphere and magnetosphere. The spacecraft’s biosensor instrument collects data about the radiation in deep space. Over a year and a half after its launch in Nov. 2022, BioSentinel retreats farther away from Earth, providing data of increasing value to scientists.
      “Even though the biological part of the BioSentinel mission was completed a few months after launch, we believe that there is significant scientific value in continuing with the mission,” said Santa Maria. “The fact that the CubeSat continues to operate and that we can communicate with it, highlights the potential use of the spacecraft and many of its subsystems and components for future long-term missions beyond low Earth orbit.”
      When we see auroras in the sky, they can serve as a stunning reminder of all the forces we cannot see that govern our cosmic neighborhood. As NASA and its partners seek to understand more about space environments, platforms like BioSentinel are essential to learn more about the risks of surviving beyond Earth’s sphere of protection.
      Share
      Details
      Last Updated Sep 26, 2024 Related Terms
      General Ames Research Center Ames Research Center's Science Directorate Ames Space Biosciences CubeSats NASA Centers & Facilities Science & Research Small Satellite Missions View the full article
    • By NASA
      4 min read
      Pioneer of Change: America Reyes Wang Makes NASA Space Biology More Open
      America Reyes Wang, the lead of the the Space Biology Biospecimen Sharing Program at NASA’s Ames Research Center in California’s Silicon Valley, stands beside a spacesuit display. Photo courtesy of America Reyes Wang As humans return to the Moon and push on toward Mars, scientists are ramping up research into the effects of space on the body to make sure astronauts stay healthy on longer missions. This research often involves spaceflight studies of rodents, insects, and other models in orbiting laboratories such as the International Space Station. However, space-related biological samples are difficult to get, meaning that researchers who want to study space biology are frequently out of luck.
      America Reyes Wang, a KBR employee and the lead of the Space Biology Biospecimen Sharing Program at NASA’s Ames Research Center in California’s Silicon Valley, oversees the team that has changed that. Birthed from an initiative first pioneered in the 1960s, the Biospecimen Sharing Program collects samples and data from NASA non-human space biology studies and makes them available in the public, open NASA Open Science Data Repository (OSDR). 
      To derive the most benefit from the precious few biology studies taking place in space, Reyes Wang arranges collaborations on space biology dissections with NASA-funded researchers so that her team can collect and preserve unutilized biospecimens for others to use. Outside researchers can request the samples to study in person by writing and submitting proposals. Once analyzed, researchers share their data back with the NASA OSDR for other investigators to access and study.
      The ethos of open science is central to Reyes Wang’s approach to her work. “The samples that we work with are so precious,” she said. “To me, it’s a no-brainer — why not share what we can share?”
      America Reyes Wang wears personal protective equipment (PPE) while working on an activity for NASA’s Biospecimen Sharing Program. Photo courtesy of America Reyes Wang Reyes Wang aspired to work in the scientific or medical field from a young age, driven by her desire to help people. Her father, who was born in El Salvador and dreamed of being an astronaut after watching the 1969 Moon landing, inspired Reyes Wang to fall in love with space. She also credited her Salvadoran and Mexican family with teaching her the value of understanding different experiences. 
      “To me, being Hispanic, especially as a Latina in STEM, means recognizing and building upon the hard work and sacrifices of those who came before me, as well as extending a helping hand to those around me for the betterment of us all,” Reyes Wang said. “It also means enjoying and sharing our vibrant cultures.” 
      As a student at Stanford University, Reyes Wang conducted neurobiology research with rodents, but assumed she would have to choose her love of biology over her love of space. The field of space biology allowed her to combine those interests. Having quietly dreamed of working for NASA for years, she was also thrilled to find that she could work on NASA missions as a space biologist.
      If we want to keep up with the pace of humanity’s aspirations to travel further and for longer … open science is one of the best tools we have for achieving those dreams.
      America Reyes Wang
      Biospecimen Sharing Program Lead
      Reyes Wang first found a role supporting NASA as an experiment support scientist for the agency’s Rodent Research Program. While she no longer facilitates research on the International Space Station in her current position, she uses her scientific expertise and collaborative outlook to guide the Biospecimen Sharing Program in a direction that will most help advance science. 
      Despite space biology’s status as a relatively niche field, Reyes Wang has noted its tremendous impact on the biological sciences, medicine, and technology as a whole. For example, spaceflown biological samples are often used to investigate diseases that affect people on Earth. Reyes Wang’s involvement in accelerating these studies captures her long-held desire to help people.
      “Open science gives the world an opportunity to get these important answers much more quickly,” Reyes Wang said. “If we want to keep up with the pace of humanity’s aspirations to travel further and for longer, we need to pick up the pace when it comes to getting the answers, and I think open science is one of the best tools we have for achieving those dreams.”
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer
      Share








      Details
      Last Updated Sep 26, 2024 Related Terms
      Biological & Physical Sciences Open Science Space Biology Explore More
      1 min read Women in Astronomy Citizen Science Webinar This Thursday


      Article


      3 days ago
      4 min read NASA Awards 15 Grants to Support Open-Source Science


      Article


      1 month ago
      2 min read Geospatial AI Foundation Model Team Receives NASA Marshall Group Achievement Award 


      Article


      1 month ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Water piping is installed near the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center in December 2014. The project to replace and upgrade the center’s high pressure industrial water system was a key milestone in preparations to test the SLS (Space Launch System) core stage ahead of the successful Artemis I launch.NASA/Danny Nowlin Employees install a 96-inch valve near the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center as part of a high-pressure industrial water upgrade project in March 2015.NASA/Danny Nowlin In this March 2022 photo, crews use a shoring system to hold back soil as they install new 75-inch piping leading from the NASA Stennis High Pressure Industrial Water Facility to the valve vault pit serving the Fred Haise Test Stand.NASA/Danny Nowlin Crews use a specially designed tool to place a new pipeline liner inside the existing carrier pipe near the Fred Haise Test Stand in 2024 in the last phase of updating the original test complex industrial water system at NASA’s Stennis Space Center.NASA/Danny Nowlin Crews prepare new pipeline liner sections for installation near the Fred Haise Test Stand in 2024 in the last phase of updating the original test complex industrial water system at NASA’s Stennis Space Center.NASA/Danny Nowlin For almost 60 years, NASA’s Stennis Space Center has tested rocket systems and engines to help power the nation’s human space exploration dreams. Completion of a critical water system infrastructure project helps ensure the site can continue that frontline work moving forward.
      “The infrastructure at NASA Stennis is absolutely critical for rocket engine testing for the agency and commercial companies,” said NASA project manager Casey Wheeler. “Without our high pressure industrial water system, testing does not happen. Installing new underground piping renews the lifespan and gives the center a system that can be operated for the foreseeable future, so NASA Stennis can add to its nearly six decades of contributions to space exploration efforts.”
      The high pressure industrial water system delivers hundreds of thousands of gallons of water per minute through underground pipes to cool rocket engine exhaust and provide fire suppression capabilities during testing. Without the water flow, the engine exhaust, reaching as hot as 6,000 degrees Fahrenheit, could melt the test stand’s steel flame deflector.
      Each test stand also features a FIREX system that holds water in reserve for use in the event of a mishap or fire. During SLS (Space Launch System) core stage testing, water also was used to create a “curtain” around the test hardware, dampening the high levels of noise generated during hot fire and lessening the video-acoustic impact that can cause damage to infrastructure and the test hardware.
      Prior to the system upgrade, the water flow was delivered by the site’s original piping infrastructure built in the 1960s. However, that infrastructure had well exceeded its expected 30-year lifespan.

      Scope of the Project
      The subsequent water system upgrade was planned across multiple phases over a 10-year span. Crews worked around ever-changing test schedules to complete three major projects representing more than $50 million in infrastructure investment.
      “Many people working the construction jobs for these projects are from the Gulf Coast area, so it has created jobs and work for the people doing the construction,” Wheeler said. “Some of the specialty work has had people coming in from all over the country, as well as vendors and suppliers that are supplying the materials, so that has an economic impact here too.”
      Crews started by replacing large sections of piping, including a 96-inch line, from the 66-million-gallon onsite reservoir to the Thad Cochran (B-1/B-2) Test Stand. This phase also included the installation of a new 25,000-gallon electric pump at the High Pressure Industrial Water Facility to increase water flow capacity. The upgrades were critical for NASA Stennis to conduct Green Run testing of the SLS core stage in 2020-21 ahead of the successful Artemis I launch.
      Work in the A Test Complex followed with crews replacing sections of 75-inch piping from the water plant and installing several new 66-inch gate valves. 
      In the final phase, crews used an innovative approach to install new steel liners within existing pipes leading to the Fred Haise Test Stand (formerly A-1 Test Stand). The work followed NASA’s completion of a successful RS-25 engine test campaign last April for future Artemis missions to the Moon and beyond. The stand now is being prepared to begin testing of new RS-25 flight engines.
      Overall, the piping project represents a significant upgrade in design and materials. The new piping is made from carbon steel, with protective linings to prevent corrosion and gate valves designed to be more durable.

      Importance of Water
      It is hard to overstate the importance of the work to ensure ongoing water flow. For a typical 500-second RS-25 engine test on the Fred Haise Test Stand, around 5 million gallons of water is delivered from the NASA Stennis reservoir through a quarter-of-a-mile of pipe before entering the stand to supply the deflector and cool engine exhaust.
      “Without water to cool the deflector and the critical parts of the test stand that will get hot from the hot fire itself, the test stand would need frequent corrective maintenance,” Wheeler said. “This system ensures the test stands remain in a condition where continuous testing can happen.”
      Share
      Details
      Last Updated Sep 26, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      7 min read Lagniappe for September 2024
      Article 3 weeks ago 5 min read Lagniappe for August 2024
      Article 2 months ago 4 min read NASA Stennis Flashback: Shuttle Team Achieves Unprecedented Milestone
      Article 2 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds that… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   6 min read
      NASA’s Hubble Finds that a Black Hole Beam Promotes Stellar Eruptions
      This is an artist’s concept looking down into the core of the giant elliptical galaxy M87. A supermassive black hole ejects a 3,000-light-year-long jet of plasma, traveling at nearly the speed of light. In the foreground, to the right is a binary star system. The system is far from the black hole, but in the vicinity of the jet. In the system an aging, swelled-up, normal star spills hydrogen onto a burned-out white dwarf companion star. As the hydrogen accumulates on the surface of the dwarf, it reaches a tipping point where it explodes like a hydrogen bomb. Novae frequently pop-off throughout the giant galaxy of 1 trillion stars, but those near the jet seem to explode more frequently. So far, it’s anybody’s guess why black hole jets enhance the rate of nova eruptions. NASA, ESA, Joseph Olmsted (STScI)
      Download this image

      In a surprise finding, astronomers using NASA’s Hubble Space Telescope have discovered that the blowtorch-like jet from a supermassive black hole at the core of a huge galaxy seems to cause stars to erupt along its trajectory. The stars, called novae, are not caught inside the jet, but apparently in a dangerous neighborhood nearby.
      The finding is confounding researchers searching for an explanation. “We don’t know what’s going on, but it’s just a very exciting finding,” said lead author Alec Lessing of Stanford University. “This means there’s something missing from our understanding of how black hole jets interact with their surroundings.”
      A nova erupts in a double-star system where an aging, swelled-up, normal star spills hydrogen onto a burned-out white dwarf companion star. When the dwarf has tanked up a mile-deep surface layer of hydrogen that layer explodes like a giant nuclear bomb. The white dwarf isn’t destroyed by the nova eruption, which ejects its surface layer and then goes back to siphoning fuel from its companion, and the nova-outburst cycle starts over again.
      Hubble found twice as many novae going off near the jet as elsewhere in the giant galaxy during the surveyed time period. The jet is launched by a 6.5-billion-solar-mass central black hole surrounded by a disk of swirling matter. The black hole, engorged with infalling matter, launches a 3,000-light-year-long jet of plasma blazing through space at nearly the speed of light. Anything caught in the energetic beam would be sizzled. But being near its blistering outflow is apparently also risky, according to the new Hubble findings.
      A Hubble Space Telescope image of the giant galaxy M87 shows a 3,000-light-year-long jet of plasma blasting from the galaxy’s 6.5-billion-solar-mass central black hole. The blowtorch-like jet seems to cause stars to erupt along its trajectory. These novae are not caught inside the jet, but are apparently in a dangerous neighborhood nearby. During a recent 9-month survey, astronomers using Hubble found twice as many of these novae going off near the jet as elsewhere in the galaxy. The galaxy is the home of several trillion stars and thousands of star-like globular star clusters. NASA, ESA, STScI, Alec Lessing (Stanford University), Mike Shara (AMNH); Acknowledgment: Edward Baltz (Stanford University); Image Processing: Joseph DePasquale (STScI)
      Download this image

      The finding of twice as many novae near the jet implies that there are twice as many nova-forming double-star systems near the jet or that these systems erupt twice as often as similar systems elsewhere in the galaxy.
      “There’s something that the jet is doing to the star systems that wander into the surrounding neighborhood. Maybe the jet somehow snowplows hydrogen fuel onto the white dwarfs, causing them to erupt more frequently,” said Lessing. “But it’s not clear that it’s a physical pushing. It could be the effect of the pressure of the light emanating from the jet. When you deliver hydrogen faster, you get eruptions faster. Something might be doubling the mass transfer rate onto the white dwarfs near the jet.” Another idea the researchers considered is that the jet is heating the dwarf’s companion star, causing it to overflow further and dump more hydrogen onto the dwarf. However, the researchers calculated that this heating is not nearly large enough to have this effect.
      “We’re not the first people who’ve said that it looks like there’s more activity going on around the M87 jet,” said co-investigator Michael Shara of the American Museum of Natural History in New York City. “But Hubble has shown this enhanced activity with far more examples and statistical significance than we ever had before.”
      Shortly after Hubble’s launch in 1990, astronomers used its first-generation Faint Object Camera (FOC) to peer into the center of M87 where the monster black hole lurks. They noted that unusual things were happening around the black hole. Almost every time Hubble looked, astronomers saw bluish “transient events” that could be evidence for novae popping off like camera flashes from nearby paparazzi. But the FOC’s view was so narrow that Hubble astronomers couldn’t look away from the jet to compare with the near-jet region. For over two decades, the results remained mysteriously tantalizing.
      Compelling evidence for the jet’s influence on the stars of the host galaxy was collected over a nine-month interval of Hubble observing with newer, wider-view cameras to count the erupting novae. This was a challenge for the telescope’s observing schedule because it required revisiting M87 precisely every five days for another snapshot. Adding up all of the M87 images led to the deepest images of M87 that have ever been taken.
      In a surprise finding, astronomers, using NASA’s Hubble Space Telescope have discovered that the jet from a supermassive black hole at the core of M87, a huge galaxy 54 million light years away, seems to cause stars to erupt along its trajectory.
      NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris Hubble found 94 novae in the one-third of M87 that its camera can encompass. “The jet was not the only thing that we were looking at — we were looking at the entire inner galaxy. Once you plotted all known novae on top of M87 you didn’t need statistics to convince yourself that there is an excess of novae along the jet. This is not rocket science. We made the discovery simply by looking at the images. And while we were really surprised, our statistical analyses of the data confirmed what we clearly saw,” said Shara.
      This accomplishment is entirely due to Hubble’s unique capabilities. Ground-based telescope images do not have the clarity to see novae deep inside M87. They cannot resolve stars or stellar eruptions close to the galaxy’s core because the black hole’s surroundings are far too bright. Only Hubble can detect novae against the bright M87 background.
      Novae are remarkably common in the universe. One nova erupts somewhere in M87 every day. But since there are at least 100 billion galaxies throughout the visible universe, around 1 million novae erupt every second somewhere out there.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More:

      Hubble’s Messier Catalog: M87


      Hubble Black Holes


      Monster Black Holes are Everywhere

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Alec Lessing
      Stanford University, Stanford, CA
      Michael Shara
      American Museum of Natural History, New York, NY
      Share








      Details
      Last Updated Sep 26, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Black Holes Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble E-books



      Hubble’s Messier Catalog



      Hubble Online Activities


      View the full article
  • Check out these Videos

×
×
  • Create New...